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With advancements in cancer treatment and supportive care, there is a growing 
population of childhood cancer survivors who experience a substantial burden of 
comorbidities related to having received cancer treatment at a young age. Despite 
an overall reduction in the incidence of most chronic health conditions in childhood 
cancer survivors over the past several decades, the cumulative incidence of certain 
late effects, in particular diabetes mellitus (DM), has increased. The implications are 
significant, because DM is a key risk factor for cardiovascular disease, a leading cause 
of premature death in childhood cancer survivors. The underlying pathophysiology 
of DM in cancer survivors is multifactorial. DM develops at younger ages in survivors 
compared to controls, which may reflect an “accelerated aging” phenotype in these 
individuals. The treatment-related exposures (i.e., chemotherapy, radiation) that 
increase risk for DM in childhood cancer survivors may be more than additive with 
established DM risk factors (e.g., older age, obesity, race, and ethnicity). Emerging 
research also points to parallels in cellular processes implicated in aging- and cancer 
treatment-related DM. Still, there remains marked inter-individual variability regarding 
risk of DM that is not explained by demographic and therapeutic risk factors alone. 
Recent studies have highlighted the role of germline genetic risk factors and epigenetic 
modifications that are associated with risk of DM in both the general and oncology 
populations. This review summarizes our current understanding of recognized risk 
factors for DM in childhood cancer survivors to help inform targeted approaches for 
disease screening, prevention, and treatment. Furthermore, it highlights the existing 
scientific gaps in understanding the relative contributions of individual therapeutic 
exposures and the mechanisms by which they exert their effects that uniquely 
predispose this population to DM following cancer treatment.
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Background

For most common pediatric malignancies, five-year survival rates exceed 90% (1); as a result, 
currently, there are an estimated 500,000 childhood cancer survivors (CCS) in the U.S. alone (2). 
Despite this success, the growing population of long-term CCS faces a significantly worse quality of 
health compared to the non-oncology population due to cancer diagnosis and treatment exposures 
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during key developmental periods. Approximately 20 years after cancer 
diagnosis, more than 25% of CCS have a chronic health condition (e.g., 
musculoskeletal deficits, cardiovascular disease, endocrinopathies) (3, 4). 
While advances in treatment and supportive care approaches have 
reduced the overall burden over time, the risk for specific chronic health 
conditions such as diabetes mellitus (DM) has increased (3). Among 
5-year survivors, the cumulative incidence of self-reported severe, life-
threatening, or fatal DM 15 years after primary cancer diagnosis more 
than doubled in patients diagnosed in the 1990s compared to the 1970s 
(3). Similar to the general population, in addition to producing 
immediate adverse health outcomes, DM is also a critical risk factor for 
subsequent cardiovascular disease, which is a leading cause of death in 
CCS (5, 6). Compared to the general population, CCS are seven times 
more likely to die from cardiovascular disease and related morbidities, 
largely due to treatment exposures such as anthracycline chemotherapy 
and chest radiation (7). Survivors of adult-onset cancer with DM have a 
higher risk for cardiovascular disease than do their non-oncology 
counterparts with DM (8) Thus, prevention and timely management of 
DM not only leads to a decrease in indirect complications of DM, but also 
has the potential opportunity to mitigate premature mortality in CCS 
related to cardiovascular disease.

In addition to premature mortality, the financial burden from DM 
is substantial. The approximate cumulative cost of medical expenditure, 
missed work, and decreased productivity from DM in all individuals 
(i.e., oncology and non-oncology populations) is estimated at 300 
billion dollars annually (9). Individuals with DM experience excess 
financial hardship, financial distress, cost-related medication 
nonadherence, and food insecurity (10). As CCS have a higher burden 
of chronic health conditions and spend more of their income on 
medical care compared to siblings (3, 11), they are particularly 
vulnerable to the burden of financial toxicity associated with late effects 
and conditions such as DM.

