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Sterile inflammation is the immune response to damage-associated molecular 
patterns (DAMPs) released during cell death in the absence of foreign pathogens. 
In the setting of solid organ transplantation, ischemia-reperfusion injury results 
in mitochondria-mediated production of reactive oxygen and nitrogen species 
that are a major cause of uncontrolled cell death and release of various DAMPs 
from the graft tissue. When properly regulated, the immune response initiated 
by DAMP-sensing serves as means of damage control and is necessary for 
initiation of recovery pathways and re-establishment of homeostasis. In contrast, 
a dysregulated or overt sterile inflammatory response can inadvertently lead to 
further injury through recruitment of immune cells, innate immune cell activation, 
and sensitization of the adaptive immune system. In liver transplantation, sterile 
inflammation may manifest as early graft dysfunction, acute graft failure, or 
increased risk of immunosuppression-resistant rejection. Understanding the 
mechanisms of the development of sterile inflammation in the setting of liver 
transplantation is crucial for finding reliable biomarkers that predict graft function, 
and for development of therapeutic approaches to improve long-term transplant 
outcomes. Here, we  discuss the recent advances that have been made to 
elucidate the early signs of sterile inflammation and extent of damage from it. 
We also discuss new therapeutics that may be effective in quelling the detrimental 
effects of sterile inflammation.
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Sterile inflammation: what is it?

Inflammation is the body’s coordinated response to injury or infection, serving to eradicate 
potential dangers, promote tissue regeneration, and create an environment supportive of an 
adaptive immune response. However, when immune cells are recruited to areas of cellular injury 
and death in the absence of microbial threats and initiate over-compensatory defense 
mechanisms, “sterile inflammation” occurs. This is caused by the immune detection of products 
released from damaged or dead cells and is currently understood as the body’s “damage-control” 
mechanism, attempting to contain uncontrolled cell death and stimulate tissue repair for the 
return to homeostasis (1).

Sterile inflammation is a significant factor in the progression of liver disease and a 
determinant of outcomes after liver transplantation. The liver is responsible for detoxification 
and metabolic processing, and its physical connection with the gastrointestinal tract allows for 
first-pass screening and metabolism of blood products. Constant exposure to toxins can lead to 
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prolonged inflammation and damage, progressing into various stages 
of disease that may ultimately require transplant for treatment.

The development of pathogen-free liver disease is well 
characterized (2, 3). Disease development stems from shared signaling 
pathways for both repair and defense, which when imbalanced, can 
lead to excessive activation of the innate immune system causing self-
injury. Notably, the body’s injurious effort to defend and repair tissue 
stems from the innate immune system’s overt response to certain 
conserved molecular motifs, or damage associated molecular patterns 
(DAMPs). This mechanism produces the secondary signals necessary 
to activate an aggressive adaptive immune response and cause 
dysfunction and/or disease. It serves as a bridge between the innate 
and adaptive immune responses, and in the liver, initiates a cyclic 
pattern of immune cell recruitment, parenchymal cell death, and 
further DAMP release (Figure 1).

Organ procurement, storage, and reimplantation all provide 
contexts for sterile inflammation to occur (4). When an organ is 
transplanted, it undergoes two types of injury: ischemic injury during 
procurement and storage, and reperfusion injury during 
reimplantation (5). Ischemia and reperfusion injuries (IRI) can cause 

cell death and trigger sterile inflammation that primes the adaptive 
immune system, which ultimately contributes to antibody and T cell 
mediated rejection of the transplanted liver (6, 7). Identification of 
specific biomarkers has allowed for a closer look at the inflammatory 
and immunological state of an organ both before and after transplant 
(8). In this review, we discuss some of the key cellular and molecular 
cues of sterile inflammation, the immunological implications of the 
organ recipient disease states, the effect of sterile inflammation on the 
donor organ, and finally, recent advances in machine perfusion and 
attempts to expand the liver donor pool.

