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Introduction: The ubiquitin-proteasome system (UPS) is an intracellular organelle 
responsible for targeted protein degradation, which represents a standard therapeutic 
target for many different human malignancies. Bortezomib, a reversible inhibitor of 
chymotrypsin-like proteasome activity, was first approved by the FDA in 2003 to treat 
multiple myeloma and is now used to treat a number of different cancers, including 
relapsed mantle cell lymphoma, diffuse large B-cell lymphoma, colorectal cancer, 
and thyroid carcinoma. Despite the success, bortezomib and other proteasome 
inhibitors are subject to severe side effects, and ultimately, drug resistance. We recently 
reported an oncogenic role for non-ATPase members of the 19S proteasome in 
chronic myeloid leukemia (CML), acute myeloid leukemia (AML), and several different 
solid tumors. In the present study, we hypothesized that ATPase members of the 19S 
proteasome would also serve as biomarkers and putative therapeutic targets in AML 
and multiple other cancers.

Methods: We used data from The Cancer Genome Atlas (TCGA) and the Clinical 
Proteomic Tumor Analysis Consortium (CPTAC) available at UALCAN and/or 
GEPIA2 to assess the expression and prognostic value of proteasome 26S subunit, 
ATPases 1-6 (PSMC1-6) of the 19S proteasome in cancer. UALCAN was also 
used to associate PSMC1-6 mRNA expression with distinct clinicopathological 
features. Finally, cBioPortal was employed to assess genomic alterations of PSMC 
genes across different cancer types.

Results: The mRNA and protein expression of PSMC1-6 of the 19S proteasome 
were elevated in several cancers compared with normal controls, which often 
correlated with worse overall survival. In contrast, AML patients demonstrated 
reduced expression of these proteasome subunits compared with normal 
mononuclear cells. However, AML patients with high expression of PSMC2-5 had 
worse outcomes.

Discussion: Altogether, our data suggest that components of the 19S proteasome 
could serve as prognostic biomarkers and novel therapeutic targets in AML and 
several other human malignancies.
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1. Introduction

The ubiquitin-proteasome system (UPS) is the key intracellular 
machinery for protein degradation, regulating the localization and 
stability of thousands of proteins within a cell (1). The UPS 
encompasses a series of essential components, including ubiquitin, 
ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes 
(E2s), ubiquitin ligases (E3s), deubiquitinating enzymes (DUBs), and 
the 26S proteasome (2–4). Due to the major role of the UPS in 
maintaining protein homeostasis, it is a central player in regulating 
essential cellular functions, including cell differentiation, cell cycle 
progression, apoptosis, DNA repair, and drug resistance (5–8). The 
widespread influence of the UPS on cell biology has important 
implications for human health, as abnormal UPS function is 
associated with numerous human conditions, including 
neurodegenerative diseases, autoimmune diseases, and cancer (9, 10). 
For this reason, a number of small molecule inhibitors targeting the 
UPS were developed for therapeutic intervention, but unfortunately, 
drug resistance and toxicity remain significant challenges (11, 12), 
especially in hematopoietic cells (13–15). Novel therapeutic 

approaches will be  required to effectively target the UPS with 
less toxicity.

The 26S proteasome is comprised of two main subcomplexes, the 
20S core complex and the 19S regulatory complex, which work together 
to recognize ubiquitylated peptides and promote UPS-dependent protein 
degradation (Figure 1) (22–25). The 20S core complex contains the 
protein degradative machinery, whereas the 19S regulatory complex 
functions by recognizing, binding, unfolding, and translocating 
ubiquitylated peptides into the 20S core complex for degradation (22, 23, 
26). Traditional proteasome inhibitors (e.g., bortezomib, carfilzomib, 
ixazomib) function by binding to and inhibiting the 20S core complex. 
Bortezomib (Velcade®), a reversible inhibitor of chymotrypsin-like 
proteasome activity, acts by binding to and inhibiting the 20S beta 5 
subunit of the proteasome (β5, PSMB5) (27), leading to the accumulation 
of ubiquitylated proteins and cell death (28). However, proteasome 
inhibitors like bortezomib are prone to resistance mechanisms, due to 
mutations in the molecular target of bortezomib, PSMB5, highlighting 
the need for alternative therapeutic strategies (29–31).

