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Background: The coronavirus disease 2019 (COVID-19) is an acute infectious

pneumonia caused by a severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infection previously unknown to humans. However, predictive studies of

acute respiratory distress syndrome (ARDS) in patients with COVID-19 are limited.

In this study, we attempted to establish predictive models to predict ARDS caused

by COVID-19 via a thorough analysis of patients’ clinical data and CT images.

Method: The data of included patients were retrospectively collected from the

intensive care unit in our hospital from April 2022 to June 2022. The primary

outcome was the development of ARDS after ICU admission. We first established

two individual predictive models based on extreme gradient boosting (XGBoost)

and convolutional neural network (CNN), respectively; then, an integrated model

was developed by combining the two individual models. The performance of

all the predictive models was evaluated using the area under receiver operating

characteristic curve (AUC), confusion matrix, and calibration plot.

Results: A total of 103 critically ill COVID-19 patients were included in this

research, of which 23 patients (22.3%) developed ARDS after admission; five

predictive variables were selected and further used to establish the machine

learning models, and the XGBoost model yielded the most accurate predictions

with the highest AUC (0.94, 95% CI: 0.91–0.96). The AUC of the CT-based

convolutional neural network predictive model and the integratedmodel was 0.96

(95% CI: 0.93-0.98) and 0.97 (95% CI: 0.95–0.99), respectively.

Conclusion: An integrated deep learning model could be used to predict

COVID-19 ARDS in critically ill patients.
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Introduction

The coronavirus disease 2019 (COVID-19) is an acute infectious pneumonia caused by a

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (1). Evidence has

shown that 33% of COVID-19 patients are at high risk of progressing into severe cases, which

are accompanied by increasing mortality and morbidity (2, 3). Moreover, severe SARS-

CoV-2 infection may directly lead to acute respiratory distress syndrome (ARDS), and the

manifestations could be viewed as a combination of pneumonia and ARDS (4).

Although significant advances have been made in understanding and managing ARDS,

the morbidity and mortality of patients diagnosed with ARDS still remain high (5).
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Unfortunately, the benefits of different therapies for established

ARDS are limited (6–8). Since then, the paradigm for the

management of ARDS has been shifted from treatment to

prevention. Identification of patients at high risk of ARDS

is important for clinicians to implement effective, preventive

therapies to reduce the burden of ARDS. It is reported that the

median time from the onset of COVID-19 symptoms to intubation

is 8.5 days when COVID-19 ARDS occurs (9). There have been

several studies focusing on the early prediction of ARDS, which

described well-known risk factors associated with ARDS (10–12).

However, COVID-19 ARDS is a serious complication of COVID-

19, which has different clinical features from pre-COVID-19 ARDS

(13). Hence, a clinical tool tailored for predicting COVID-19 ARDS

is urgently needed.

In recent years, artificial intelligence (AI) has emerged as a

promising tool in the medical field. The remarkable advantage

of artificial intelligence in handling massive data could help with

disease diagnostics and prognostics, radiographic recognition, and

personalized treatment, etc. (14). During the COVID-19 pandemic,

first-hand CT and clinical datasets helped clinicians make decisions

and better understand the viral infection. For example, elevated

levels of inflammatory cytokines and a reduction of T-cell subsets

are closely related to COVID-19 pneumonia (15). The radiology

features of COVID-19 pneumonia include a peripheral distribution

of opacification, frosted glass opacities, and vascular thickening

and enlargement (16). In spite of the distinct features observed in

COVID-19 patients, the clinician may find it hard to figure out

the underlying correlations between the clinical features and the

features of CT slices, hindering the comprehensive understanding

of the disease. Here, we aimed to provide a method pooling all the

patients’ features including CT and clinical features for improving

the precision of the prediction of COVID-19 ARDS.

Methods

This is a retrospective study approved by the institutional Ethics

Committees at Shanghai Renji Hospital, and informed patient

consent was waived.

Study patients

All patients admitted to the intensive care unit in Shanghai

Renji Hospital between April 2022 and June 2022 were screened for

eligibility. Inclusion criteria were as follows: (1) patients who were

18 years old and above; and (2) patients who met the diagnosis of

COVID-19 ARDS. Exclusion criteria were as follows: (1) patients

who were diagnosed with ARDS within the first day of admission;

(2) missing clinical data were more than 20%; and (3) without any

CT scan results.

