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Background: Primary ovarian insu�ciency (POI) leads to not only infertile but

several adverse health events to women. Traditional treatment methods have

their own set of limitations and drawbacks that vary in degree. Application of

human umbilical cord mesenchymal stem cell (hUCMSC) is a promising strategy

for POI. However, there is a lack of literatures on application of hUCMSC in human.

Animal experimental model, however, can reflect the potential e�ectiveness of

this employment. This study aimed to evaluate the curative e�ect of hUCMSC on

animals with POI on a larger scale.

Methods: To gather data, Pubmed, Embase, and Cochrane Library were searched

for studies published up to April 2022. Various indices, including the animals’

estrous cycle, serum sex hormone levels, and follicle number in the ovary, were

compared between the experimental group and those with Premature Ovarian

Insu�ciency (POI).

Results: The administration of human umbilical cord-derived mesenchymal stem

cells (hUCMSC) has been shown to significantly improve the estrous cycle (RR:

3.32, 95% CI: [1.80, 6.12], I2 = 0%, P = 0.0001), but robustly decrease its length

(SMD: −1.97, 95% CI: [−2.58, −1.36], I2 = 0%, P < 0.00001). It can also strikingly

increase levels of serum estradiol (SMD: 5.34, 95% CI: [3.11, 7.57], I2 = 93%, P <

0.00001) and anti-müllerian hormone (SMD: 1.92, 95% CI: [0.60, 3.25], I2 = 68%,

P = 0.004). Besides, it lowers levels of serum follicle-stimulating hormone (SMD:

−3.02, 95% CI: [−4.88,−1.16], I2 = 93%, P= 0.001) and luteinising hormone (SMD:

−2.22, 95% CI: [−3.67,−0.76], I2 = 78%, P= 0.003), and thus collectively promotes

folliculogenesis (SMD: 4.90, 95% CI: [3.92, 5.88], I2 = 0%, P < 0.00001).

Conclusions: Based on the presented findings, it is concluded that the

administration of hUCMSC in animal models with POI can result in significant

improvements in several key indicators, including estrous cycle recovery, hormone

level modulation, and promotion of folliculogenesis. These positive outcomes

suggest that hUCMSC may have potential as a treatment for POI in humans.
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However, further research is needed to establish the safety and e�cacy of

hUCMSC in humans before their clinical application.

Systematic review registration: https://inplasy.com/inplasy-2023-5-0075/,

identifier: INPLASY202350075.

KEYWORDS

primary ovarian insu�ciency, human umbilical cord mesenchymal stem cells, animal

model, meta-analysis, estrous cycle, hormone level, folliculogenesis

1. Introductions

Primary ovarian insufficiency (POI), also known as premature

ovarian failure (POF), is a syndrome characterized by reduced

or absent ovarian function (hypogonadism) and elevated levels

of gonadotropins, specifically luteinising hormone (LH) and

follicle-stimulating hormone (FSH) (hypergonadotropic) (1, 2).

This occurs due to the lack of negative sex-steroid and inhibin

feedback. Therefore, POI is also referred to as hypergonadotropic

hypogonadism. The condition is diagnosed when oocytes and the

surrounding support cells are lost before the age of 40 years,

along with serum FSH levels above the threshold range of 30–

40 mIU/mL twice (at least 1 month apart). POI is a systemic

disease that can lead to various effects. Recent research has

summarized the long-term health consequences of POI, including

an increased risk of cardiovascular disease (CVD), decreased

bone mineral density, significantly reduced fertility, psychological

distress, vulvovaginal atrophy, neurological effects, and overall

reduced life expectancy (3). While the incidence of POI is not

peculiar, the underlying causes of this condition remain largely

unknown (4). Despite extensive research, the etiology of POI is

still not fully elucidated, and it is considered a complex and

multifactorial condition. Genetic disorders, such as chromosomal

abnormalities, are among the most prevalent causes of POI (5).

These disorders can lead to early ovarian failure and an increased

risk of POI. However, other factors like autoimmune diseases,

iatrogenic injuries, and infectious diseases can also contribute to

the onset of POI (6–8). In some cases, autoimmune disorders

like systemic lupus erythematosus or Hashimoto’s thyroiditis can

trigger the body’s immune system to attack ovarian tissue, leading

to POI (9). Additionally, with the increasement of gynaecologic

cancer, medical treatments like chemotherapy, radiation therapy,

or surgical removal of the ovaries can also cause damage to the

ovarian tissue, leading to POI (10). Infections, such as mumps,

tuberculosis, or sexually transmitted diseases like gonorrhea, can

Abbreviations: AMH, anti-mullerian hormone; ART, assisted reproductive

technology; CI, confidence interval; CVD, cardiovascular disease; E2,

estradiol; FSH, follicle stimulating hormone; GC, granulosa cell; GSC,

germline stem cell; GnRH, gonadotropin-releasing hormone; HRT, hormone

replacement therapy; hUCMSC, human umbilical cord mesenchymal stem

cell; IVA, in vitro activation; IVF-ET, in vitro fertilization and embryo

transfer; LH, luteinizing hormone; MeSH, medical subject heading; POF,

premature ovarian failure; POI, primary ovarian insu�ciency; PRISMA,

preferred reporting items for meta-analysis and systematic review; RCT,

randomized clinical trail; RR, risk ratio; SMD, standardized mean di�erence;

TC, theca cell.

also contribute to POI by damaging the ovaries or disrupting their

function (11). Given the complex and multifactorial nature of POI,

early detection and timely intervention are crucial to help manage

the condition and improve the quality of life of affected individuals.