One strategy to overcome proteasome inhibitor resistance is to 
target the 19S regulatory complex instead of the 20S core complex. 
Importantly, the 19S complex contains numerous components 
subdivided into ATP-dependent and ATP-independent subunits 
(Figure 1) (32). The ATP-dependent subunits include the proteasome 
26S subunit, ATPases 1–6 (PSMC1-6, Supplementary Table S1), 
which make up the base of the 19S complex, whereas the 
ATP-independent subunits include proteasome 26S subunit, 
non-ATPases 1–16 (PSMD1-16) (25), which make up the 19S lid 
(33). The lid is important for interactions with ubiquitin, whereas the 
base is required for unfolding the protein to allow it to enter the 20S 
core (22). The ATPase subunits play critical roles in substrate 
engagement, unfolding, translocation, and opening the gate of the 
core complex (34–37). Several groups have demonstrated the 
potential for targeting the 19S adhesion-regulating molecule 1 
(ADRM1/hRPN13) protein in bortezomib resistance (38–44), leading 
to the development of the putative ADRM1/hRPN13 inhibitor, 
RA190 (45–48). Intriguingly, data from our lab and others 
demonstrated that certain members of the 19S lid might serve as 
better molecular targets for proteasome inhibition (24, 25, 38, 49–51). 
Indeed, our research has shown that knockdown of 26S proteasome 
non-ATPases 1 (PSMD1/hRPN2) and 3 (PSMD3/hRPN3), two 
members of the 19S regulatory complex (17), impaired survival and 
induced apoptosis of myeloid leukemia cells but not normal cord 
blood CD34+ hematopoietic stem and progenitor cells (25, 49), 
implying they may be  good molecular targets for proteasome 
inhibition in human diseases. However, while the PSMD subunits of 
the 19S proteasome are non-ATPases that do not contain catalytically 
active target sites, the PSMC subunits are ATPases that could 
be targeted more efficiently with small molecule inhibitors. Therefore, 
we hypothesized that ATPase members of the 19S proteasome would 
serve as biomarkers and putative therapeutic targets in acute myeloid 
leukemia and several different solid tumors. Using data from The 
Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor 
Analysis Consortium (CPTAC), expression of the ATPase PSMC 
subunits of the 19S proteasome was elevated in several cancers 
compared with normal controls, which often correlated with worse 
overall survival. Altogether, our data suggest that components of the 
19S proteasome could serve as prognostic biomarkers and novel 
therapeutic targets in multiple human malignancies.

FIGURE 1

Structure of the 26S proteasome. Subunits of the 20S core particle 
and 19S regulatory particles are shown. The 20S core complex 
consists of α1/PSMA1-α7/PSMA7 and β1/PSMB1-β7/PSMB7. The 19S 
regulatory particles consist of two structures: a base (Rpt1/PSMC1-
Rpt6/PSMC6, Rpn1/PSMD2, Rpn2/PSMD1, Rpn10/PSMD10, and 
Rpn13/ADRM1) and a lid (Rpn3/PSMD3, Rpn4/PSMD10-Rpn9/
PSMD13, Rpn11/PSMD14, Rpn12/PSMD8, and Rpn15/SEM1). Rpn4/
PSMD9 acts as a chaperone during assembly of the base of the 19S 
regulatory complex (16). Redrawn from refs (17–21).
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2. Materials and methods

2.1. Analysis of PSMC differential mRNA 
and protein expression across TCGA 
cancers compared with normal tissue

UALCAN (The University of ALabama at Birmingham CANcer data 
analysis portal)1 is a comprehensive, interactive platform for in-depth 
analyses of TCGA and CPTAC data (52). This portal helped us identify 
potential candidates based on mRNA and protein expression data across 
different tumor stages and cancer types compared with normal tissue. 
The cancers we investigated included acute myeloid leukemia (LAML), 
adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), 
breast invasive carcinoma (BRCA), cervical squamous cell carcinoma 
and endocervical adenocarcinoma (CESC), cholangiocarcinoma 
(CHOL), colorectal adenocarcinoma (COAD), diffuse large B-cell 
lymphoma (DLBCL), esophageal carcinoma (ESCA), glioblastoma 
multiforme (GBM), head and neck squamous cell carcinoma (HNSC), 
kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), 
kidney renal papillary cell carcinoma (KIRP), liver hepatocellular 
carcinoma (LIHC), low-grade glioma (LGG), lung adenocarcinoma 
(LUAD), lung squamous cell carcinoma (LUSC), mesothelioma (MESO), 
ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma 
(PAAD), pheochromocytoma and paraganglioma (PCPG), prostate 
adenocarcinoma (PRAD), rectum adenocarcinoma (READ), sarcoma 
(SARC), skin cutaneous melanoma (SKCM), stomach adenocarcinoma 
(STAD), testicular germ cell tumors (TGCT), thymoma (THYM), 
thyroid carcinoma (THCA), uterine carcinosarcoma (UCS), uterine 
corpus endometrial carcinoma (UCEC), and uveal melanoma (UVM). 
The comparison of mRNA expression for PSMC subunits between tumor 
and normal tissues was further studied using GEPIA2 (Gene Expression 
Profiling Interactive Analysis 2)2, an integrated web-based platform for 
analyzing gene expression data from TCGA and the Genotype-Tissue 
Expression (GTEx) projects (53). Data are presented using box plots.