DM typically develops through progression from normal glucose 
regulation, to glucose intolerance (prediabetes), and ultimately to 
glucose dysregulation or overt DM. Each year, approximately 10% of the 
general population with recognized prediabetes progresses to DM; in 
contrast, those with prediabetes or insulin resistance who achieve 
reversion to normal glucose regulation/homeostasis through 
intervention demonstrate a 56% reduced risk of progression to DM 
(12). Therefore, early diagnosis and intervention during the prediabetic 
phase represent important potential opportunities to reduce progression 
to diabetes. Survivors of childhood cancer have unique risk factors 
leading to the development of DM. Different mechanistic pathways may 
be implicated depending on their individual treatment exposures. In 
this review, we summarize the current understanding of recognized risk 
factors for DM in CCS to help inform targeted approaches for disease 
screening, prevention, and treatment. Additionally, this review 
highlights the existing scientific gaps in understanding the relative 
contributions of individual therapeutic exposures and the mechanisms 
by which they exert their effects that uniquely predispose this population 
to DM following cancer treatment.

General risk factors

Prediabetes is characterized by insulin resistance and DM is 
characterized by hyperglycemia due to reduced insulin action and/or 
relative deficiency in pancreatic insulin secretion with or without 

decreased insulin sensitivity in target organs. In the general 
population, obesity coupled with insulin resistance is the strongest risk 
factor for developing DM; individuals with obesity have an 
approximately 7-fold risk of developing DM compared to those who 
are normal weight (13, 14). Other identified risk factors include 
decreased physical activity and race/ethnicity (Hispanic, Native 
American, Black) (14).

Role of body composition

The inverse relationship between body mass index (BMI) and age 
at DM diagnosis is well recognized (15). Although BMI is a readily 
available indirect measure of obesity, it fails to account for age- and 
sex-specific differences in body composition and amounts of specific 
fat depots such as visceral vs. subcutaneous adipose tissue. Studies 
assessing body composition in CCS have shown an increased risk for 
DM independent of BMI (16–18). The increased visceral adiposity 
seen in survivors is strongly associated with metabolic abnormalities, 
including insulin resistance, inflammation, and adipokine-associated 
inflammation, likely compounding the existent risk for DM associated 
with obesity (18). Visceral adipose tissue (VAT) is the immediate 
storage site for diet-derived fat. It exhibits high lipid turnover and is 
the primary source of free fatty acid (FFA) release after an overnight 
fast (19). Most FFA delivered to the liver originates from visceral fat, 
particularly in individuals with more VAT, and this effect appears to 
be greater in women than in men (20, 21).

Sarcopenic obesity, characterized by the concurrent loss of 
skeletal muscle mass and increase in fat mass, specifically VAT, is 
an important late effect of cancer treatment that is associated with 
decreased insulin sensitivity (22–24). Excess adiposity leads to an 
imbalance in the production of adipocytokines, including an 
increase in pro-inflammatory cytokines and decrease in adiponectin 
which results in worsening dyslipidemia and insulin resistance (25). 
In individuals with obesity, adipocytes become resistant to insulin-
stimulated inhibition of lipolysis. This results in increased FFA flux, 
inflammation, and lipid deposition in skeletal muscle and liver 
tissue (25). Skeletal muscle is responsible for a majority of the 
body’s insulin-stimulated glucose disposal, thus this lipid deposition 
negatively affects glucose uptake in peripheral tissues (25). 
Importantly, pediatric allogeneic hematopoietic cell transplantation 
(HCT) survivors have been found to have significantly higher fat 
mass, higher VAT and subcutaneous adipose tissue, and significantly 
lower muscle density and lean mass compared to a robust, healthy 
age-, sex-, and race-matched reference population. These body 
composition differences were present despite no significant 
differences in BMI Z-scores between HCT survivors and the 
reference population (17, 18). The body composition abnormalities 
further highlight the failure of BMI as a measure to adequately 
capture discrete disease effects on lean mass and fat mass in HCT 
survivors. Furthermore, similar body composition abnormalities 
with normal BMI have also been reported in a longitudinal cohort 
of adult survivors of allogeneic HCT (26). The observed alterations 
in body composition likely contribute to treatment-related 
morbidity and mortality associated with premature atherosclerotic 
cardiovascular disease, metabolic syndrome, and poor bone health.