Therefore, a better understanding of the factors contributing to POI

and advancements in diagnostic methods can aid in developing

effective treatments and management strategies for this condition

(12). Currently, traditional therapy for POI is limited. To patients

without desire for pregnancy, hormone replacement therapy (HRT)

is appropriate. HRT can significantly relieve POI symptoms and

decrease bone fracture and CVD risks. It can even help fertility for

those females who still have ovarian follicle reserve (13). Infertility

treatment is another therapeutic aspect for POI. Oocyte donation

is a traditional but useful way to help delivery, but is limited in

many countries and regions. A way to preserve fertility is the

cryopreservation of oocytes, embryos and ovarian tissues. For those

who undergo radiotherapy, GnRH analog can help protect fertility,

but some data are conflicting. Furthermore, a new method called

in vitro activation (IVA) of dormant follicles can help patients

with POI conceive as well (14). However, all of these therapies

can be conducive to helping a small proportion of patients with

POI. Human umbilical cord mesenchymal stem cell (hUCMSC)

is mesenchymal stem cells derived from Wharton’s jelly of a fetal

umbilical cord. These cells have multiple differentiation potentials.

They can generate cell types such as adipocytes, osteocytes and

cartilage. In addition, neurons, astrocytes, glial cells, liver and

islet cells are the potential lineage of hUCMSC (15). Stem cell

therapy has been proposed for a long time. Some clinical trials

have tried to understand the therapeutic effect of hUCMSC in

POI. Evidence revealed follicular activated, estradiol (E2) increased

and FSH decreased after hUCMSC transplantation in patients

with POI (16, 17). Collagen scaffold with hUCMSC is another

stem cell delivery approach that has shown a therapeutic effect.

In an in vivo study, hUCMSC activated primordial follicles by

phosphorylating FOXO3a and FOXO1 (17). Apart from clinical

trials, many studies tested the therapeutic effect of hUCMSC on

the ovary of animals. For instance, hUCMSC introduction led to

an atretic follicle decrease and a healthy antral follicle increase in

mice. Granulosa cell (GC) apoptosis induced by POI was inhibited.

Based on molecular analysis, the expression of SOD2, CAT and

Bcl2 mRNA increased, whereas Bax mRNA expression declined

(18). Given that these genes are associated with oxidation and

apoptosis, hUCMSC infusion may influence the antioxidative and

antiapoptotic procedures of the ovary. Furthermore, in vivo cell

culture found that hUCMSC can secrete VEGF, IGF-1 and HGF

(19). Through Sirius red and Masson trichrome staining of the

ovary tissue, researchers found that fibrosis developed in POI rats,

but after hUCMSC treatment, the fibrosis area was significantly
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reduced. The TGF-β1 signaling pathway is a crucial immune

regulative factors (20), also reportedly involved in hUCMSC

regulation. The hUCMSC can inhibit the expression of TGF-β1
and p-smad3 in the ovary, thereby depressing the differentiation

of stromal cells into inner theca cells (TCs) and consequently

inhibiting fibrosis in POI rats (21). However, only few integrated

analyses have been found. Thus, this study aimed to summarize

the results of animal studies investigating on hUCMSC and POI,

form more valid evidence and confirm the therapeutic effect of

hUCMSC on experimental animals compared with the POI model

by analyzing the estrous cycle, serum sex hormone and ovarian

follicles in the two groups.

2. Methods

This systematic meta-analysis appraises the association

between employment of hUCMSC and the indices of ovarian

reserve function in experimental animal models. We followed

the preferred reporting items for meta-analysis and systematic

review (PRISMA) 2020 guidelines and putting forward the

research question using the PECOS format. We have registered

at International Platform of Registered Systematic Review and

Meta-analysis Protocols (INPLASY). Registration number is

INPLASY202350075.

2.1. Search strategy

We searched the Pubmed, Embase and Cochrane Library

databases. Specific search strategy is “((Primary Ovarian

Insufficiency) OR (Premature Ovarian Failure) OR (Gonadotropin-

Resistant Ovary Syndrome) OR (Hypergonadotropic Ovarian

Failure)) AND ((Stem cell) OR (Progenitor Cell))”. To conclude,

we used MeSH terms and their typical synonyms and combined

them with “OR.” Then, we combined the results of “primary

ovarian insufficiency” and “stem cell” with “AND.” All results from

the date of database establishment to 1 April 2022 were included.

2.2. Inclusion and exclusion criteria

Initially, we excluded all duplicated studies. Subsequently,

we collected studies that met the following criteria: female

animals; hUCMSC; successful POF model establishment; and

serum hormone, follicle count and estrous cycle as the outcome.

Furthermore, the following five study types were excluded: reviews

and meta-analysis, studies that are not associated with stem cell or

POI, non-animal studies, case reports and animal studies without

hUCMSC application. After selecting studies related to hUCMSC

and POI, we thoroughly read the full text and further excluded

FIGURE 1

Flow diagram on search procedure of Pubmed, Embase and Cochrane Library and the exclusion criteria.
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TABLE 1 Characteristics of the included studies.

First
author

Country Publication
year

Experiment
animal

Total
animal
numbers

Animal
age

Model
establishment

Establishment
time

Transplantation
time

Transplantation
route

Available
outcome∗

Web link

Jian Shen China 2020 BALB/c mice 110 7–8 weeks

old

Cyclophosphamide 14 d 60 d tail vein Estrous

cycle;

Follicle

number; E2 ;

FSH

https://www.

wjgnet.com/

1948-0210/full/

v12/i4/277.htm

He Jie China 2021 BALB/C female

mice

30 7 to 8 weeks Cyclophosphamide

+ baixioan

1 d 15 d tail vein E2 ; FSH;

AMH; LH;

Follicle

number

https://

cellmolbiol.org/

index.php/CMB/

article/view/4071

Amr K.

Elfayomy

Saudi

Arabia

2016 albino Wistar

rats

95 - Paclitaxel 1 d 6 wk in situ Follicle

number; E2 ;

FSH

https://www.scien

cedirect.com/scie

nce/article/pii/S0

040816616300246

?via%3Dihub

Xunyi

Zhang

China 2020 SD rats 80 6–8 weeks pZP3 suspension 1 d 20 d in situ Estrous

cycle; E2 ;

FSH; LH;

Follicle

number

https://www.

tandfonline.com/

doi/full/10.1080/

09513590.2021.