DAMPS and biomarkers

Many DAMPs have been associated with sterile inflammation, 
and indeed it has been shown that some DAMPs are not only 
indicators, but also activators. This distinction is important for 
understanding whether a DAMP can modulate an immune response, 
trigger one, or is largely evidence that sterile inflammation is/did 
occur. Here, we describe common DAMPs, and evidence to support 

FIGURE 1

The vicious cycle of uncontrolled sterile inflammation. Created with biorender.com.
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their role as activators, immunomodulators, or indicators of an 
inflammatory response.

High mobility group box 1

High mobility group box 1 (HMGB1), a nuclear gene regulatory 
protein, is principally found residing in the nucleus, but can 
be  secreted in response to cell stress or injury. Secreted HMGB1 
interacts with many toll-like receptors (TLRs) and receptor for 
advanced glycolytic end-products (RAGE) to act as a proinflammatory 
alarmin DAMP (9–12) and activate innate immune responses (13, 14).

An important aspect of sensing HMGB1 as a DAMP is that 
changes to the redox state of HMGB1 are often required for 
proinflammatory activation (15) (Figure  2). This has been 
demonstrated in several settings, including liver transplantation 
(16–21). For example, it has been shown that the thiol form of 
HMGB1 can form heterocomplexes with CXCL12 and act as a 
potent chemokine, drawing immune cells to the site of injury 
(Figure 2A) (22, 23). In contrast, cytokine production in response 
to HMGB1 sensing has been linked to a different HMGB1 redox 
state. Sosa et  al. (19) found that while portal blood following 
allograft reperfusion had elevated levels of HMGB1, only patients 
with significant ischemia-reperfusion injury (IRI) had increased 
levels of disulfide-HMGB1 as well as increased TLR4 mediated 
production of TNFα. Further, the investigators demonstrated that 
disulfide-HMGB1 causes a positive feedback loop for HMGB1 

secretion, wherein uptake of disulfide-HMGB1 by monocytes leads 
to the cells translocating and secreting their own HMGB1 
(Figure 2B) (19). Liver flush effluent from transplant patients with 
subsequent histopathological IRI activated immune cells ex vivo 
when compared to cells exposed to flush effluent from injury free 
controls (24). This suggests that changes to the redox state are 
needed for HMGB1 to be  a triggering DAMP in the setting of 
IRI. In other circumstances redox forms of HMGB1 are not 
required for pro-inflammatory signaling. Monocytes and innate 
immune cells have been shown to take up HMGB1 as well as secrete 
different forms of HMGB1, altering the function of HMGB1 in the 
local inflamed space (25, 26). Finally, the completely oxidized form 
of HMGB1 has been suggested to assist with the injury resolution 
and promote an anti-inflammatory state (Figure 2C) (27). Using a 
MHC-II mismatch rat orthotopic liver transplant model, Chen et al. 
(28) show that HGMB1 activated dendritic cells, which in turn led 
to differentiation of CD4+ T cells into Th1 and Th17 cells and 
ultimately promoted acute liver rejection. Administration of the 
HMGB1 inhibitor glycyrrhizic acid extended graft survival time 
and improved graft function (28). As a biomarker in human 
transplant, HMGB1 has also been shown to be a potential predictor 
of primary non-function and early allograft dysfunction (29–31). 
However, it is still unclear what the redox status of HMGB1 was in 
these studies. Recent work in the setting of machine perfusion has 
shown that HMGB1 levels correlate with levels of proinflammatory 
cytokines in the perfusate, and suggest that removal or inhibition 
of HMGB1 before implantation could improve graft outcomes (30).

FIGURE 2

The multifaceted role of HMGB1. (A), the fully reduced form of HMGB1 can form heterocomplexes with other proteins such as CXCL12 to act as a 
chemokine to recruit immune cells. (B), Recruited immune cells can uptake reduced HMGB1 and oxidize it into a pro-cytokine stimulating (disulfide) 
form. Reactive oxygen species released in the extracellular space can also convert HMGB1. (C), Once a threshold amount of ROS is produced, the 
disulfide form is converted into a completed oxidized form that can potentially dampen cytokine production. Created with biorender.com.
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Additionally, HMGB1 has been shown to be an important marker 
for biliary atresia, and to also have a likely pathogenic role in this setting 
as anti-HMGB1 treatment increased survival in a murine biliary atresia 
model (32). This could translate into the post-transplant space where 
biliary complications are common after liver transplant and may be a 
marker for biliary health (33). Recent advancements have begun to 
clarify the diverse roles of HMGB1which are tuned by redox state. 
HMGB1 starts as a proinflammatory molecule for immune cell 
recruitment, then converts into a cytokine production stimulating 
molecule once a threshold of cells has been recruited, and finally into a 
tolerogenic form to help assist with repair once a sufficient amount of 
reactive oxygen species (ROS) has been produced (Figure 2) (16, 27). 
With these recent advancements, more work needs to be done to define 
HMGB1’s redox status when measured as a DAMP, and identify how 
this can be  manipulated to minimize the contribution of HMGB1 
inflammatory state in the setting of liver transplantation.