Diagnosis of COVID-19 ARDS

SARS-CoV-2 infection can be identified by the detection of

viral RNA in nasopharyngeal secretions via PCR test. The diagnosis

of COVID-19 was confirmed by the patients’ clinical history,

epidemiological contact, and a positive SARS-CoV-2 test.

The diagnosis of ARDS followed the Berlin definition: (1)

requirement of mechanical ventilation and positive end-expiratory

pressure or continuous positive airway pressure ≥ 5 cmH2O; (2)

a certain degree of hypoxemia: severe (PaO2/FiO2 ≤ 100 mmHg),

moderate (PaO2/FiO2 between 100 mmHg and 200 mmHg), or

mild (PaO2/FiO2 between 200 mmHg and 300 mmHg); and (3)

without evidence of pleural effusion, lung collapse, lung nodules,

or cardiogenic pulmonary edema from the chest radiography (16).

A patient who satisfied the criteria of COVID-19 and ARDS was

diagnosed with COVID-19 ARDS.

Data collection

We collected the first sets of chest CT images and clinical data

after the patients’ admission to the intensive care unit. The clinical

data included demographic information, comorbidity conditions,

respiratory support methods, onset symptoms, vital signs at

admission, aeration variables, routine blood tests, inflammation

tests, biochemical tests, blood coagulation tests, lymphocyte subset

tests, and cytokine profile tests. Original CT images both in JPG

and DICOM format of the included patients were collected. In

this study, we randomly divided the patients into training and

validation cohorts in a ratio of 7:3.

Statistical analysis

The categorical variables were presented as counts and

corresponding proportions and were further compared using the

chi-square test or Fisher’s exact test. The continuous variables were

reported as the median and the interquartile range; the Mann–

Whitney U-test was applied to compare the differences between

the groups. The multivariate logistic regression was performed to

figure out the independent risk factors associated with COVID-

19 ARDS. A nomogram plot was further established based on the

result of the multivariate logistic regression. A two-tailed P-value

of <0.05 was considered significant. The data analysis in this study

was completed via Python version 3.8 and R version 4.0.5.

The COVID-19 ARDS prediction based on
clinical features

Four different machine learning algorithms were implemented

to establish the predictive models for COVID-19 ARDS, including

logistic regression (LR), support vector machine (SVM), random

forest (RF), and extreme gradient boosting (XGBoost). The training

cohort was divided into five partitions, of which four-fifths were

used to train the models, and the remaining part was used to

validate the models. The hyperparameters of all the models were

fine-tuned for the highest area under the receiver operating to avoid

the problem of overfitting. We followed two specific rules when

searching for the best hyperparameters, which were as follows: (1)

the training loss was the lowest after the test of all combinations
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FIGURE 1

The flowchart of patients’ selection.

of hyperparameters; (2) the log loss in the validation cohort was

less than –log 0.5 and higher than the training cohort. Grid search

with 5-fold cross-validation was applied to search for the most

appropriate hyperparameters in the training cohort. Finally, the

predictive performance of established models was compared in the

validation cohort.

The labeling of individual CT slices

We first manually labeled 897 slices of 30 patients to train

the classification model for individual CT slices. The CT slices

were classified into two types: (1) normal CT, in which the image

features in lungs were consistent with healthy lungs; (2) abnormal

CT, in which image features were associated with COVID-19

pneumonia. Two senior ICU clinicians (ZHand YG) independently

labeled individual CT slices. Any disagreements were resolved

through discussion. The deep learning framework was based on

the architecture of VGG-16, which consisted of 13 convolutional

layers and 3 fully connected layers. We further internally validated

the classification model and used it to label the remaining 2, 300 CT

slices. Finally, every CT slice was classified into a normal CT image

or an abnormal CT image.

The COVID-19 ARDS prediction based on
CT images

After the auto-labeling of individual CT slices, we assumed

that an abnormal CT slice classified by the model was a positive

case. Then, the possibility of being an abnormal CT slice for

every CT image was calculated. The 10 most probable abnormal

CT slices of a single patient were viewed as the representative

CT images and were input into the second VGG-16 network.