Normal insulin signaling typically suppresses hepatic glucose 
production (27). However, hepatic insulin signaling becomes 
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impaired due to accumulated triglyceride and FFA levels in the liver, 
leading to increased hepatic gluconeogenesis (15). Excess hepatic 
glucose production, together with impaired skeletal muscle glucose 
uptake, further exacerbates hyperglycemia (28). Additionally, FFAs 
stimulate hepatic inflammatory and pro-thrombotic states, 
characterized by endothelial activation, which increase 
cardiovascular risk (29, 30). Nutritional imbalance (e.g., excess fat 
and carbohydrate consumption relative to needs) can induce an 
increase in reactive oxygen species (ROS) burden and oxidative 
stress. Excess ROS in turn lead to increased inflammation and 
additional downstream effects including mitochondrial dysfunction 
and epigenetic changes which can persist even after restoration of 
normoglycemia (15, 31, 32).

Among individuals with insulin resistance, increased lipid 
deposition within muscle cells (intramyocellular lipids, IMCL) is 
associated with poor fatty acid oxidation, and decreased insulin 
sensitivity, independent of BMI (33–35). In oncology patients 
undergoing potentially curative surgery, higher IMCL is positively 
correlated with weight loss from pre-illness weight (36). Furthermore, 
a study of pediatric HCT survivors demonstrated higher fat infiltration 
of muscle compared to matched controls (18). The location of IMCL 
also affects insulin sensitivity. A study investigating differences in lipid 
deposition between endurance-trained athletes and individuals with 
DM who had similar IMCL levels found that those with DM store 
lipids in larger droplets in type II muscle fibers in the subsarcolemmal 
region, where the IMCL can potentially interfere with insulin 
signaling. In contrast, the trained athletes stored IMCL in smaller lipid 
droplets in type I muscle fibers in the intermyofibrillar space where 
they can subsequently be utilized to fuel oxidation (37). This evidence 

suggests that, in addition to the increased VAT generally seen with 
sarcopenic obesity, the imbalance of energy intake vs. expenditure and 
lipid distribution in adipose and muscle depots are potentially 
important drivers for the development of DM that require further 
characterization in CCS. Furthermore, the prevalence of adverse body 
composition, its relative contribution to the development of DM in the 
context of cancer treatment exposures, and how this risk compares to 
the general population, have not been well-defined.

Treatment-related risk factors and 
increased risk for diabetes mellitus

Radiation

As shown in Figure 1, there are multiple complex and interrelated 
treatment-associated mechanisms underlying the development of DM 
in this patient population. This includes effects of radiation and 
chemotherapy on the pancreas, liver, pituitary, and adipose and 
muscle tissues, ultimately resulting in a cycle of hyperglycemia and 
insulin resistance with or without impaired insulin production. 
Radiation is the strongest treatment-related risk factor associated with 
the development of subsequent DM in CCS. While cancer treatment 
has changed across eras, with directed effort to reduce radiation 
exposure for certain cancers (e.g., chest radiation in patients with 
Hodgkin lymphoma), radiation remains integral in the upfront 
treatment for many childhood malignancies such as Wilms tumor, 
high-risk neuroblastoma, Ewing sarcoma, and a majority of CNS 
tumors. Total body irradiation (TBI) is still a key component of many 

FIGURE 1

Mechanistic pathways involved in the development of insulin resistance in cancer survivors. Radiation and chemotherapy can have a multitude of 
complex, interrelated effects on the pancreas, liver, pituitary, and adipose and muscle tissues. Direct effects to the pancreas can lead to beta-cell 
dysfunction, subsequently resulting in decreased insulin secretion. Direct and indirect effects of treatment negatively affect muscle health (reduced 
muscle mass and mitochondrial respiration), which is compounded by the fatty infiltration of muscle that is seen with an increase in whole body fat 
mass. Together, these changes worsen peripheral tissue insulin resistance, leading to increased gluconeogenesis. This creates a cycle of hyperglycemia 
and decreased insulin sensitivity, with or without adequate insulin production. GH, growth hormone; IMCL, intramyocellular lipids. Created with 
BioRender.com.
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conditioning regimens prior to HCT, particularly in patients with 
relapsed acute lymphoblastic leukemia (ALL) (38, 39).