Heme and heme-oxygenase 1 (HO-1)

Heme is an essential component of hemoglobin, allowing for 
oxygen transport and storage in the blood. However, when dissociated 
from apo-heme proteins that allow it to function in beneficial ways, it 
becomes free-heme, an iron containing porphyrin that is capable of 
causing cell damage and tissue injury due to its ability to catalyze 
formation of reactive oxygen species (34). Relatedly, heme-oxygenase 
1 (HO-1) is a protein that functions to lower free-heme concentrations 
and prevent heme-mediated oxidative injury (35).

Free heme is a potentiator of inflammation that requires a trigger 
signal to produce an effect (36, 37). Heme activates the NLRP3 
inflammasome through Syk signaling which is mediated by the 
generation of reactive oxygen species (ROS) (36, 38, 39). Additionally, 
it has been shown that heme can cause complement activation and 
accumulation on sinusoidal endothelial cells via a P-selectin mediated 
pathway (40, 41). Heme also activates TLR4, which exacerbates the 
accumulation of complement on the liver endothelial surface (41). 
However, in an isolated in vitro system, high levels of heme were 
unable to induce a strong TLR4 response, corroborating the theory 
that an additional signal is needed (37). This is also seen in a mouse 
model of free heme from sickle cell disease, where P-selectin activation 
of TLR4 is required as a secondary signal in heme-induced 
inflammation (42).

Conversely, the oxidation state of the iron in hemin, the 
oxidized form of heme, plays a pivotal role in the ability of heme to 
activate HO-1 and attenuate NLRP3 inflammasome activation and 
cellular IL-1β production (39, 43). Macrophages are one of the main 
responders to heme, and clodronate liposome mediated depletion 
of macrophages significantly improves survival of severe hemolysis 
(36, 44). Recently, it has been shown that HO-1 in donor myeloid 
cells is pivotal in controlling Graft vs. Host Disease (GVHD) in 
recipients of hematopoietic stem cell transplantation (45). Briefly, 
Spilleboudt et al. (45) show that donors with mutations in HMOX1 
were associated with lower HO-1 expression and were more likely 
to develop severe GVHD compared to those that had higher 
expression HO-1. Mechanistic exploration of HO-1 by Nakamura 
et al. (46) shows that HO-1 upregulates SIRT1 which increases p19 
levels and subsequently sustains p53 activity in repressing 
macrophage activation. Their work corroborates that lower levels of 

HO-1 lead to exacerbated pro-inflammatory responses after 
liver IRI.

Cellular systems are not isolated, and stresses in one compartment 
can lead to additional stress in another. Indeed, oxidative stress and 
endoplasmic reticulum (ER) stress are strongly interconnected (47). 
As specialized macrophages, Kupffer cells are one of the main 
constitutive expressors of HO-1  in the liver and recent work has 
suggested that regulation of ER stress may be one method of protecting 
against IRI (48). Cai et al. (49) show that loss of IRE1a, one of the main 
transducers of ER stress, is protective against IRI. Taken together, this 
collective body of work shows that regulation of iron, by controlling 
heme levels, is required for maintaining homeostasis, and modulation 
of the heme-HO-1 axis is a viable therapeutic target for IRI and liver 
transplant. In fact, there are already clinical trials for HO-1 modulation 
via heme arginate in deceased donor kidney transplant (50).

For further reading, a more in-depth look at HO-1  in liver 
transplant IRI was recently reviewed (51) as well as for other 
Hemoglobin derived DAMPs (52).