This convolutional neural network (CNN) allows for the shift

from the prediction of COVID-19 ARDS based on individual

CT slices to the prediction based on a single patient. The VGG-

16 network consists of 1 input layer, 13 convolutional layers,

3 fully connected layers, and 1 output layer. The convolutional

layers were used to handle feature extraction and presentation.

The pooling layers were used for filtering abundant information

under the max-pooling strategy. In the last three output layers,

the possibility of being a positive case was calculated for each

CT slice. For the individual CT-based prediction, the possibility

ranged from 0 to 1, representing a CT slice classified into a

normal CT image or an abnormal CT slice. For the single

patient-based prediction, the possibility ranged from 0 to 1,

representing a patient being predicted to develop COVID-19 ARDS

or not.

The integration of predictions models

The integration of two prediction models based on CT

images and clinical data was achieved by the penalized logistic

regression algorithm. The L2 regularization of the penalized

logistic regression algorithm was used. To be specific, the

machine learning model based on clinical features and the

CNN model based on CT images individually generated

two scores for the prediction of COVID-19 ARDS, which

were taken as input features for the penalized logistic

regression algorithm. At last, the penalized logistic regression

algorithm calculated a prediction score for the COVID-19

ARDS outcome.

The evaluation of model performance

We randomly divided the patients into the training cohort

and the validation cohort in a ratio of 7:3. The overall predictive

performance of the integrated model was measured in the test

cohort. The receiver operating characteristics (ROC) curve and

the confusion matrices of all established predictive models were

depicted to compare the performance of the predictive models. A

ROC curve is a graphic plot used to illustrate a binary classifier’s

diagnostic ability as the discrimination threshold varies. It is

created by plotting the true-positive rate against the false-positive

rate at different discrimination thresholds. The calibration plots

were also depicted to assess the predictive performance of all

the models.
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TABLE 1 Baseline characteristics of included patients.

Characteristics Total (n = 103) Non-ARDS cohort (n = 80) ARDS cohort
(n = 23)

P-value

Demographic variables

Age (years) 75 (64, 87) 74 (63, 87) 84 (75, 89) 0.014

Gender, n (%) 0.917

Male 48 (46.6%) 38 (47.5%) 10 (43.5%)

Female 55 (53.4%) 42 (52.5%) 13 (56.5%)

BMI (kg/m2) 26.9 (22.7, 33.5) 26.5 (23.0, 33.9) 27.2 (24.1, 34.3) 0.346

Marital status, n (%) 0.269

Single 8 (7.8%) 6 (7.5%) 2 (8.7%)

Married 93 (90.3%) 72 (90.0%) 21 (91.3%)

Other 2 (1.9%) 2 (2.5%) 0 (0%)

Comorbidities

Congestive heart failure, n (%) 30 (29.1%) 23 (28.8%) 7 (30.4%) 1.000

Hypertension, n (%) 54 (52.4%) 41 (51.2%) 13 (56.5%) 0.834

Diabetes, n (%) 25 (24.3%) 18 (22.5%) 7 (30.4%) 0.613

Chronic kidney disease, n (%) 21 (20.4%) 15 (18.8%) 6 (26.1%) 0.634

Arrhythmia, n (%) 13 (12.6%) 11 (13.8%) 2 (8.7%) 0.774

Respiratory support 0.002

Spontaneous breathing, n (%) 38 (36.9%) 38 (47.5%) 0 (0%)

Nasal cannula, n (%) 24 (23.3%) 17 (21.2%) 7 (30.4%)

Mask ventilation, n (%) 7 (6.8%) 4 (5%) 3 (13%)

High flow, n (%) 31 (30.1%) 19 (23.8%) 12 (52.2%)

Non-invasive ventilator, n (%) 1 (0.97%) 1 (1.2%) 0 (0%)

Intubation, n (%) 2 (1.94%) 1 (1.2%) 1 (4.3%)

Onset symptoms

Fever, n (%) 42 (40.8%) 37 (46.2%) 5 (21.7%) 0.062

Cough, n (%) 56 (54.4%) 43 (53.8%) 13 (56.5%) 1.000

Sore throat, n (%) 9 (8.7%) 9 (11.2%) 0 (0%) 0.206

Nausea, n (%) 2 (1.94%) 1 (1.2%) 1 (4.3%) 0.927

Headache, n (%) 7 (6.8%) 4 (5%) 3 (13%) 0.378

Chest distress, n (%) 2 (1.94%) 2 (2.5%) 0 (0%) 1.000

Vital signs at admission

T (◦C) 36.80 (36.50 to 37.30) 36.80 (36.50 to 37.50) 36.70 (36.55 to 37.05) 0.430