2.2. Correlation of PSMC mRNA expression 
with prognostic significance across 
different cancer types

Along with the gene expression analyses described above, we also 
used UALCAN to correlate gene expression levels for PMSC1-6 with 
overall survival across TCGA cancers. Data are presented using 
Kaplan–Meier curves.

2.3. Correlation of PSMC mRNA expression 
with distinct clinicopathological features in 
different cancer types

UALCAN also provided the mRNA expression of PSMC subunits 
across cancer types comparing different cancer stages. We chose to 
focus on the expression of PSMC1-6 across tumor stages for patients 
with BRCA, LIHC, KICH, and LUAD. Additionally, we  assessed 
PSMC1-6 expression in AML patients with mutated versus unaltered 

1 http://ualcan.path.uab.edu/, accessed on January 12, 2023.

2 http://gepia2.cancer-pku.cn, accessed on January 12, 2023.

FMS-like tyrosine kinase 3 (FLT3) using data from UALCAN and the 
BEAT AML trial (ClinicalTrials.gov Identifier: NCT03013998) 
available at Vizome3 (54, 55).

2.4. Genomic alterations of PSMC genes 
across different cancer types

cBioPortal4 is another online database for cancer genomics used 
to explore and visualize genomic data across cancer studies (56). 
Therefore, we analyzed the frequency and different types of genetic 
mutations in PSMC subunit genes across different human cancers.

2.5. Statistical analyzes

Differences in PSMC gene and protein expression levels were 
calculated in UALCAN using the Student’s t-test, whereas GEPIA2 
data were analyzed using the one-way ANOVA test. Data are presented 
using box plots. Correlations of gene expression with overall survival 
are presented using Kaplan–Meier curves (UALCAN uses a 25% cutoff 
for analysis of survival data). A value of p of <0.05 was considered 
statistically significant for all analyzes.

3. Results

3.1. mRNA encoding proteasome subunits 
were often downregulated in AML versus 
normal progenitors, but patients with higher 
expression levels had a worse prognosis

Work from our lab and others had documented increased 
expression of several 19S proteasome subunits in multiple cancer 
types compared with normal tissue (24, 49, 51, 57–60). Our previous 
work in AML studying the non-ATPase subunits of the 19S 
proteasome revealed that PSMD2, PSMD3, PSMD7, and PSMD9 
mRNA expression levels were reduced in AML versus normal 
progenitors, but that high levels of expression correlated with worse 
overall survival in AML patients (25). In fact, the downregulation of 
proteasome subunits is a universal feature of AML compared with 
normal mononuclear cells. For the 20S proteasome, PSMA4, PSMA5, 
PSMA7, and all seven PSMB subunits are downregulated in AML 
versus normal controls (Supplementary Figure S1). However, similar 
to our observations for PSMD3 (25), patients with higher expression 
levels tended to have worse outcomes (Supplementary Figures S2, S3).

In the present study, we hypothesized that ATPase members of the 
19S proteasome would show a similar expression pattern, and that is 
indeed what we  observed. PSMC2, PSMC3, and PSMC4 mRNA 
expression were significantly reduced in AML versus normal progenitor 
cells, whereas no change was observed for PSMC1, PSMC5, or PSMC6 
(Figures  2A–F, left). These data were confirmed using the GEPIA2 
database (Supplementary Figure S4). Despite this observation, TCGA 
data available at UALCAN showed that AML patients with higher than 
average levels of PSMC2, PSMC3, PSMC4, and PSMC5 mRNA 

3 http://vizome.org, accessed on March 22, 2023.