1878133

Ladan

Jalalie

Iran 2021 C57BL/6 mice 30 6–8-week-

old

Cyclophosphamide 15 d 1 wk tail vein Follicle

number;

FSH; E2

https://www.scien

cedirect.com/scie

nce/article/abs/pii

/S0065128120301

574?via%3Dihub

Taoran

Deng

China 2021 C57BL/6 mice 27 6–7 weeks

old

Cyclophosphamide

and busulfan

1 d 2 wk tail vein Estrous

cycle;

Follicle

number; E2 ;

FSH

https://link.

springer.com/

article/10.1007/

s43032-021-

00499-1

Dan Song China 2016 Wistar rats 40 8 weeks old Cyclophosphamide 1 d 6 wk tail vein+in situ E2 ; FSH;

AMH;

Follicle

number

https://www.

hindawi.com/

journals/bmri/

2016/2517514/

Zhe

Wang

China 2020 SD rats 120 8 weeks old Ovarian antigen 30 d 2 wk tail vein Estrous

cycle;

Follicle

number

https://www.

hindawi.com/

journals/sci/2020/

3249495/
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F
ro
n
tie

rs
in

M
e
d
ic
in
e

0
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fmed.2023.1211070
https://www.wjgnet.com/1948-0210/full/v12/i4/277.htm
https://www.wjgnet.com/1948-0210/full/v12/i4/277.htm
https://www.wjgnet.com/1948-0210/full/v12/i4/277.htm
https://www.wjgnet.com/1948-0210/full/v12/i4/277.htm
https://cellmolbiol.org/index.php/CMB/article/view/4071
https://cellmolbiol.org/index.php/CMB/article/view/4071
https://cellmolbiol.org/index.php/CMB/article/view/4071
https://cellmolbiol.org/index.php/CMB/article/view/4071
https://www.sciencedirect.com/science/article/pii/S0040816616300246?via%3Dihub
https://www.tandfonline.com/doi/full/10.1080/09513590.2021.1878133
https://www.tandfonline.com/doi/full/10.1080/09513590.2021.1878133
https://www.tandfonline.com/doi/full/10.1080/09513590.2021.1878133
https://www.tandfonline.com/doi/full/10.1080/09513590.2021.1878133
https://www.tandfonline.com/doi/full/10.1080/09513590.2021.1878133
https://www.sciencedirect.com/science/article/abs/pii/S0065128120301574?via%3Dihub
https://link.springer.com/article/10.1007/s43032-021-00499-1
https://link.springer.com/article/10.1007/s43032-021-00499-1
https://link.springer.com/article/10.1007/s43032-021-00499-1
https://link.springer.com/article/10.1007/s43032-021-00499-1
https://link.springer.com/article/10.1007/s43032-021-00499-1
https://www.hindawi.com/journals/bmri/2016/2517514/
https://www.hindawi.com/journals/bmri/2016/2517514/
https://www.hindawi.com/journals/bmri/2016/2517514/
https://www.hindawi.com/journals/bmri/2016/2517514/
https://www.hindawi.com/journals/sci/2020/3249495/
https://www.hindawi.com/journals/sci/2020/3249495/
https://www.hindawi.com/journals/sci/2020/3249495/
https://www.hindawi.com/journals/sci/2020/3249495/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


W
a
n
g
e
t
a
l.

1
0
.3
3
8
9
/fm

e
d
.2
0
2
3
.1
2
1
1
0
7
0

TABLE 1 (Continued)

First
author

Country Publication
year

Experiment
animal

Total
animal
numbers

Animal
age

Model
establishment

Establishment
time

Transplantation
time

Transplantation
route

Available
outcome∗

Web link

Shufang

Wang

China 2013 CD1 (ICR) mice 45 - Cyclophosphamide 15 d 1 wk tail vein Follicle

number

https://www.

hindawi.com/

journals/bmri/

2013/690491/

Yanjun

Yang

China 2019 C57BL/6 mice 24 6 weeks old Cyclophosphamide 15 d 4 wk in situ Estrous

cycle; E2 ;

FSH; AMH;

Follicle

number

https://link.

springer.com/

article/10.1007/

s11626-019-

00337-4

Qun

Zheng

China 2019 SD rats 40 12 weeks

old

Cyclophosphamide 15 d 2 wk tail vein Estrous

cycle; AMH;

E2 ; FSH;

Follicle

number

https://www.

hindawi.com/

journals/bmri/

2019/6539294/

∗Wang et al. (30), Wang et al. (31), and Zheng et al. (33) lack exact data of serum sex hormone.

TABLE 2 Quality assessment of the included studies.

Study ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

Shen et al. (23) No Yes Unknown Unknown Unknown Unknown Yes Yes Yes Yes

Jie et al. (24) Unknown Yes Unknown Unknown Unknown Unknown Yes Yes Yes Yes

Elfayomy et al.

(25)

Unknown Yes Unknown Unknown Unknown Unknown Yes Yes Yes Yes

Zhang et al. (26) Unknown Yes Unknown Unknown Unknown Unknown Yes Yes Yes Yes

Jalalie. et al. (27) Unknown Yes Unknown Unknown Unknown Unknown Yes Yes Yes Yes

Deng. et al. (23) Unknown Yes Unknown Unknown Unknown Unknown Yes Yes Yes Yes

Song et al. (28) Unknown Yes Unknown Unknown Unknown Unknown Yes Yes Yes Yes

Wang et al. (29) Unknown Yes Unknown Unknown Unknown Unknown Yes Yes Yes Yes

Wang et al. (30) Unknown Yes Unknown Unknown Unknown Unknown Yes Yes Yes Yes

Yang et al. (31) Unknown Yes Unknown Unknown Unknown Unknown Yes Yes Yes Yes

Zheng et al. (32) Unknown Yes Unknown Unknown Unknown Unknown Yes Unknown Yes Yes

SYRCLE animal experiment bias risk assessment form:① Distribution sequence production is sufficient ② Baselines of groups are the same ③ Distribution concealing is sufficient ④ Experiment animals are randomly fed ⑤ Blinding to researcher ⑥ Randomly select

animals to assess result ⑦ Blinding to result evaluator ⑧ No incomplete data ⑨ No selective result report ⑩ No other biases.
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studies that we failed to collect the exact data and studies with no

outcomes that we aimed.