SBP (mmHg) 129.00 (111.00, 145.00) 126.09± 24.77 134.65± 26.13 0.152

DBP (mmHg) 69.00 (64.50 to 80.00) 72.11± 15.27 73.22± 13.43 0.754

HR (/min) 96.00 (81.00 to 113.50) 96.00 (80.00 to 111.00) 105.00 (85.00 to 125.00) 0.139

RR (/min) 20.00 (18.00 to 25.00) 20.00 (18.00 to 25.00) 21.00 (19.50 to 24.00) 0.293

Aeration variables

PaO2 (mmHg) 89 (66, 118) 94.5 (76, 137.5) 94.5 (76, 137.5) <0.001

PaCO2 (mmHg) 37.5 (32.5, 44.5) 37.2 (31.9, 44.5) 37.2 (31.9, 44.5) 0.358

SpO2 (%) 97 (95, 99) 98 (95, 99) 98 (95, 99) 0.022

PaO2/FiO2 192.0 (159.0, 252.0) 201.0 (171.0, 265.9) 201.0 (171.0, 265.9) <0.001

(Continued)
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TABLE 1 (Continued)

Characteristics Total (n = 103) Non-ARDS cohort (n = 80) ARDS cohort
(n = 23)

P-value

Routine blood test 38 (34.1, 45.3)

White blood cell (K/UL) 8.59 (6.30, 13.21) 8.16 (6.03, 13.14) 96 (91, 98) 0.152

Neutrophil (K/UL) 7.30 (4.96, 12.25) 6.36 (4.41 to 11.38) 159.5 (140.0, 171.5) 0.024

Monocyte (K/UL) 0.47 (0.32, 0.74) 0.48 (0.32 to 0.74) 0.800

Reb blood cell (K/UL) 3.46± 0.90 3.47± 0.90 10.72 (7.59, 14.26) 0.988

Platelet (K/UL) 163.00 (108.50, 256.00) 158.50 (107.50, 256.00) 9.63 (7.22 to 14.98) 0.553

Hemoglobin (g/dL) 10.41± 2.92 10.34± 2.96 10.72 (7.59, 14.26) 0.835

Glucose (mg/l) 7.10 (5.70 to 10.15) 6.65 (5.55 to 9.70) 9.63 (7.22 to 14.98) 0.023

Inflammation

C-reactive protein (mg/L) 46.49 (22.49, 77.53) 38.50 (19.29 to 75.03) 0.39 (0.30 to 0.77) 0.021

Procalcitonin (ng/mL) 0.32 (0.08, 0.81) 0.26 (0.07 to 0.77) 3.46± 1.02 0.212

Serum Amyloid A (mg/L) 155.01 (49.84, 350.00) 100.26 (27.21 to 350.00) 186.00 0.004

Biochemical test

ALT (U/L) 22.00 (11.00, 43.50) 20.00 (10.50 to 45.50) 22.00 (14.50 to 37.50) 0.590

AST (U/L) 31.00 (21.50, 48.50) 29.50 (21.50 to 49.00) 37.00 (21.00 to 47.00) 0.791

LDH (U/L) 276.00 (220.00, 88.00) 263.50 (210.00 to 388.00) 291.00 (236.50 to 388.50) 0.289

Bilirubin (mg/dl) 13.70 (9.45, 19.60) 13.75 (9.65 to 19.90) 12.20 (9.05 to 17.95) 0.571

Urea (mmol/L) 8.78 (5.37, 15.85) 7.06 (4.96 to 13.77) 15.85 (9.00 to 24.14) <0.001

Creatine (mg/l) 79.00 (49.50, 146.50) 71.50 (48.00 to 126.00) 92.00 (60.00 to 193.00) 0.183

eGFR (ml/min) 76.00 (36.50, 95.50) 77.50 (38.00 to 102.00) 67.00 (19.50 to 86.00) 0.128