4 https://www.cbioportal.org, accessed on January 13, 2023.
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expression had a significant reduction in overall survival compared with 
patients expressing low to medium levels of those genes when all AML 
subtypes were considered (Figures 2A–F, right).

We previously demonstrated that high levels of PSMD3 mRNA 
expression led to a sharp reduction in overall survival for AML 
patients harboring FLT3 mutations (25). We next asked whether the 
expression of ATPase subunits of the 19S proteasome was altered in 
AML patients with mutated versus wild-type FLT3 and whether 
they correlated with overall survival. TCGA data available at 
UALCAN demonstrated that the genes encoding PSMC1 (p = 0.009), 
PSMC2 (p = 0.027), and PSMC5 (p = 0.032) were significantly 
upregulated in AML patients with mutated versus wild-type FLT3 
(Figures 3A–F). PSMC5 upregulation in FLT3+ AML was confirmed 
using data from the BEAT AML trial available at Vizome.org 
(Supplementary Figure S5) (54, 55). Consistent with a potential role 
for these proteins in drug resistance of AML, patients with high 
levels of PSMC2, PSMC4, and PSMC5 mRNA expression had 
significantly worse overall survival in FLT3-mutated and FLT3-
unaltered AML patients (Figures 4A–F). More specifically, high 
levels of PSMC4 expression affected both FLT3-mutated (green 
curve) and FLT3-unaltered patients (pink curve, Figure  4D), 
whereas patients with high levels of PSMC2 or PSMC5 primarily 
affected AML patients with unaltered FLT3 (pink curves, 

Figures 4B,E). Altogether, these data implicate PSMC2, PSMC4, and 
PSMC5, all ATPase subunits of the 19S proteasome, as putative 
oncogenes in AML, depending on FLT3 status.

3.2. Expression of PSMC subunits of the 
19S proteasome were elevated at the 
mRNA and protein levels in multiple solid 
tumors compared with normal tissue

Prior studies have demonstrated that the expression of several 
different PSMC proteasome subunits is increased in lung cancer, 
breast cancer, and multiple myeloma (58–61). Therefore, 
we hypothesized that the relevance of PSMC 19S proteasome subunits 
might stretch beyond AML to other types of cancers. At the mRNA 
level, TCGA data available at UALCAN demonstrated that the 
expression of PSMC1 (15/24 tumors, 62.5%), PSMC2 (17/24 tumors, 
70.8%), PSMC3 (13/24 tumors, 54.2%), PSMC4 (12/24 tumors, 50%), 
PSMC5 (13/24 tumors, 54.2%), and PSMC6 (10/24 tumors, 41.7%) 
mRNA were significantly elevated in several different tumor types 
compared with normal tissue (Figure 5A; Supplementary Figures S6, S7). 
For instance, BLCA, BRCA, CHOL, COAD, ESCA, HNSC, LICH, 
LUAD, LUSC, and STAD cancers demonstrated increased expression 

FIGURE 2

High levels of PSMC subunit expression correlated with worse overall survival in acute myeloid leukemia (AML). (A–F). Box plots (left) and Kaplan–Meier 
curves (right) show the expression of PSMC1 (A), PSMC2 (B), PSMC3 (C), PSMC4 (D), PSMC5 (E), and PSMC6 (F) mRNA in AML versus normal 
specimens and their correlation with overall survival. *p < 0.001.
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of all six PSMC subunits (Figure 5A; Supplementary Figures S6, S7). 
On the other hand, patients with glioblastoma (GBM) showed 
increased expression of PSMC2, but decreased expression of PSMC5 
and PSMC6. Patients with kidney chromophobe (KICH) were the 
marked exception, demonstrating reduced expression of PSMC1, 
PSMC2, PSMC3, PSMC4, and PSMC5 in tumor versus normal tissues 
(Figure 5A; Supplementary Figures S6, S7).