ATP

While ATP is a requirement for maintaining cellular 
homeostasis, extracellular ATP is a potent pro-inflammatory DAMP 
in IRI and transplant (53–55). Extracellular ATP is released during 
programmed cell death, such as apoptosis and necroptosis, but it is 
also released in a regulated fashion via the Pannexin channels (56, 
57). Recognition and control of extracellular ATP is tightly 
controlled by numerous cells in the inflamed space. In addition to 
the release of ATP by damaged cells, local activated macrophages 
release ATP to stimulate other innate immune cells (53). Here, 
cellular response is context driven, in that cells expressing large 
amounts of P2X will be  driven into a pro-inflammatory state, 
whereas P2Y and P1 will shift the cell into an anti-inflammatory 
phenotype (58). As immune cells are recruited to the site of 
inflammation, regulatory T and B cells dampen the ATP signal by 
converting ATP into its less energetic forms ADP and AMP via 
CD39 (59, 60) and finally into adenosine by CD73, which as 
previously mentioned, has been demonstrated to be  a potent 
immunosuppressant (61, 62). Adenosine is taken up very rapidly via 
endothelial cells and has a relatively short half-life of about 7 s in 
blood (63). This inhibition by adenosine is particularly important in 
controlling T cell and Natural Killer (NK) cell responses in the local 
space and proper regulation of the ATP:adenosine axis is required 
for attenuating IRI and immune mediated rejection in vivo (64).

In the context of liver transplant, modulation of the 
ATP:Adenosine axis has only recently been assessed. Kelly et al. (65) 
showed that in a small-for-size porcine liver transplant model, 
adenosine administration greatly improves survival due to increases 
in hepatic artery flow. Without this increase, vasoconstriction occurs 
and effectively strangles the small graft via vasospasm causing 
necrosis, graft loss, and ultimately death (65). This finding translated 
well to the clinic, with Zhu et al. (63) showing similar increases in 
hepatic artery flow when patients were administered adenosine over 
a 30 min period following liver transplant. Similarly, Czignay et al. (66) 
recently showed that activation of the adenosine A2A receptor in a 
porcine model of DCD liver transplantation improved graft function, 
tissue microcirculation, and overall survival.
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In vivo work by Pommey et al. (67) show, in an extended static 
cold storage model of syngeneic liver transplant, that overexpression 
of CD39 in the donor organ was protective, reflected by liver function 
tests and histological scoring, due to reduced number of resident 
CD4+ T cells. They then go on to show that this protection is lost when 
transgenic donors had their bone marrow replaced with wild type 
bone marrow prior to the liver transplant. Analysis of the thymus of 
these CD39 overexpressing mice showed T cell lymphopenia and a 
disruption of T cell maturation (67). This is corroborated by Yoshida 
et al. which shows that CD39 dependent ATP regulation plays a major 
role in attenuating IRI and immune mediated rejection in-vivo (64). 
Despite these interesting results, Baroja-Mazo et al. (68) suggest that 
adenosine may not be  a viable option for improving long-term 
tolerance after liver transplant. Since regulatory T cells generate large 
amounts of adenosine from ATP using CD39, it was hypothesized that 
addition of exogenous adenosine would be beneficial for promoting 
tolerance in an immunosuppression withdrawal trial. In contrast, in 
vitro studies with isolated human T cells demonstrated that high 
amounts of adenosine inhibit the function of both T effector cells and 
regulatory T cells, thus limiting potential for a tolerogenic benefit. 
Together, this suggests that the ATP:CD39:Adenosine pathway 
specifically in lymphocytes may be a viable control mechanism for 
tuning the immune response.