PH 7.40 (7.35 to 7.45) 7.42 (7.37 to 7.45) 7.35 (7.30 to 7.42) 0.003

Sodium (mmol/L) 139.00 (135.00, 144.00) 139.00 (134.00, 142.00) 141.00 (137.00, 151.00) 0.060

Potassium (mmol/L) 3.60 (3.10, 4.00) 3.50 (3.10, 4.00) 3.90 (3.50, 4.15) 0.112

Chlorine (mmol/L) 105.00 (99.00, 112.00) 102.50 (98.00, 110.50) 110.00 (104.00, 119.50) 0.003

Calcium (mmol/L) 1.09 (1.06, 1.14) 1.09 (1.04, 1.13) 1.12 (1.08, 1.17) 0.030

Albumin (g/dl) 2.8 (2.2, 3.6) 2.8 (2.3, 3.6) 2.7 (2.0, 3.5) 0.418

TG (mmol/L) 1.42 (0.88, 1.81) 1.48 (0.90, 1.80) 1.37 (0.68, 1.86) 0.568

TC (mmol/L) 3.36 (2.82, 4.55) 3.47 (2.82, 4.22) 3.28 (2.70, 5.35) 0.994

HDL (mmol/L) 0.86 (0.62, 1.06) 0.87 (0.59, 1.07) 0.84 (0.64, 1.01) 0.862

LDL (mmol/L) 2.30 (1.64 to 2.58) 2.30 (1.64, 2.57) 2.27 (1.90, 3.27) 0.724

Non-HDL (mmol/L) 2.47 (1.95, 3.05) 2.47 (1.95, 3.00) 2.56 (2.13, 3.73) 0.360

BNP (pg/ml) 190.00 (88.00, 492.50) 187.00 (86.00, 562.00) 195.00 (126.00, 313.50) 0.871

TNI (ng/ml) 0.04 (0.01, 0.07) 0.03 (0.01, 0.07) 0.04 (0.02, 0.07) 0.397

Mb (µg/L) 92.40 (43.50, 247.25) 81.50 (39.15, 233.25) 149.20 (87.50, 350.45) 0.021

CKMB (ng/ml) 2.50 (1.50, 5.10) 2.40 (1.40, 3.50) 4.60 (2.30, 8.10) 0.008

Blood coagulation test

TT (seconds) 15.20 (14.60 to 16.40) 15.15 (14.60 to 16.45) 15.30 (14.60 to 16.10) 0.994

APTT (seconds) 31.60 (27.30 to 36.15) 31.25 (27.50 to 36.30) 32.50 (27.05 to 35.90) 0.698

PT (seconds) 12.90 (11.90 to 14.80) 12.75 (11.70 to 14.75) 13.20 (12.35 to 15.45) 0.139

INR 1.10 (1.02 to 1.27) 1.10 (1.00 to 1.27) 1.13 (1.05 to 1.33) 0.212

FG (g/L) 3.98 (3.01 to 4.61) 3.76 (2.79 to 4.58) 4.54 (3.89 to 4.72) 0.005

(Continued)
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TABLE 1 (Continued)

Characteristics Total (n = 103) Non-ARDS cohort (n = 80) ARDS cohort
(n = 23)

P-value

DD (mg/L) 1.56 (0.68 to 3.19) 1.36 (0.59 to 2.48) 2.42 (1.44 to 3.58) 0.017

FDP (mg/L) 11.90 (5.90 to 20.95) 11.15 (5.40 to 20.10) 18.10 (10.55 to 24.55) 0.040

Lymphocyte subsets

Lymphocyte (10e9/L) 0.73 (0.50 to 1.01) 0.79 (0.54 to 1.26) 0.63 (0.40 to 0.76) 0.017

T lymphocyte (10e6/L) 424.30 (268.90, 679.40) 526.65 (291.05 to 858.10) 309.90 (220.00, 429.75) <0.001

B lymphocyte (10e6/L) 82.00 (41.65, 156.60) 82.05 (38.50 to 152.35) 79.50 (44.35 to 172.65) 0.994

Th lymphocyte (10e6/L) 280.90 (154.40, 434.35) 294.20 (174.15 to 482.20) 199.40 (86.80 to 361.25) 0.025

Ts lymphocyte (10e6/L) 149.90 (88.30 to 244.50) 158.30 (97.35 to 244.50) 129.10 (48.35 to 236.15) 0.167