Specifically, TBI and abdominal radiation are the two most 
recognized radiation treatment exposures in survivors that 
subsequently lead to DM. In a study of over 8,500 survivors, after 
adjusting for relevant clinical and treatment-related factors, survivors 
treated with TBI demonstrated a 7-fold increased risk (OR 7.2, 95% 
CI 3.4–15.0) and those with abdominal radiation, a 3-fold increased 
risk (OR 2.7, 95% CI 1.9–3.8) of DM compared to survivors without 
these respective exposures (16). Compared to siblings, and after 
adjusting for BMI, survivors with TBI, abdominal radiation, and 
cranial radiation were 12.6, 3.4, and 1.6 times as likely to develop DM, 
respectively (16). The increased risk of DM with TBI exposure is 
multifactorial, and includes direct effects on pancreatic and adipose 
tissues as well as the hypothalamic–pituitary axis (40). Childhood 
cancer survivors treated with TBI have more adipose tissue, less 
muscle mass, and worse muscle function compared to controls (41). 
Increased fat mass, in particular visceral adiposity, in TBI-treated 
survivors is associated with less insulin sensitivity (18). This “ectopic 
fat” profile, when observed along with marked hypertriglyceridemia, 
implicates adipocyte dysfunction and disordered fatty acid 
metabolism, reminiscent of lipodystrophy, in the pathogenesis of 
marked insulin resistance (42, 43).

The risk associated with abdominal radiation, used in the 
treatment of many solid tumors and certain lymphomas, is particularly 
increased in individuals with diagnosis and treatment at younger ages, 
older current age, higher BMI, and receipt of higher doses of radiation 
to the pancreatic tail (44). Radiation therapy to the pancreas leads to 
islet cell degranulation, mitochondrial destruction, and impaired 
insulin secretion (16). Human studies demonstrate smaller pancreatic 
volume on MRI after abdominal radiation, and a linear dose-
dependent increased risk for developing DM with radiation to the tail 
of the pancreas (44–46). However, a recent study of two-year CCS 
with history of abdominal radiation found no difference in fasting 
insulin levels between those with normal vs. abnormal glucose 
tolerance (47). In contrast, in a study of young adult survivors of 
childhood ALL, those who received TBI as part HCT conditioning 
had a higher prevalence of abnormal glucose tolerance and lower 
pancreatic beta-cell reserve, less insulin secretion, and decreased 
pancreatic volume adjusted for body surface area, even years after TBI 
exposure compared to those with history of ALL who did not receive 
TBI and HCT (45). Together, these studies suggest that in the early 
survivorship period, pancreatic beta-cell damage, if present, is not 
clinically overt and does not account for the increased risk of DM in 
CCS. With time, the beta-cell damage can become more pronounced 
and plays a more important role in the pathogenesis of DM. Another 
contributary mechanism to developing DM after abdominal radiation 
is the effect of abdominal radiation on adipose tissue (48). Radiation 
is associated with decreased subcutaneous adipose tissue, which is 
thought to protect against metabolic dysregulation, and increased 
visceral adipose tissue, which increases metabolic dysregulation 
including insulin resistance (49, 50). Radiation-induced adipose tissue 
damage leads to inflammation and mitochondrial injury, both of 
which are also associated with the development of DM (51, 52). The 
extent to which radiation to the pancreas affects beta-cell function, 
and the timing of these effects relative to the radiation exposure 
deserve further delineation in future studies.

Cranial radiation is also associated with development of DM, 
though to a lesser degree than TBI and abdominal radiation (53). In a 
study of over 700 CCS with a history of cranial radiation, nearly 50% 
developed growth hormone deficiency (54). Untreated growth 
hormone deficiency is associated with alterations in body composition, 
including increased waist-to-height ratio and low muscle mass, that 
can contribute to insulin resistance (54). Cranial radiation may also 
impact hypothalamic responsiveness to leptin, leading to an increase 
in adipose tissue and its production of leptin (51). Impaired 
responsiveness to leptin would be expected to lead to increased caloric 
intake and subsequent weight gain, further increasing insulin 
resistance (55). Thus, both radiation exposure and increased adiposity 
can exacerbate similar tissue-specific inflammatory responses and 
mitochondrial dysfunction leading to insulin resistance. 
Hypothalamic-pituitary dysfunction with similar endocrine 
alterations as seen with cranial radiation, may also develop following 
neurosurgical tumor intervention (56).