Mitochondrial DNA

Mitochondria, as one of the main controllers of cell fate, have been 
implicated as a major biomarker for severity of inflammatory disease 
(69, 70). In a seminal paper, Zhang et  al. (70) demonstrated that 
mitochondrial derived DAMPs elicit PMN activation and 
mobilization. Of these DAMPs, they describe mitochondrial DNA 
(mtDNA) as being a key pro-inflammatory molecule. However, they 
show that only co-stimulation of mtDNA with n-formyl peptide, a 
potent PMN stimulator, was able to elicit pro-inflammatory cytokine 
production when compared to control. Investigation into the 
inflammatory properties of mtDNA by Collins et al. (71) show that 
oxidation of the mtDNA is paramount for eliciting the immune 
response, and mtDNA with no oxidized lesions fails to elicit an 
immune response. Hamilton et al. (72) show that there are only one 
to two lesions of oxidized 8-oxo-2-deoxyguanosine per 100 
mitochondrial genomes in the healthy mouse. This suggests that the 
oxidation state of the mtDNA is a key characteristic that influences its 
contribution as an inflammatory mediator. Further, mtDNA can be a 
major component of neutrophil extracellular traps (NETs) (73, 74). 
This reinforces the idea that mtDNA is a biomarker that indicates a 
large scale pro-inflammatory event has occurred, rather than mtDNA 
being the primary activator of inflammation.

In the transplant space, mtDNA have been shown to be correlated 
with primary graft dysfunction in the lung, and our group has shown 
that mtDNA is a biomarker of early allograft dysfunction for both liver 
and kidney transplant (75–77). In trauma patients, not all cell-free 
mitochondrial DNA is membrane free and is bound in complexes 
from sizes 0.45 μm to 5 μm, which roughly corresponds to the size of 
mitochondria from different cell types (78, 79). Our previous work 
corroborates this by showing that a majority of the mtDNA released 
is still bound in extracellular mitochondria (75). This 
compartmentalization could indicate that the mtDNA is indicative of 

dysfunctional mitochondria and that is contributing to the 
inflammatory state, rather than the mtDNA alone. Regardless, more 
work needs to be  done to understand what role mtDNA has in 
liver transplant.

Interleukin 33

Interleukin 33 (IL-33) is a nuclear protein that acts as an alarmin 
and DAMP when released from cells, and has recently been shown to 
have clinical relevance in acute liver tissue injury (80). Circulating 
levels of IL-33 were found to increase shortly after reperfusion in the 
context of liver transplant (81), and serum concentrations of IL-33 
correlated with increased liver IRI (82). Mechanistic studies performed 
in mouse models of liver IRI demonstrated that IL-33 exacerbated 
sterile inflammation in the liver by recruiting neutrophils (81) in an 
ST2 receptor dependent manner (81). Interestingly, however, Ferhat 
et  al. (83) review IL-33 and cite previous studies that have found 
pretreatment with IL-33 before IRI injury to instead be protective, via 
interactions with T cells to induce an anti-inflammatory state. Because 
of this, IL-33 remains a captivating and understudied DAMP that is 
capable of predicting liver transplant outcomes as well as mediating 
the innate and adaptive immune system to protect from, or exacerbate, 
sterile inflammation after reperfusion.

Clinical relevance of sterile 
inflammation in liver disease and 
transplant

While the etiology and mechanisms of sterile inflammation have 
been studied extensively in animal models, it still poses a significant 
challenge for transplant outcomes in the clinical setting. Sterile 
inflammation remains a key contributor to the progression of liver 
diseases and poisoning that are the most common causes of end stage 
organ failure necessitating transplant: alcoholic and non-alcoholic 
steatohepatitis, and acetaminophen intoxication.