Natural killer cell (10e6/L) 115.60 (63.40 to 184.60) 126.00 (69.30 to 201.35) 87.60 (52.90 to 143.95) 0.033

CD4/CD8 ratio 1.60 (1.14 to 2.56) 1.58 (1.12 to 2.42) 1.60 (1.14 to 2.92) 0.669

Cytokine profiles

IL1 (pg/ml) 1.22 (0.83 to 1.69) 1.22 (0.76 to 1.57) 1.37 (0.94 to 2.55) 0.224

IL2 (pg/ml) 1.03 (0.61 to 1.69) 1.03 (0.66 to 1.47) 1.06 (0.58 to 1.94) 0.571

IL4 (pg/ml) 1.45 (1.08 to 2.17) 1.35 (1.07 to 2.09) 1.67 (1.27 to 2.54) 0.132

IL5 (pg/ml) 0.79 (0.38 to 1.14) 0.76 (0.37 to 1.14) 0.97 (0.63 to 1.20) 0.226

IL6 (pg/ml) 46.91 (20.91 to 113.00) 37.58 (17.13 to 81.49) 118.00 (50.28 to 279.58) <0.001

IL8 (pg/ml) 16.07 (6.26 to 53.18) 13.13 (5.93 to 51.21) 48.32 (14.11 to 91.98) 0.034

IL10 (pg/ml) 4.12 (2.28 to 6.26) 3.58 (2.28 to 6.14) 5.16 (2.49 to 10.01) 0.328

IL17A (pg/ml) 3.28 (1.31 to 4.58) 3.02 (1.27 to 4.42) 3.44 (1.35 to 5.58) 0.542

TNF (pg/ml) 1.98 (1.26 to 2.79) 1.90 (1.26 to 2.66) 2.48 (1.06 to 3.42) 0.169

IFN-α (pg/ml) 1.04 (0.66 to 2.06) 0.98 (0.65 to 1.69) 1.36 (0.95 to 2.60) 0.083

IFN-γ (pg/ml) 1.53 (1.11 to 1.89) 1.53 (1.11 to 1.94) 1.53 (1.14 to 1.79) 0.921

Results

Baseline clinical features of included
patients

In total, 103 patients were enrolled in the study

after the screening for eligibility, of whom 23 patients

(22.3%) developed COVID-19 ARDS. The flowchart

of the patients’ selection is provided in Figure 1. The

baseline clinical features of the included patients are

presented in Table 1. There were no missing data in

our study.

A summary of collected CT images

Original chest CT images containing fields of the lung

parenchyma were obtained from 103 patients. The total number

of included CT images was 3,187, of which 690 CT slices were

from COVID-19 ARDS patients and 2,497 CT slices were from

non-COVID-19 ARDS patients. We manually classified 897 CT

slices from 30 patients into normal CT images or abnormal

CT images.

TABLE 2 Multivariate logistic regression analysis of risk factors of

COVID-19 ARDS based on selected variables in the training cohort.

Variable Coe�cient OR (95% CI) P-value

Age 0.089 1.093 (1.015, 1.177) 0.018

P/F ratio −0.024 0.977 (0.963, 0.991) 0.001

CRP 0.017 1.017 (1.001, 1.033) 0.036

T lymphocyte −0.004 0.996 (0.993, 0.999) 0.021

IL-6 0.008 1.008 (1.002, 1.017) 0.045

OR, odds ratio; CI, confidence interval.

The multivariate logistic regression analysis
of clinical features

After the multivariate logistic regression analysis, five risk

factors were figured out to be independently associated with

COVID-19 ARDS. We concluded that age (OR, 1.093; 95% CI,

1.015–1.177), PaO2/FiO2 ratio (OR, 0.977; 95% CI, 0.963–0.991),

C-reactive protein (OR, 1.017; 95% CI, 1.001–1.033), the count

of total T lymphocytes (OR, 0.996; 95% CI, 0.993–0.999), and

IL-6 (OR, 1.008; 95% CI, 1.002–1.017) were independent risk

factors of COVID-19 ARDS. The detailed results of themultivariate

logistic regression analysis are shown in Table 2. A nomogram
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FIGURE 2

The nomogram plot for the prediction of COVID-19 ARDS.

plot was illustrated based on the result of the multivariate logistic

regression model (Figure 2). We could calculate the risk score

and the corresponding possibility of COVID-19 ARDS using

the nomogram.