Similar to the mRNA data, CPTAC data available at UALCAN 
revealed that the expression of PSMC1 (6/10 tumors, 60%), PSMC2 (8/10 
tumors, 80%), PSMC3 (6/10 tumors, 60%), PSMC4 (6/10 tumors, 60%), 
PSMC5 (6/10 tumors, 60%), and PSMC6 (5/10 tumors, 50%) proteins were 
significantly elevated in several different tumor types compared with 
normal tissue (Figure 5B; Supplementary Figures S8, S9). Importantly, 
patients with colon cancer, ovarian cancer, clear cell renal cell carcinoma 
(RCC), UCEC, and lung cancer demonstrated increased expression of all 
six PSMC protein subunits. On the other hand, patients with breast cancer, 
who presented increased expression of all six PSMC mRNAs, showed a 
significant reduction of PSMC3, PSMC5, and PSMC6 protein levels. 
Patients with PAAD or liver cancer also demonstrated reduced expression 
of PSMC protein subunits (Figure 5B; Supplementary Figures S8, S9). 
Altogether, these data further implicate the ATPase subunits of the 19S 
proteasome as oncogenes in AML and other types of cancers.

3.3. High expression of PSMC subunits 
correlated with worse outcomes in a 
number of different human malignancies

Since high expression of ATPase members of the 19S 
proteasome correlated with worse outcomes in AML (Figures 2, 

4), we hypothesized that similar results would be observed in 
other types of cancers. All six ATPase subunits of the 19S 
proteasome correlated with worse overall survival in multiple 
human malignancies, but the expression of PSMC4 appeared to 
have the greatest effect (Figure 6). High levels of PSMC4 mRNA 
expression yielded worse outcomes in eight different 
malignancies, including patients with ACC (p = 0.01), LGG 
(p < 0.0001), LICH (p = 0.00025), LUAD (p = 0.0055), MESO 
(p = 0.052), SKCM (p = 0.012), THYM (p = 0.038), and UVM 
(p = 0.0003; Figures  6A–H). While AML patients with high 
PSMC1 expression had a worse overall survival (Figures 2, 4), 
PSMC1 mRNA expression had little effect on outcomes in solid 
tumors, except for patients with LUAD and LUSC. Interestingly, 
high levels of PSMC1 mRNA expression correlated with worse 
outcomes in LUAD (p = 0.05), but better outcomes in LUSC 
(p = 0.028; Figure  7A). Similarly, patients with high levels of 
PSMC2 expression demonstrated reduced overall survival for 
patients with KICH (p = 0.00013) and LIHC (p = 0.022; 
Figure 7B). High levels of PSMC3 expression correlated with 
worse outcomes for patients with KICH (p = 0.0025), LIHC 
(p = 0.03), and LUAD (p = 0.021; Figure  7C). High levels of 
PSMC5 correlated with better outcomes in patients with  
LGG (p = 0.0073), but worse overall survival in patients with 
KICH (p = 0.01) and LIHC (p = 0.015; Figure 7D). Finally, high 
levels of PSMC6 significantly reduced overall survival in  
patients with ESCA (p = 0.018), LIHC (p = 0.0026), and LUAD 
(p = 0.0017; Figure  7E). Altogether, ATPase members of  
the 19S proteasome were frequently upregulated in  
multiple types of cancers, which correlated with worse  
outcomes.

FIGURE 3

Correlation of PSMC subunit expression with FLT3 mutation status in AML. (A–F) We used TCGA data available at UALCAN to associate the expression 
of PSMC subunits with FLT3 mutation status in AML. The box plots demonstrate PSMC1 (A), PSMC2 (B), PSMC3 (C), PSMC4 (D), PSMC5 (E), and PSMC6 
(F) mRNA expression comparing AML patients with mutated versus wild-type FLT3.
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3.4. Correlation of PSMC subunit 
expression with distinct clinicopathological 
features in patients with BRCA, KICH, LIHC, 
and LUAD

According to data from UALCAN, the mRNA expression of 
PSMC subunits differs significantly among different tumor stages in 
certain types of cancers. In BRCA, for example, expression of 
PSMC2, PSMC3, and PSMC5 were elevated in stages 1–4 compared 
with normal tissues, with the highest levels observed at stage 4 
(Figures  8A–F). Interestingly, PSMC1 expression increased in 
BRCA patients who progressed from stage 1 to stages 2–3 of the 
disease (Figure 8A). In KICH, on the other hand, the expression 
levels of all PSMC subunits were significantly reduced in stages 1, 2, 
and 3 compared with normal tissues (p < 0.05; 
Supplementary Figures S10A–F). However, with the exception of 
PSMC1, a notable feature in KICH is a distinct upregulation of 
PSMC2-6 subunit expression during stage 4 of the disease 
(Supplementary Figures S10B–F). In LIHC, expression of all six 
PSMC subunits was elevated in stages 1–4 compared with normal 
tissues. PSMC4, PSMC5, and PSMC6 expression increased in 