Alcoholic steatohepatitis

Sterile inflammation is the key underlying mechanism behind 
alcoholic steatohepatitis (ASH) (84). ASH is characterized by fatty 
accumulation in the liver accompanied by inflammation after chronic 
alcohol consumption. In early stages of ASH, ethanol induced 
hepatocyte insult causes apoptosis and initiates macrophage-mediated 
inflammation. Chronic alcohol consumption causes persistence of 
toxic acetaldehyde production and oxidative stress after cytochrome 
P450 2E1 (CYP2E1) mediated ethanol metabolism in hepatocytes 
(85). In late-stage ASH, when hepatocytes begin dying via receptor 
interacting serine/threonine kinase (RIPK1) mediated necroptosis, the 
DAMPs released by the lytic nature of this specific cell death process 
cause neutrophilic, macrophagic, and/or inflammasome mediated 
inflammation to ensue (84). As previously mentioned, DAMPs such 
as HMGB1, DNA, ATP, adenosine, and fibrinogen are among the 
molecules recognized by TLRs on immune cells that can trigger this 
inflammatory response (86, 87).
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The innate and adaptive immune systems are both heavily 
involved in ethanol induced hepatocyte insult and successive DAMP 
release: Kupffer cells respond to DAMPs by producing 
pro-inflammatory cytokines such as TNFα and IL-1β (88). Infiltrating 
peripheral monocytes then respond by differentiating into M1-like 
hepatocytic macrophages via Notch-1 dependent reprogramming to 
increase the magnitude of cytokine production via increase of 
pro-inflammatory molecules such as IL-12, IL-18, and IL-23 (89). 
Subsequently, CD4+ helper T-cells infiltrate the liver and initiate events 
of mass cytokine and chemokine release in order to further activate 
macrophages and recruit CD8+ cytotoxic T cells (90, 91), which 
ultimately act to cause severe inflammation, tissue fibrosis, and death 
of functional hepatocytes (92, 93). Importantly, this injurious cascade 
is significantly mediated by the interaction between DAMPs and toll 
like receptors (TLRs) on innate immune cells (84).

Once manifested, ASH acts as a precursor to cirrhosis, hepatitis, 
or cancer, and end stage disease often requires liver transplantation as 
a form of long-term management as the functional volume of the liver 
decreases (94). Management of liver allografts post-transplant is often 
complicated by immune system sensitization. Specifically Purohit 
et  al. (95), describes an increased permeability of the intestine to 
endotoxins in response to chronic alcohol consumption, resulting in 
further inflammatory changes in the liver. In addition, alcohol and its 
metabolites stimulate the production of large quantities of NF-kB and 
stimulate TLR’s to mediate the synthesis and release of 
pro-inflammatory cytokines and factors, impairing systemic immune 
regulatory function (95).

Non-alcoholic steatohepatitis

Non-alcoholic steatohepatitis (NASH), the second leading 
indication for liver transplantation in the United States, is not as well 
understood as ASH (96). A variety of agents including high dietary fat 
and sugar consumption, impairment of fatty acid disposal (metabolic 
dysfunction), diabetes, obesity, or genetics can all lead to lipotoxic 
overload in the liver (97). The downstream effects of this overload 
include excessive stress on endoplasmic reticulum, mitochondrial 
dysfunction, hepatocellular injury, inflammation, and undesirable 
apoptosis, all of which are stimuli for fibrosis and malignant 
transformation in the liver (97).

Like ASH, chronic inflammation observed in NASH is driven by 
a family of proteins referred to as CIDE proteins that regulate lipid 
homeostasis by facilitating the accumulation of chained fatty acids in 
hepatocytes in order to maintain lipid equilibrium in circulation. 
When this protective mechanism is overwhelmed, stressed 
hepatocytes undergo apoptosis via increased expression of CIDE 
proteins (98). This readily causes DAMP (HMGB1, DNA, ATP) 
release and initiates an injurious cascade similar to that observed in 
ASH (84). Excess circulation of fatty acids and cholesterol in the blood 
can also directly activate Kupffer cells to recruit neutrophils, 
monocytes, and NK cells to the liver, exacerbating the inflammatory 
response. This causes further release of cytokines and chemokines that 
subsequently result in an accumulation of Th17 CD4+ Helper T Cells 
in the liver, a hallmark of NASH. Positive feedback interplay between 
hepatocyte cell death and inflammatory activity ensues (99).

Due to high levels of circulating DAMPs, patients with NASH also 
present with significantly increased levels of C3, activating multiple 

complement cascades and associated adaptive immune pathways 
upon DAMP recognition (100). In terms of stimulating the adaptive 
immune system, these complement proteins stimulate B cells to 
aggregate, produce pro-inflammatory mediators. and present antigens 
to CD8 T cells via MHC class I proteins (101–103).

Once NASH advances to fibrotic cirrhosis the only treatment is 
liver transplantation. However, patients with metabolic syndrome that 
develop NASH severe enough to necessitate liver transplantation often 
develop de-novo NASH in the new liver (104). This is caused by 
persisting metabolic syndrome in these patients; liver transplantation 
treats their life-threatening symptoms, but does not reverse the 
etiology of the disease (105). The immune systems of these patients 
are still primed for chronic hepatic inflammation and buildup of 
fibrotic tissue in the implanted liver (106).