The predictive performance of models
based on clinical features

We developed four machine learning models to predict

COVID-19 ARDS, including logistic regression, support vector

machine, random forest, and extreme gradient boosting. The ROC

curves of all the machine learning models are shown in Figure 3A.

The area under the ROC curve of the XGBoost model was 0.94,

which outperformed the logistic regression model (AUC = 0.82),

the support vector machine model (AUC = 0.77), and the random

forest model (AUC = 0.92). We also performed the Delong test to

compare the AUCs of the XGBoost model against the other three

models (XGBoost model vs. logistic regression model, P<0.001;

XGBoost model vs. support vector machine model, P < 0.001; and

XGBoost vs. random forest model, P = 0.002). The calibration

curves are provided in Figure 3B. The XGBoost model was finally

chosen to be the best machine learningmodel to predict COVID-19

ARDS in our study.

The predictive performance of the CNN
model based on CT images

In total, 897 manually labeled CT slices were used to train

the classification CNN model based on individual CT images.

Figure 4A shows the ROC curve of the classification CNN

model (AUC = 0.99). The confusion matrix of the classification

CNN model is shown in Figure 4B. The normal CT slices and

the abnormal CT slices were correctly distinguished by the

classification CNNmodel.

The predictive performance of the
integrated deep learning model

The integrated deep learning model consisted of the XGBoost

model based on the clinical features and the CNN model based on

the selected CT slices from the individual patients. The ROC curves

of the two individual models and the integrated deep learning

model are shown in Figure 5A. The area under the ROC curve

values of the XGBoost model, the CNN model, and the integrated

model were 0.94 (95% CI: 0.91–0.96), 0.96 (95% CI: 0.93–0.98), and

0.97 (95% CI: 0.95–0.99), respectively.

The calibration curve plot indicated a good agreement between

the predicted probabilities of COVID-19 ARDS calculated by

the predictive models and the actual outcome (Figure 5B). The

confusion matrices were plotted using clinical features, CT images,

and integrated data to predict COVID-19 ARDS (Figure 6).

We found that the integrated deep learning model could yield

more accurate predictions than the individual model based on

clinical features or CT images. More details about the predictive

performance of the models are provided in Table 3.

Discussion

The outbreak of COVID-19 led to a global pandemic, and the

main causes of the deaths were pulmonary complications such as

acute respiratory distress syndrome. A comprehensive analysis of
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FIGURE 3

(A) The ROC curve of the four machine learning models. (B) The calibration curve of the four machine learning models.

FIGURE 4

(A) The confusion matrix of the predictive performance of the individual CT slices classification model. (B) The ROC curve of the classification model

of the individual CT slices.

the clinical symptoms, laboratory test results, and CT images is

crucial to help understand the scope of COVID-19. We believe that

an ensemble predictivemodel based on the integrated data from the

patients could provide more information about the risk factors of

complications such as ARDS brought on by COVID-19. Moreover,

detailed and accurate risk evaluation of COVID-19 ARDS is

important for clinicians to provide more personalized treatment to

patients. Some published studies have applied advanced artificial

intelligence methods to predict the prognosis of COVID-19 (17–

20). They demonstrated the value of machine learning algorithms

for predicting the outcomes of COVID-19, but no radiology

information was included in the studies (21, 22). Lee et al.

developed a deep learning model comprising the chest radiology

score and clinical information to predict severe illness in COVID-

19 patients (23). However, chest radiology is not suitable for the

confirmation of diagnosis or evaluation of COVID-19 outcomes

(24). Wang et al. reported an automatic quantitative model based

on CT images to predict ARDS in COVID-19 patients (25). In

this study, the infection fields of the lung were segmented for the

quantitative analysis of the volume and density. We thought the

quantitative analysis of CT images could not make the most of the

CT information and thus may yield less accurate predictions.

In this retrospective study, we developed three models for

the prediction of COVID-19 ARDS. Two individual models were

established based on the clinical features data and the CT images,

respectively; the third deep learning model was integrated by
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FIGURE 5

(A) The ROC curve of the three predictive models. (B) The calibration curve of the three predictive models.