2.3. Data extraction and statistical analysis

Data were extracted and qualifiedly assessed by using “SYRCLE

animal experiment bias risk assessment form.” We used risk

ratios (RRs) with 95% confidence intervals (CI) for categorical

data, and standardized mean difference (SMD) for numerical

data to combine studies. If the heterogeneity test showed I2 >

50%, we used random effects model. Otherwise, we used fixed

effects model. All statistical data were analyzed on RevMan 5.4

(22). The extracted data from each study included the first

author, country or region, publishing year, experiment animal,

POI model establishing method, hUCMSC intervention situation,

group situation and outcome data. During the analysis, we firstly

tested the heterogeneity of the studies and selected the effects

model, asmentioned before. Then, we divided the studies according

to unit, injection location, hUCMSC concentration, transplantation

time and follicle type for the subgroup analyses. Sensitivity was

assessed by eliminating studies one by one. We also used funnel

plot to determine the publication bias. All statistical significances

were defined at P < 0.05.

3. Results

3.1. Description of search results

We identified 446, 335 and 16 studies from Pubmed, Embase

and Cochrane Library, respectively. Among them, 175 duplicate

studies, 223 reviews or meta-analyses, 204 studies that are not

associated with stem cell or POI, 26 animal studies, 44 case reports

and 95 animal studies without hUCMSC used were excluded.

Conclusively, 30 animal studies remained, and they were all

correlated to hUCMSC and POI. After full text reading, we further

excluded 16 studies because we failed to obtain the exact data, and

three studies because they lack our aimed outcome. Ultimately, 11

studies were analyzed (Figure 1) (23–33).

3.2. Basic characteristics and quality
assessment

We extracted the data on the first author, country,

publication year, experiment animal number and situation,

model establishment situation, group situation, some outcomes

and web link. We included nine studies from China (23, 24, 26, 28–

33), one from Saudi Arabia (25) and one from Iran (27). A total

of 158 stem cell–treated animals and 155 POI model animals were

included. Eight studies infused hUCMSC by tail vein (23, 24, 27–

31, 33), whereas four injected hUCMSC directly into the ovary

(25, 26, 29, 32); in addition, one study compared the effects of these

two methods (29). Stem cell concentrations varied, ranging from 1

× 105 to 5× 106. However, the concentration units in some studies

were unclear; thus, we only conducted a subgroup analysis by stem

cell concentration in hormone analyses. Transplantation time also

varied. Some studies set a series of observation time to better show

the effect of hUCMSC. To simplify our analysis, we only chose the

data at the end of the study for our meta-analysis (Tables 1, 2). In

order to identify the effect of different transplantation time, we

conducted a subgroup analysis as well.

3.3. Analysis of outcomes

3.3.1. Estrous cycle
Five studies reported estrous cycle situation (23, 26, 28, 30, 32).

Two outcomes were used to divide them into two analyses. Of the

five studies, two (23, 30) calculated the proportion of animals with

normal estrous cycle. Based on different cell concentrations, four

groups were included in one analysis. The three other studies (26,

28, 32) measured the length of the estrous cycle in animals. Results

showed that hUCMSC significantly improved the proportion of

animals with normal estrous cycle (RR: 3.32, 95% CI: [1.80, 6.12],

I2 = 0%, P = 0.0001; Figure 2A) and shortened the estrous cycle

length (SMD: −1.97, 95% CI: [−2.58, −1.36], I2 = 0%, P <

0.00001; Figure 2B). Based on the location of stem cell injection,

the subgroup analysis showed that estrous cycle improvement is

independent of the injection site (Table 3).

3.3.2. E2
Eight studies reported serum E2 levels (23–29, 32). Based on

the injection location, nine groups were included in the analysis.

Serum E2 significantly increased in the hUCMSC group compared

with that in the POI model group (SMD: 5.34, 95% CI: [3.11,

7.57], I2 = 93%, P < 0.00001; Figure 3A). We conducted a

subgroup analysis according to the statistical units, stem cell

injection location and stem cell concentration. Besides, as some

included studies compared several transplantation time, we also

conducted a subgroup analysis based on it. The elevation of serum

E2 level was not significant when calculated by ng/mL or when

the stem cell concentration was 2 × 10e6. However, the effect of

hUCMSC on the serum E2 level of animals was independent of

the injection location. Significance was observed in all intervention

time subgroup, indicating hUCMSC can increase serum E2 level at

the beginning of 2 weeks (Table 3).

3.3.3. AMH
Three studies reported serum AMH (24, 29, 32). Based on the

injection location, four groups were included in the analysis. Serum

AMH significantly increased in the hUCMSC group compared with

that in the POI model group (SMD: 1.92, 95% CI: [0.60, 3.25], I2 =

68%, P = 0.004; Figure 3B). The subgroup analysis revealed that

serum AMH was independent of the statistical units and injection

location. However, when the stem cell concentration was 2 × 10e5

and 2 × 10e6, no significant change was observed between the

model and hUCMSC groups (Table 3).

3.3.4. FSH
Eight studies reported serum FSH levels (23–29, 32). Based on

the injection location, nine groups were included in the analysis.
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FIGURE 2

Forest plot of animals’ estrous cycle situation in the hUCMSC group versus the POI model group. (A) Numerous animals in the hUCMSC group

recovered normal estrous cycle compared with those in the POI model group (RR: 3.32, 95% CI: [1.80, 6.12], I2 = 0%, P = 0.0001). (B) The cycle length

significantly decreased in the hUCMSC group compared with that in the POI model group (SMD: −1.97, 95% CI: [−2.58, −1.36], I2 = 0%, P < 0.00001).