Chemotherapy

Corticosteroids, commonly used in the treatment of ALL and 
many lymphomas, are associated with increased risk of treatment-
induced DM. The posited mechanisms include steroid-induced 
inhibition of glucose uptake in peripheral tissues, increased hepatic 
gluconeogenesis, and excess lipid deposition in skeletal muscle (51, 57, 
58). While not all individuals who receive corticosteroids develop DM 
after completion of therapy, survivors who develop treatment-induced 
DM during steroid therapy are at increased risk of subsequently 
developing DM even when off steroids (59). There is also a well-
described relationship between alkylator exposure and hypogonadism 
(60, 61). Hypogonadism can lead to alterations in body composition 
including excess adiposity, thereby increasing the risk of 
cardiometabolic disease (62). L-asparaginase increases the risk for 
developing DM in the acute treatment setting by decreasing insulin 
secretion in response to hyperglycemia (57, 58, 63, 64). However 
L-asparaginase is not associated with the development of DM 
following completion of treatment (16).

Cellular processes implicated in 
aging- and treatment-related DM

DM has historically been considered an aging-related disease, and 
older age is an established risk factor for developing DM (14). In the 
general population, age-related changes, such as frailty (the most 
widely recognized phenotype of aging), mitochondrial dysfunction, 
and increased IMCL, can drive the development of DM (65, 66). CCS 
exhibit signs typically associated with premature or accelerated aging 
related to having received cancer treatments at a young age (67). At a 
mean age of 33 years, CCS demonstrate a prevalence of frailty similar 
to adults who are much older (≥65 years) (67). Compared to their 
siblings, CCS demonstrate a 6-fold higher cumulative incidence of 
severe or life-threatening chronic health conditions, such as 
hypertension, dyslipidemia, and DM, which are typically seen in older 
individuals (3, 68). Emerging research points to parallels in cellular 
processes implicated in aging- and cancer treatment-related 
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DM. Mitochondrial dysfunction is a potential cellular mechanism 
underlying this accelerated aging phenotype, and studies show a 
decrease in mitochondrial content and respiration with aging (69–71). 
These alterations occur following exposure to common 
chemotherapeutic agents used in historical and contemporary 
regimens to treat pediatric cancers, such as alkylators and 
anthracyclines (58), or radiation therapy (72). For example, 
doxorubicin decreases skeletal muscle mitochondrial respiration and 
increases mitochondrial ROS production (73). The effects of radiation 
include impaired skeletal muscle fatty acid oxidation and 
mitochondrial oxidative capacity (72). Reduced mitochondrial 
quantity or function in individuals with DM has been observed in a 
number of studies (74–76). Specifically, individuals with DM have 
decreased respiration through the electron transport chain (75, 76). 
The decreased mitochondrial oxidative capacity may lead to lipid 
accumulation in skeletal muscle and thereby further impede insulin 
signaling (77). Thus, alterations of skeletal muscle metabolic processes 
due to cancer treatment are similar to the changes that occur in 
patients with diabetes. Additional investigations are needed to 
specifically elucidate the mechanisms underlying accelerated aging as 
they relate to the increased risk of DM in survivors of childhood cancer.

Genetic and gene-environment interactions also play an 
important role in the inter-individual variation in the risk of 
developing DM. Numerous germline genetic loci have been associated 
with DM both in oncology and non-oncology populations (78, 79). A 
recent study of CCS found an association between a novel germline 
genetic locus, rs55849673-A, that is associated with decreased 
expression of ERCC6L2, an excision repair protein involved in 
deoxyribonucleic acid (DNA) damage repair and mitochondrial 
function, and diabetes (78). The association between rs55949673 and 
DM was stronger in survivors not treated with abdominal radiation 
than in those treated with abdominal radiation. This highlights that, 
in the absence of abdominal radiation, genetic variations that alter 
mitochondrial function and response to DNA damage affect the risk 
of developing DM differentially in cancer survivors in the context of 
their treatment exposures than in the general population. It also 
suggests that the magnitude of DM risk attributable to radiation is far 
greater than the risk associated with previously identified genetic 
factors (78). Epigenetic processes are altered by environmental 
influences. Studies of epigenetic alterations like DNA methylation due 
to aging, changes in body composition, and stressors such as 
inflammation are also underway (80). Identification of such genetic 
and epigenetic risk factors across individuals with varied treatment 
exposures may help to better understand which individuals are at 
highest risk of developing comorbidities such as DM. Emerging high 
through sequencing technologies, genetic/epigenetic screening and 
personalized medicine can facilitate early detection for more rapid 
intervention to prevent progression. This has the potential to inform 
approaches to screening guidelines and development of interventions 
that are truly tailored to each individual’s unique risk factors for DM.