patients progressing from stage 1 to stages 2–3 of the disease 
(Figures  9A–F). In contrast, while all six PSMC subunits were 
elevated in stages 1–4 compared with normal tissue in patients with 
LUAD, expression was not changed when comparing different 
stages of the disease (Supplementary Figure S11). These differences 
in the pattern of ATPase expression suggest a potential method for 
staging BRCA, KICH, LIHC, and possibly other tumors to provide 
prognostic information.

3.5. Genomic alterations of PSMC subunits 
in cancer

To better understand the causes of these PSMC gene expressions 
changes in cancer, we  used cBioPortal to identify the genomic 
mutations identified through TCGA. AML showed deep deletions for 
PSMC2 and mutations in PSMC6, with no other abnormalities in the 
other subunits (Figures 10A–F). PSMC1 DNA is prone to mutations, 
amplifications, and deep deletions, with mutations documented as the 
most common change (Figure 10A). On the other hand, PSMC2, 
PSMC4, and PSMC5 are primarily prone to amplifications, whereas 

FIGURE 4

High levels of PSMC2, PSMC4, and PSMC5 mRNA expression correlated with worse outcomes in AML patients with mutated and/or wild-type FLT3. 
(A–F). Kaplan–Meier curves show the effects of PSMC1 (A), PSMC2 (B), PSMC3 (C), PSMC4 (D), PSMC5 (E), and PSMC6 (F) mRNA expression on overall 
survival comparing AML patients with mutated versus wild-type (unaltered) FLT3.
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PSMC3 and PSMC6 are more likely to have a combination of 
mutations and amplifications (Figures 10B–F). Notably, KICH has 
deep deletions for PSMC1, amplifications for PSMC2, and mutations 
for PSMC6, with no other abnormalities observed in the other 
subunits (Figures 10A–F). Altogether, mutations, deep deletions, and 
amplifications could explain the differences in PSMC gene expression 
in certain types of cancers.

4. Discussion

The ubiquitin-proteasome system (UPS) is a multi-protein 
complex that plays a critical role in regulating protein homeostasis, 
apoptosis, and a number of other cellular processes. Cancers can have 

abnormally increased proteasome activity due to the high metabolic 
demands for cancer growth that require rapid protein turnover. 
Therefore, the UPS has become a spotlight in research as a therapeutic 
target for various cancers. Standard proteasome inhibitors bind to and 
inhibit the 20S core complex of the UPS (27). However, proteasome 
inhibitors like bortezomib are prone to resistance mechanisms, 
highlighting the need for alternative therapeutic strategies (29–31). 
One strategy to overcome proteasome inhibitor resistance is to target 
the 19S regulatory complex instead of the 20S core complex. Indeed, 
knockdown of the 19S PSMD3 subunit significantly impaired the 
stability of human epidermal growth factor 2 (HER2) in breast cancer, 
which induced apoptosis and inhibited the growth, proliferation, and 
colony formation of tumor cells. Furthermore, a high level of PSMD3 
mRNA expression was associated with shorter overall survival in 

FIGURE 5

19S PSMC subunit expression at the mRNA and protein level in multiple types of solid tumors. (A,B) The heat maps show the significant p values 
comparing PSMC mRNA (A) and protein (B) levels in all TCGA cancers versus normal specimens, excluding LAML. p values indicating significant PSMC 
upregulation are indicated in black; p values indicating significant PSMC downregulation are indicated in white. BLCA, bladder urothelial carcinoma; 
BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, 
colorectal adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, 
kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, 
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; PCPG, 
pheochromocytoma and paraganglioma; RCC, renal cell carcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous 
melanoma; THCA, thyroid carcinoma; THYM, thymoma; STAD, stomach adenocarcinoma; UCEC, uterine corpus endometrial carcinoma.
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breast cancer, especially in HER2+ patients (51). Similarly, our data 
demonstrated that PSMD3 expression is highly upregulated in chronic 
myeloid leukemia (CML) patients who have progressed from the 
chronic to the rapidly fatal blast phase of the disease (49). In marked 
contrast, however, patients with AML demonstrated reduced 
expression of PSMD3 mRNA compared with normal specimens (25). 
Despite this observation, AML patients with higher than average levels 
of PSMD3 expression had worse outcomes, especially for patients with 
FLT3 mutations (25). Importantly, PSMD3 knockdown impaired 
survival and induced apoptosis of CML and AML cells, but not 
normal cord blood progenitors (25, 49), indicating it may be a good 
potential target for cancer therapy.