Compared with the POI model group, the hUCMSC group showed

a significant reduction in serum FSH (SMD: −3.02, 95% CI:

[−4.88, −1.16], I2 = 93%, P = 0.001; Figure 3C). According to the

statistical units, stem cell injection location, stem cell concentration

and transplantation time, the subgroup analysis showed that no

significant change was observed when hUCMSC was injected in

situ and when the stem cell concentration was 2 × 10e6. However,

in most cases, the FSH level decreased significantly after hUCMSC

injection. Meanwhile, FSH decreases significantly 2 weeks after

hUCMSC injection, indicating the effect of hUCMSC works at the

beginning of 2 weeks (Table 3).

3.3.5. LH
Two studies reported serum LH (24, 26). Given that they

used different calculation units, injection location and stem cell

concentration, we conducted a subgroup analysis. Compared with

the POI model group, the hUCMSC group showed a significant

decrease in serum LH (SMD: −2.22, 95% CI: [−3.67, −0.76], I2

= 78%, P = 0.003; Figure 3D). Subgroup analysis results showed

that the treatment effect on LH concentration was independent of

the calculation unit, injection location and stem cell concentration

(Table 3).

3.3.6. Follicle number
Ten studies determined the follicle count in animals (24–33).

However, considering the various follicle types, we only conducted

a subgroup analysis based on the follicle types (Figure 3E). All

subgroups, except the atresia follicles (P = 0.08) and corpus

luteum (P = 0.45), showed significant differences. After hUCMSC

injection, the antral follicles (SMD: 4.64, 95% CI: [2.89, 6.39], I2

= 87%, P < 0.00001), secondary follicles (SMD: 2.14, 95% CI:

[1.07, 3.21], I2 = 84%, P < 0.0001), primordial follicles (SMD:

1.68, 95% CI: [0.26, 3.09], I2 = 89%, P = 0.02), pre-antral follicles

(SMD: 1.73, 95% CI: [0.37, 3.10], I2 = 70%, P = 0.01), primary

follicles (SMD: 2.23, 95% CI: [1.10, 3.35], I2 = 85%, P = 0.0001)

and all follicles (SMD: 4.90, 95% CI: [3.92, 5.88], I2 = 0%, P <

0.00001) significantly increased compared with those in the POI

model group.

3.4. Sensitivity analysis

By picking out studies one by one, we conducted a sensitivity

analysis on five outcomes of the estrous cycle, E2, FSH, AMH

and LH. Results of the estrous cycle, E2, FSH and LH were

stable, but after picking out Jie et al. (24) or Yang et al. (32), the

heterogeneity of the AMH outcome reduced significantly (Jie et

al.: I2 = 0%, P = 0.53; Yang et al.: I2 = 43%, P = 0.17). The

data unit, transplantation time and study animals may explain

the heterogeneity; larger data are needed to determine the origin

(Table 4).

3.5. Publication bias

Funnel plots of the normal estrous cycle proportion, E2, FSH

and follicle number are asymmetric, whereas those of the estrous

cycle length, AMH and LH are symmetric. Publication bias likely

existed, especially in the results of the estrous cycle, E2, FSH and

follicle number (Figure 4).
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TABLE 3 Subgroup analysis results of animals’ estrous cycle and serum hormone level.

Comparison Result

Estrous cycle length Subgroup name Study number Included study SMD [95%CI] I2 P

Injection location

Tail vein 1 Deng et al. (28) −1.58 [−2.74,−0.41] Not applicable 0.008

In situ 2 Zhang et al. (26); Yang

et al. (34)

−2.12 [−2.83,−1.41] 13% <0.00001

E2 Subgroup name Study number Included study SMD [95%CI] I2 P

Calculate unit

unknown 1 Shen et al. (23) 9.68 [4.09, 15.27] Not applicable 0.0007

pg/mL, ng/L 6 Elfayomy et al. (25);

Song et al.–in situ (29);

Dan Song et al.–tail vein

(29); Jie et al. (24); Jalalie

et al. (27); Zhang et al.

(26)

6.07 [2.84, 9.31] 94% 0.0002

ng/mL 1 Deng et al. (28) 0.25 [−0.73, 1.24] Not applicable 0.62

pmol/L 1 Yang et al. (32) 6.41 [3.86, 8.95] Not applicable <0.00001

Injection location

Tail vein 5 Song et al.–tail vein (29);

Jie et al. (24); Jalalie et al.

(27); Shen et al. (23);

Deng et al. (28)

5.32 [1.86, 8.79] 92% 0.003

In situ 4 Elfayomy et al. (25);

Song–in situ et al. (29);

Zhang et al. (26); Yang

et al. (32)

6.25 [1.67, 10.82] 95% 0.007

Stem cell concentration

1× 10E5 1 Zhang et al. (26) 0.69 [0.05, 1.33] Not applicable 0.03

2× 10E5 1 Yang et al. (32) 6.41 [3.86, 8.95] Not applicable <0.00001

1× 10E6 5 Song–tail vein et al. (29);

Jie et al. (24); Jalalie et al.

(27); Shen et al. (23);

Deng et al. (28)

5.32 [1.86, 8.79] 92% 0.03

2× 10E6 2 Elfayomy et al. (25);

Song et al.–in situ (29)

10.44 [−6.37, 27.24] 97% 0.22

Transplantation time

2 weeks or 15 days 5 Elfayomy et al. (25);

Song et al.–in situ (29);

Song et al.–tail vein (29);

Shen et al. (23); Deng

et al. (28)

2.26 [1.11, 3.42] 61% 0.0001

4 weeks or 30 days 5 Elfayomy et al. (25);

Song et al.–in situ (29);

Song et al.–tail vein (29);

Shen et al. (23); Deng

et al. (28)

3.91 [0.96, 6.86] 92% 0.009

6 weeks or 45 days 4 Elfayomy et al. (25);

Song et al.–in situ (29);

Song et al.–tail vein (29);

Shen et al. (23)

7.33 [1.87, 12.78] 93% 0.008

60 days 1 Shen et al. (23) 9.68 [4.09, 15.27] Not applicable 0.0007

AMH Subgroup name Study number Included study SMD [95%CI] I2 P

Calculate unit

ng/mL 1 Jie et al. (24) 3.64 [2.11, 5.17] Not applicable <0.00001

(Continued)
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TABLE 3 (Continued)