Screening

Guidelines in the general population recommend testing for DM 
in any children, adolescents, or adults who are overweight or obese by 
BMI and have at least one risk factor, and in all adults at age 35 (81, 

82). Fasting blood glucose, HbA1c, or oral glucose tolerance test are 
considered appropriate for screening. As described above, there are 
limitations to using BMI as a key criterion for DM screening, 
particularly in CCS. Fasting blood glucose and HbA1c can lead to 
over- or underestimation of IGT, and have known limitations in 
certain populations (83, 84). Additionally, the younger age of DM 
onset in CCS may warrant earlier survivor-specific screening.

The current Children’s Oncology Group Long-Term Follow-Up 
Guidelines recommend screening for impaired glucose metabolism 
with a fasting blood glucose or HbA1c every 2 years in those with 
history of TBI or abdominal radiation (85). The guidelines do not 
currently include specific screening for impaired glucose metabolism 
in those with history of cranial radiation, corticosteroid exposure, or 
neurosurgery that may affect the hypothalamic–pituitary axis. 
Additional studies and quantification of this risk in CCS will inform 
screening guidelines following these treatment exposures.

Future directions

Advancements in survivorship research have highlighted the 
substantial burden of DM in the growing population of CCS, as well 
as the complexity of DM pathogenesis. DM is a markedly 
heterogeneous disease, and an emerging paradigm in the 
non-oncology population is the identification of groups or clusters 
of individuals with phenotypically distinct DM (e.g., insulin-
resistant, insulin-deficient, age-related, and obesity-related) (86, 87). 
This has not been formally studied in CCS. However, the multimodal 
nature of the therapeutic protocols utilized to treat pediatric cancers 
additionally contributes to the substantial variation in clinical 
phenotype and further complicates efforts to understand the specific 
drivers and mechanisms underlying the development of DM. The 
current body of literature suggests a time-dependent combination of 
impaired insulin secretion and muscle and adipose tissue insulin 
resistance which may derive from changes in body composition, 
including increases in VAT, adipose dysfunction and skeletal muscle 
IMCL. A key question for future studies is how the mechanistic 
etiology of these changes differs among survivors, dependent on 
their individual characteristics and treatment exposures. Future 
studies are necessary to further delineate the knowledge gap 
regarding body composition profiles and their role in the 
development of DM in CCS compared to the general population, 
considering additional established risk factors, and to identify 
strategies to promote normal growth and development in 
CCS. Large-scale genomic studies are also needed in CCS to identify 
relevant inter-individual genetic variations among different racial 
and ethnic groups. Addressing these questions is critical to 
determine which survivors are at highest risk of developing DM. This 
information will aid in identifying phenotypically distinct DM 
subgroups specifically within the context of cancer survivors. 
Furthermore, it will help establish clinically relevant biomarkers, risk 
prediction models, and risk-based screening guidelines to identify 
individuals most vulnerable to developing DM. Lifestyle 
modifications and pharmacologic interventions may then be tailored 
to these different diabetic phenotypes, targeting specific underlying 
pathways (e.g., increasing skeletal muscle mass, hepatic lipid 
mobilization, decreasing inflammation) and optimal times during 
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which to intervene. For example, certain patients may derive benefit 
from insulin secretagogues such as sulfonylureas and others from 
insulin sensitizers such as metformin and thiazolidinediones. 
Information learned from these initial observational and 
interventional mechanistic studies will form the foundation for 
larger trials of individualized approaches aimed at early treatment 
and prevention of DM in at-risk childhood cancer survivors.

Conclusion

In summary, CCS have an increased burden of DM, an important 
contributor to additional morbidity and mortality, largely due to 
alterations resulting from their cancer treatment. Future studies aimed 
at characterizing the mechanisms underlying the development of DM, 
specifically in this patient population, will inform targeted prevention 
and treatment approaches that are necessary to improve the lives of 
cancer survivors.
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