FIGURE 6

(A) The confusion matrix of the XGBoost model. (B) The confusion matrix of the CNN model. (C) The confusion matrix of the integrated model.

TABLE 3 Predictive performance of established models in validation cohort.

Models Accuracy Precision Sensitivity Specificity AUC (95% CI)

XGB 0.84 0.29 1 0.83 0.94 (0.91, 0.96)

CNN 0.90 0.57 1 0.89 0.96 (0.93, 0.98)

XGB+ CNN 0.97 0.86 1 0.96 0.97 (0.95, 0.99)

AUC, area under curve; XGB, extreme gradients boosting; CNN, convolutional neural network; CI, confidence interval.

the two individual models. We found that the integrated deep

learning model could offer better discriminatory performance for

predicting COVID-19 ARDS than the two individual models. To

strengthen the understanding of COVID-19 ARDS, we performed

the multivariate logistic regression to find out the independent

risk factors associated with COVID-19 ARDS and depicted the

nomogram plot for it. We found that age, the concentration

of c-reactive protein, PaO2/FiO2 ratio, the count of total T

lymphocytes, and the level of IL-6 were related to COVID-19

ARDS. The inevitable deterioration in immunity response in

senior citizens may be the reason for advanced age being a risk

factor for COVID-19 ARDS (26). COVID-19 is manifested as

a multisystemic disease, and the hyperinflammatory response is

extremely associated with its outcome (27). COVID-19 ARDS also

causes typical lung pathological changes, which are accompanied

by acute and chronic inflammation (28, 29). High concentrations

of CRP and IL-6 may indicate a pro-inflammatory state, which

has been reported as a risk factor for a severe outcome (26, 27).

It is reported that critically ill COVID-19 patients exhibited a

status of immune cell hyporesponsiveness when compared to

healthy people (28). Several studies have highlighted the values

of T-lymphocyte subset absolute counts in predicting morbidity
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in COVID-19 patients (29–31). The XGBoost model was selected

as the best model to handle the clinical features data because of

the best predictive performance tested in the validation cohort.

XGBoost stands for “Extreme Gradient Boosting” and was first

proposed by Friedman (32). The XGBoost model is one of the

ensembling learning algorithms, which makes precise predictions

based on a series of weak classifiers, and it has been applied in many

studies to deal with massive medical data.

The CT scan procedure can provide more information about

the severity of lung damage and acute respiratory failure with a

much faster turnaround time (2, 33). The distinctive characteristics

of CT slices from COVID-19 ARDS patients could be captured

by the convolutional neural network. In our study, the predictive

performance of the VGG-16 model was better than that of the

model based on the clinical features data. VGG architecture was

first proposed by the Visual Geometry Group from Oxford and

ranges from 11 to 19 layers (34). The VGG models are widely used

as image classifiers or the fundamental basis of newly developed

models, which also use images as input data. The VGG-16 network

was first used to classify the individual CT slices into normal

and abnormal images. Furthermore, the individual patient-based

prediction of COVID-19 ARDS was also fulfilled by the VGG-16

network. The XGBoost model and the VGG-16 network model

are complementary to each other. The predictive performance of

the integrated model was superior to the individual ones. The

integrated deep learning model we proposed was demonstrated to

be reliable in predicting COVID-19 ARDS with high accuracy in

our study. The tremendous progress made in the field of artificial

intelligence facilitated the analysis of massive medical data. Our

deep learning model may be one example of an automatic analysis

tool that can be used for various medical data or alarming systems

of adverse events in critically ill patients. Once the integrated deep

learningmodel is fused into the information system of the hospitals,

it could rapidly and correctly identify patients at high risk of

COVID-19 ARDS without redundant operations.

There are some limitations in our study. First, this is a single-

center retrospective study with a relatively small sample size.

Second, the validation of the predictive model was only performed

in the internal cohort. It is unclear whether similar predictive

performance can be observed in other medical centers when our

models are applied.

Conclusion

In our study, we tried to establish different models to predict

COVID-19 ARDS. We found that the models based on the clinical

features or the CT images could provide accurate predictions of

COVID-19 ARDS. Moreover, the integrated model combining the

two individual models exhibited the best predictive performance

with the highest accuracy and ROC value.
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