Comparison Result

Subgroup name Study number Included study SMD [95%CI] I2 P

pg/mL 3 Song et al.–in situ (29);

Song et al.–tail vein (29);

Yang et al. (32)

1.14 [0.37, 1.92] 0% 0.004

Injection location

Tail vein 2 Song et al.–tail vein (29);

Jie et al. (24)

2.84 [1.11, 4.57] 51% 0.001

In situ 2 Song et al.–in situ (29);

Yang et al. (32)

1.00 [0.15, 1.85] 0% 0.02

Stem cell concentration

2× 10E5 1 Yang et al. (32) 0.81 [−0.16, 1.78] Not applicable 0.1

1× 10E6 2 Song et al.–tail vein (29);

Jie et al. (24)

2.84 [1.11, 4.57] 51% 0.001

2× 10E6 1 Song et al.–in situ (29) 1.62 [−0.16, 3.40] Not applicable 0.07

FSH Subgroup name Study number Included study SMD [95%CI] I2 P

Calculate unit

unknown 1 Shen et al. (23) −7.28 [−11.56,−3.00] Not applicable 0.0009

mIU/mL, U/L, IU/L 7 Elfayomy et al. (25);

Song et al.–in situ (29);

Song et al.–tail vein (29);

Jie et al. (24); Jalali et al.

(27); Deng et al. (28);

Yang et al. (32)

−2.26 [−4.11,−0.41] 92% 0.02

pg/mL 1 Zhang et al. (26) −5.27 [−6.64,−3.91] Not applicable <0.00001

Injection location

Tail vein 5 Song et al.–tail vein (29);

Jie et al. (24); Shen et al.

(23); Jalali et al. (27);

Deng et al. (28)

−2.51 [−4.19,−0.84] 82% 0.003

In situ 4 Elfayomy et al. (25);

Song et al.–in situ (29);

Zhang et al. (26); Yang

et al. (32)

−3.40 [−7.44, 0.65] 96% 0.1

Stem cell concentration

1× 10E5 1 Zhang et al. (26) −5.27 [−6.64,−3.91] Not applicable <0.00001

2× 10E5 1 Yang et al. (32) 1.49 [0.41, 2.56] Not applicable 0.007

1× 10E6 5 Song et al.–tail vein (29);

Jie et al. (24); Shen et al.

(23); Jalali et al. (27);

Deng et al. (28)

−2.51 [−4.19,−0.84] 82% 0.003

2× 10E6 2 Elfayomy et al. (25);

Song et al.–in situ (29)

−4.96 [−11.50, 1.59] 95% 0.14

Transplantation time

2 weeks or 15 days 5 Elfayomy et al. (25);

Song et al.–in situ (29);

Song et al.–tail vein (29);

Shen et al. (23); Deng

et al. (28)

−2.10 [−3.71,−0.50] 79% 0.01

4 weeks or 30 days 5 Elfayomy et al. (25);

Song et al.–in situ (29);

Song et al.–tail vein (29);

Shen et al. (23); Deng

et al. (28)

−3.28 [−5.54,−1.01] 86% 0.005

(Continued)
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TABLE 3 (Continued)

Comparison Result

Subgroup name Study number Included study SMD [95%CI] I2 P

6 weeks or 45 days 4 Elfayomy et al. (25);

Song et al.–in situ (29);

Song et al.–tail vein (29);

Shen et al. (23)

−4.03 [−7.09,−0.97] 87% 0.01

60 days 1 Shen et al. (23) −7.28 [−11.56,−3.00] Not applicable 0.0009

LH Subgroup name Study number Included study SMD [95%CI] I2 P

Calculate unit

mIU/mL 1 Jie et al. (24) −1.46 [−2.47,−0.45] Not applicable 0.005

pg/mL 1 Zhang et al. (26) −2.94 [−3.86,−2.02] Not applicable <0.00001

Injection location

Tail vein 1 Jie et al. (24) −1.46 [−2.47,−0.45] Not applicable 0.005

In situ 1 Zhang et al. (26) −2.94 [−3.86,−2.02] Not applicable <0.00001

Stem cell concentration

1× 10E5 1 Zhang et al. (26) −2.94 [−3.86,−2.02] Not applicable <0.00001

1× 10E6 1 Jie et al. (24) −1.46 [−2.47,−0.45] Not applicable 0.005

4. Discussions

In the year 1942, POI was initially described as a mysterious

ailment that perplexed medical practitioners. As the medical

community’s focus began to shift toward unraveling its elusive

nature, POI gradually gained notoriety and its prevalence surged

to an alarming 1% (35). Chemical injury is a common method to

establish POI model and a main cause of POI clinically apart from

genetic disorders (12, 36). But the pathophysiological change of

POI is similar regardless of etiology. According to our results, the

reduced ovarian function and elevated gonadotropins is reversed

by hUCMSC therapy. Follicles are stimulated as well. Therefore,

we think the therapeutic effect of hUCMSC is adaptable to all

causes. The traditional treatment for POI is HRT, but it only relieves

symptoms. The ovarian function remains poor and bring many

clinical adverse events about in many patients. In a retrospective

cohort study, only 3 of 20 patients achieved pregnancy by assisted

reproductive technology (ART) (37). Besides, patients with HRT

are more likely to develop sleep problems (38). Given these

limitations, stem cell therapy has gained considerable attention

recently. Currently, hUCMSC has two other different forms to

apply, that is, the microvesicles (34) and extracellular vesicles (39)

derived from such cells. Stem cells in the umbilical cord are easy

to acquire and do not cause extra donor injury compared with

the other stem cell types. Considering their proliferative ability,

multidifferentiation and safety, hUCMSC has been researched in

the treatment of respiratory (40), cardiovascular (41), liver (42),

central nervous system (43, 44) and autoimmune (45) diseases

as well as diabetes (46). AMH is crucial in POI diagnosis. In

our search on POI, AMH research has gained a large proportion.