The PSMD subunits of the 19S proteasome are non-ATPases that 
harbor no catalytically active target sites, which may make them poor 
cancer drug targets. On the other hand, the PSMC subunits of the 19S 
proteasome are ATPases that harbor catalytically active target sites. 
Indeed, proton pump inhibitors, also known as H+/K+ ATPase 
modulators, have attracted much attention for their clinical 
implication in gastric acid-related diseases (62, 63), whereas vacuolar 
ATPase inhibitors are being studied as a potential treatment for 
therapy-resistant cancers (64). Therefore, we  hypothesized that 

ATPase members of the 19S proteasome would serve as biomarkers of 
disease progression and possible therapeutic targets in AML and 
multiple solid tumors, and this was indeed what we observed. Similar 
to our observations for PSMD3 (25), mRNA encoding PSMC2, 
PSMC3, and PSMC4 were surprisingly downregulated in AML versus 
normal mononuclear cells (Figure  2). We  speculate that low 
proteasome subunit expression may explain the suboptimal response 
of AML patients to proteasome inhibition in certain clinical trials (65). 
Despite the reduced subunit expression, AML patients with high levels 
of PSMC2, PSMC3, PSMC4, and PSMC5 expression had a worse 
overall survival compared with patients demonstrating low-to-
medium levels of expression (Figure 2). Interestingly, PSMC1, PSMC2, 
and PSMC5 mRNA expression were significantly higher in AML 
patients with mutated versus wild-type FLT3 (Figure  3), which 
correlated with worse outcomes in the case of PSMC2 and PSMC5 
(Figure 4). In the case of solid tumors, all six PSMC subunits were 
upregulated at the mRNA and/or protein level in multiple different 
cancers, which in some cases correlated with worse outcomes 
(Figures 5–7). DNA mutations, deep deletions, or amplifications may 
explain the differences in PSMC gene expression observed in certain 
types of cancers.

FIGURE 6

PSMC4 expression correlated with worse overall survival in multiple human malignancies. (A–H) TCGA data available at UALCAN demonstrate that 
higher levels of PSMC4 mRNA expression correlated with worse outcomes for adrenocortical carcinoma ACC (A), brain lower grade glioma LGG, 
(B) liver hepatocellular carcinoma LIHC, (C) lung adenocarcinoma LUAD, (D) mesothelioma MESO, (E) skin cutaneous melanoma SKCM, (F) thymoma 
THYM, (G) and uveal melanoma UVM (H).
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As mentioned previously, high expression of all six ATPase 
subunits of the 19S proteasome correlated with worse overall survival 
in multiple human malignancies. However, the expression of PSMC4 
appeared to have the greatest effect, correlating with reduced overall 

survival in 8/24 TCGA tumors (Figure 6). The first evidence for an 
oncogenic role of PSMC4 was in prostate cancer. In that study, 
expression of the genes encoding PSMC4, PSMB5, and the E3 
ubiquitin ligase NEDD4L, were significantly upregulated in prostate 

FIGURE 7

Expression of PSMC1, 2, 3, 5, and 6 also correlated with changes in overall survival in different solid tumors. (A–E) Kaplan–Meier curves show the 
effects of PSMC1 (A), PSMC2 (B), PSMC3 (C), PSMC5 (D), and PSMC6 (E) mRNA expression on overall survival in the specified solid tumors. ESCA, 
esophageal carcinoma; KICH, kidney chromophobe; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma.
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cancer cells compared with the corresponding adjacent normal 
prostate tissue (66). PSMC4 was also shown to facilitate interactions 
between the proteasome and the endoplasmic reticulum, allowing for 
cellular ubiquitination of specific mitochondrial proteins (67). 