Physiologically, AMH is secreted by primary ovarian follicles and

can negatively regulate the progression of earlier resting follicles

into active and progressive ones (47). Considering that AMH

secretion slightly varies in menstrual cycle and only healthy follicles

secrete it, AMH is considered as a stable marker of ovarian reserve

and POI. Our results showed a significant increase of AMH in

the hUCMSC group, possibly because of the cytokine secreted by

hUCMSC. However, the follicle number increased after stem cell

transplantation; the proliferation of healthy follicles may be the

cause of the AMH increase. Further research is needed to elucidate

the underlying mechanism.

Many factors contribute to the development of infertility.

And the gene expressions of different cases are various according

to the diseases as a bioinformatic analysis showed (48). As a

result, there are only some general treatments of infertility like

IVF-ET and artificial insemination. Etiology based therapy of

infertility is rare. Infertility therapies are mainly ART, aiming

at gaining embryo directly (49). Our meta-analysis confirms

folliculogenesis of hUCMSC in animal models, providing an

etiology-specific therapy of POI. Apart from efficacy, safety

is another important factors under evaluation. Although our

result does not cover safety concerns, several phase 1/2 trials

have been conducted for hUCMSC in other diseases. General

outcomes for safety consideration include immediate infusion

related adverse events, blood test like hepatic and renal function

and blood cell count, inflammatory cytokine level, hypersensitive,

infection, tumorigenesis (50–52). No adverse event is observed in

these studies.

Although many studies tried to determine the mechanism of

hUCMSC, the specific target remains unclear. Apoptosis regulation

was often observed in many animal studies. This result may

be derived from some signaling pathways. In a previous study,

the expression of CK 8/18, TGF-ß and PCNA increased, while

that of CASP-3 decreased (25). Other candidate molecular signals

include Bcl-2 (53) and PI3K-Akt (54). Some researchers also

hypothesized that angiogenesis can explain the anti-apopotic

effect of hUCMSC (32). Further studies should be conducted to

determine the exact mechanism and guide the clinical application

of hUCMSC. However, hUCMSC can definitely promote ovarian

function. Not only AMH but also E2, FSH and LH showed

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2023.1211070
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2023.1211070

FIGURE 3

Forest plot of animals’ serum hormone level and follicle number in the hUCMSC group vs. the POI model group. (A) Serum E2 concentrations

significantly increased in the hUCMSC group compared with those in the POI model group (SMD: 5.34, 95% CI: [3.11, 7.57], I2 = 93%, P < 0.00001).

(B) Serum AMH concentrations significantly increased in the hUCMSC group compared with those in the POI model group (SMD: 1.92, 95% CI: [0.60,

3.25], I2 = 68%, P = 0.004). (C) Serum FSH concentrations significantly decreased in the hUCMSC group compared with those in the POI model

group (SMD: −3.02, 95% CI: [−4.88, −1.16], I2 = 93%, P = 0.001). (D) Serum LH concentrations significantly decreased in the hUCMSC group

compared with those in the POI model group (SMD: −2.22, 95% CI: [−3.67, −0.76], I2 = 78%, P = 0.003). (E) Ovarian follicle count comparison

between the hUCMSC group versus the POI model group. Antral follicles (SMD: 4.64, 95% CI: [2.89, 6.39], I2 = 87%, P < 0.00001), pre-antral follicles

(SMD: 1.73, 95% CI: [0.37, 3.10], I2 = 70%, P = 0.01), secondary follicles (SMD: 2.14, 95% CI: [1.07, 3.21], I2 = 84%, P < 0.0001), primary follicle (SMD:

2.23, 95% CI: [1.10, 3.35], I2 = 85%, P = 0.0001), primordial follicle (SMD: 1.68, 95% CI: [0.26, 3.09], I2 = 89%, P = 0.02) and all follicles (SMD: 4.90, 95%

CI: [3.92, 5.88], I2 = 0%, P < 0.00001) increased significantly in the hUCMSC group compared with those in the POI model group.

significant changes. Estrogen is mainly produced in the ovarian

follicle, and LH and FSH play a crucial role. In addition, GCs

and their aromatase convert androgen into estrogen (55). Our

results proved the therapeutic effect of hUCMSC on E2, FSH

and LH. We also found some pioneering clinical trials, and their

results are optimistic. They investigate antral follicle number and

sex hormone of patients to evaluate their ovary function. After

UCMSC transplantation, patients showed significant recovery of

sex hormone, with decreased level of FSH and increased number

of antral follicle (16, 17). Further pregnancy follow up showed

that UCMSC transplantation does not affect genetic source of fetus

(16). Ovarian volume increases after hUCMSC transplantation

with significance, but no significance was observed in collagen

scaffold group (17). Nevertheless, compared with animal studies,

number of high-quality randomized controlled trials (RCTs) is

little. Considering the differences between animals and humans,

our meta-analysis result cannot fully support stem cell therapy in

POI in human, but can provide a preclinical evidence. However,

given that hUCMSC is proven to be effective in POI animals,

researchers may pay more attention to RCTs. With abundant

and valid RCT evidence, further application of stem cells can

be discussed in the future. According to quality assessment table

(Table 2), major problems are insufficient randomization and

blinding. Thus, it is necessary for researchers to exactly illustrate

their randomization settings and blinding measures to prove the

function of hUCMSC especially in clinical stage. Traditionally,

ovarian follicle number is thought to be fixed and decreases

by age (56). So folliculogenesis is traditionally thought as an
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TABLE 4 Sensitivity analysis of the results.

Outcome Excluded study Number of
observation

I
2 SMD/RR [95%CI] P value of

overall e�ect

Normal estrous cycle

proportion

– 4 0% 3.32 [1.80, 6.12] 0.0001

Shen et al. (23) 3 0% 3.11 [1.66, 5.82] 0.0004

Wang–High et al. (30) 3 0% 2.85 [1.32, 6.13] 0.008

Wang–Low et al. (30) 3 0% 4.08 [1.99, 8.37] 0.0001

Wang–Medium et al. (30) 3 0% 3.31 [1.57, 6.97] 0.002

Duration of estrous cycle – 3 0% −1.97 [−2.58,−1.36] <0.00001

Zhang et al. (18) 2 43% −1.99 [−2.98,−1.00] <0.0001

Yang et al. (32) 2 0% −1.84 [−2.48,−1.20] <0.00001

Deng et al. (28) 2 13% −2.12 [−2.83,−1.41] <0.00001

E2 – 9 93% 5.34 [3.11, 7.57] <0.00001

Shen et al. (23) 8 93% 4.95 [2.69, 7.20] <0.0001

Elfayomy et al. (25) 8 90% 3.89 [2.00, 5.79] <0.0001

Song–in situ et al. (29) 8 94% 5.93 [3.42, 8.44] <0.00001

Song–tail vein et al. (29) 8 94% 5.96 [3.44, 8.48] <0.00001

Jie et al. (24) 8 93% 5.47 [3.06, 7.89] <0.00001

Jalalie et al. (27) 8 92% 4.35 [2.26, 6.44] <0.0001

Zhang et al. (26) 8 93% 6.51 [3.48, 9.54] <0.0001

Deng et al. (28) 8 93% 6.49 [3.60, 9.38] <0.0001

Yang et al. (32) 8 93% 5.13 [2.83, 7.43] <0.0001

FSH – 9 93% −3.02 [−4.88,−1.16] 0.001

Shen et al. (23) 8 93% −2.67 [−4.57,−0.77] 0.006

Elfayomy et al. (25) 8 91% −2.35 [−4.09,−0.62] 0.008

Song–in situ et al. (29) 8 94% −3.22 [−5.29,−1.15] 0.002

Song–tail vein et al. (29) 8 94% −3.21 [−5.27,−1.15] 0.002

Jie et al. (24) 8 94% −3.35 [−5.61,−1.09] 0.004

Jalalie et al. (27) 8 93% −2.76 [−4.71,−0.82] 0.005

Deng et al. (28) 8 93% −3.39 [−5.60,−1.18] 0.003

Yang et al. (32) 8 90% −3.60 [−5.39,−1.81] <0.0001

Zhang et al. (26) 8 91% −2.68 [−4.51,−0.84] 0.004

AMH – 4 68% 1.92 [0.60, 3.25] 0.004

Jie et al. (24) 3 0% 1.14 [0.37, 1.92] 0.004

Song–in situ et al. (29) 3 79% 2.04 [0.25, 3.84] 0.03

Song–tail vein et al. (29) 3 79% 1.97 [0.21, 3.72] 0.03

Yang et al. (32) 3 43% 2.46 [1.14, 3.78] 0.0003

irreversible procedure. Besides, traditional therapy such as HRT

can only relieve symptoms. Fertility preservation is indeed hard

to achieve. But recently, the discovery of stem cell in ovary

gives a new hope for ovarian regeneration. Germline stem cell

(GSC) is identified and isolated from human ovarian cortex. The

property of isolated stem cell is proved to be stable after cell

culture. DDX4, OCT4. IFITM3 and BLIMP-1 are confirmed to

be expressed by the GSC (57). Moreover, it can promote ovarian

function recovery in sterile animals and achieve pregnancy (58).

As our result shows a recovery of ovarian follicle after hUCMSC

transplantation. Given the genetic origin of offspring is not from

hUCMSC donor as clinical trial proves (16), new experiments can

pay some attentions to the effect of hUCMSC on ovarian GSC to

explore the mechanism. Many genes can regulate folliculogenesis.

Genes, cells or molecules such as SP1, mTOR, Ube2i, YAP1,

C1QTNF3, GPR173, ovarian fat pad factors, α-SNAP, CD11c+ cells,
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FIGURE 4

Funnel plots of the (A) normal estrous cycle, (B) estrous cycle length, (C) serum E2, (D) serum FSH, (E) serum AMH, (F) serum LH and (G) follicle count.

M1 MΦs and DCs all play a role in folliculogenesis (59). Some

studies have tried to find the association between these genes and

the hUCMSC treatment effect. For example, Lu Xueyan et al. found

that hUCMSC can inhibit the autophagy of theca-interstitial cells
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via the AMPK/mTOR signaling pathway (60). Depending on our

results, folliculogenesis is a promising direction. Considering that

folliculogenesis is tightly connected to anti-apoptosis in GCs (61),

some cytokines that can affect GCs may be the target of future

mechanism research.

Finally, this study has some limitations that should not be

ignored. Clinical study of hUCMSC is rare, and this is also one

reason for us to conduct this meta-analysis. Preclinical study is an

important part of scientific experiment. Because of limited number

of clinical data, it is not the optimal time to conduct a clinical meta-

analysis. Themeta-analysis of preclinical animal study can promote

the development of clinical trails. The relatively insufficient

included study, medium quality, high diversity and heterogeneity

restrict the application of conclusion. Though random effects

model was applied in the analysis, the impact cannot be fully

eliminated. All included studies are of medium-quality studies, and

higher-quality studies are needed in future research. Due to the

limited number of studies, publication bias likely exists in this

meta-analysis. However, according to current results, hUCMSC

is able to recover ovarian function of POI animals. The result is

not affected by limitation. The mentioned limitation should be

considered when our conclusion serves as an evidence for clinical

study. Thus, we hold a conservative but optimistic view and think

more studies are needed in the future to further support the results.

Considering the characteristic table, we can observe that a standard

animal study procedure has not been formed yet. Future research

may focus on a suitable stem cell concentration and transplantation

time to eliminate heterogeneity.

5. Conclusions

The transplantation of hUCMSC has the potential to restore

the estrous cycle, increase E2 and AMH levels, decrease FSH and

LH levels, and promote folliculogenesis in female rodent models.

The results strongly support the use of this therapeutic strategy

with a promising outlook. It is important to evaluate the safety and

effectiveness of hUCMSC in clinical trials. Randomized controlled

trials should also be approached with caution, and safety and

adverse effects of hUCMSC should be thoroughly examined in

future studies.
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