Interestingly, this association was shown to favor the resistance of 
breast cancer cells to anthracycline treatments (68). Additionally, the 
proteasome is dynamically phosphorylated during the cell cycle at 
threonine 25 of the 19S PSMC4 subunit, which contributes to cell 

FIGURE 8

PSMC subunit expression correlated with tumor staging in breast invasive carcinoma (BRCA). (A–F) The box plots represent PSMC1 (A), PSMC2 (B), 
PSMC3 (C), PSMC4 (D), PSMC5 (E), and PSMC6 (F) mRNA expression in stages 1–4 of BRCA compared with normal samples from The Cancer Genome 
Atlas (TCGA).

FIGURE 9

PSMC subunit expression correlated with tumor staging in liver hepatocellular carcinoma (LIHC). (A–F) The box plots represent PSMC1 (A), PSMC2 (B), 
PSMC3 (C), PSMC4 (D), PSMC5 (E), and PSMC6 (F) mRNA expression in stages 1–4 of LIHC compared with normal samples from The Cancer Genome 
Atlas (TCGA). *p < 0.05; **p < 0.01; ***p < 0.001.
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proliferation and tumorigenesis (37). Through a kinome-wide screen, 
they identified dual-specificity tyrosine-regulated kinase 2 (DYRK2) 
as the primary kinase that phosphorylates PSMC4, leading to 
enhanced peptide translocation and degradation (37). Genome 
editing or small-molecule mediated inhibition of DYRK2 significantly 
bypassed bortezomib resistance in both multiple myeloma and breast 
cancer cells (69). PSMC4 is also considered a biomarker in 
endometrial cancer (70–72), breast cancer (60), hepatocellular 
carcinoma (73), oral squamous cell carcinoma (74), and laryngeal 
carcinoma (75). Combined with our data in the present study, 
PSMC4 may be  a novel biomarker and therapeutic target for 

drug-resistant cancer patients demonstrating high levels of 
PSMC4 expression.

Consistent with our findings, higher proteasome activity has 
been detected in colon cancer tissue compared with the surrounding 
normal tissue (76). Furthermore, PSMC2-6 were shown to be more 
highly expressed at the mRNA and protein level in breast cancer 
compared with normal breast tissue, which again correlated with 
worse outcomes (60). Proteasome inhibitors like bortezomib, 
carfilzomib, or ixazomib have been very effective in the treatment of 
multiple myeloma, but resistance to therapy is still a major obstacle 
(13–15, 27, 30). These drugs target the PSMB5 subunit of the 20S 

FIGURE 10

Genomic alterations in the genes encoding PSMC1-6 in multiple human cancers. Using data from cBioPortal, the bar graphs show genomic alterations 
associated with PSMC1 (A), PSMC2 (B), PSMC3 (C), PSMC4 (D), PSMC5 (E), and PSMC6 (F) in all of the cancers available in TCGA. ACC, adrenocortical 
carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical 
adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colorectal adenocarcinoma; DLBCL, diffuse large B-cell lymphoma; ESCA, esophageal 
carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell 
carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular 
carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, 
pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; READ, rectum adenocarcinoma; SARC, 
sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumor; THCA, thyroid carcinoma; THYM, 
thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
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proteasome, and mutations in PSMB5 can confer drug resistance in 
in vitro models (31). However, an analysis of 1,500 multiple myeloma 
patients revealed that these mutations were rare in the clinic (31). A 
recent meta-analysis study investigated the potential role of PSMC 
subunits in multiple myeloma and the correlation of mRNA 
expression with proteasome inhibitor resistance. This analysis 
included approximately 2000 newly diagnosed and advanced multiple 
myeloma patients, demonstrating 36 single nucleotide variants in the 
ATP/ADP binding pockets, which affected the conformation of 
individual subunits and the structure of the proteasome as a whole. 
For instance, an acquired mutation of PSMC2 at Y429S after 
bortezomib therapy correlated with relapse, thereby confirming an 
association of PSMC2 with proteasome inhibitor resistance (61). 
Another study identified 19S proteasome subunits as key 
determinants of resistance to proteasome inhibitors. This study 
performed a bortezomib screening on the KBM7 human myeloid 
leukemia cell line, revealing that PSMC2-6 served as key players in 
proteasome inhibitor resistance, and that downregulation of PSMC5 
increased proteasome inhibitor resistance (77). Combined with our 
data, the PSMC subunits of the 19S proteasome could be  novel 
prognostic biomarkers and putative therapeutic targets in AML and 
multiple types of solid tumors. These novel cancer drug targets are 
worthy of future investigation in the fields of cancer therapy and 
drug resistance.
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