Acetaminophen intoxication

In contrast to the chronic diseases where end stage liver failure 
is well defined, more abrupt transplant needs present after acute 
toxicity and subsequent liver failure. Intoxication from 
acetaminophen overdose is the most frequent cause of acute liver 
failure in the United  States (107) and contributes to 70,000 
hospitalizations each year (108). Acetaminophen intoxication occurs 
when enough is consumed to overwhelm the few mechanisms of 
metabolism and clearance that occur in the liver. Upon initial 
exposure, the majority of acetaminophen is conjugated with 
glucuronic acid or sulfate and is subsequently excreted via nephrons 
in the kidney (109). If this mechanism becomes saturated, 
cytochrome P450 enzymes in the liver begin to metabolize 
acetaminophen by converting it to another metabolite, N-acetyl-p-
benzoquinone imine (NAPQI) (110). If acetaminophen is consumed 
at the therapeutic dose, the small amount of NAPQI that is produced 
can be quickly conjugated by the ample glutathione stores that exist 
in the liver. This conjugated form of NAPQI is then safely excreted 
in the bile. However, in the case of overdose, the glutathione stores 
of the liver are depleted in the presence of excess NAPQI. When this 
occurs, the un-conjugated NAPQI is plentiful and available to react 
with protein sulfhydryl groups to form acetaminophen protein 
adducts (109). These protein adducts become harmful when they 
interact with mitochondrial proteins and create dysfunctional forms 
of other critical proteins such as ATP synthase, HMG CoA synthase, 
and glutathione peroxidase. Dysfunctional mitochondrial activity 
caused by acetaminophen protein adducts is robustly characterized 
by the formation of harmful ROS and free radical compounds (111, 
112). In vitro studies of acetaminophen intoxication in mouse 
hepatocyte cell lines have revealed acetaminophen protein adducts 
affect complex II of the electron transport chain, and are a major 
source of superoxides (113, 114). Once ROS are produced at a high 
enough concentration, a threshold is exceeded that will send cells 
into abortive necroptosis in an attempt to prevent further production 
of ROS (115). However, this inevitably leads to the release of DAMPs 
and positive feedback loop of sterile inflammation, mediated by 
crosstalk between the innate and adaptive immune systems. Our 
understanding of hepatic sterile inflammation and its underlying 
mechanisms is still evolving, and future research is required to 
further elucidate the relationship between liver disease and immune 
modulation in the clinical setting.
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Acute liver failure

As previously mentioned, acute liver failure (ALF) from drug 
toxicity presents as the most common source of liver failure in the 
United States. However, while acetaminophen is the most common 
agent, idiosyncratic responses to other drugs leading to acute liver 
failure have been reported (116). These responses provide a particular 
challenge to clinicians as the presentations are ubiquitous to liver 
damage in general (117–119). Liver enzyme testing (e.g., AST and 
ALT) provides a sensitive means of delineating liver damage, but is not 
very specific (117, 120). To further complicate the origin of acute liver 
failure, there is a genetic component to the sensitivity to drug induced 
hepatotoxicity (121).

While extensive work has been done describing the association of 
liver injury and DAMPs, there is still a need for a set of biomarkers 
that can help identify the mechanism of specific acute liver failure and 
distinguish failure from injury (117, 122). Roth et al. (123) show that 
IL-33 was upregulated in patients with end stage liver disease as well 
as patients with acute liver failure and chronic liver failure compared 
to healthy controls. While there was no difference in the amount of 
IL-33 in the injured cohorts, the amount of soluble ST2 (sST2), the 
decoy receptor for IL-33, was significantly different between the acute 
groups and the chronic only group. As previously described, the 
IL-33/sST2 axis is a promising area of study as elevated levels of sST2 
have been implicated as a biomarker of worsening/negative outcomes 
in other types of injuries (124). In particular, sST2 correlated strongly 
with mortality within 30 days after acute myocardial infarction (125) 
and with acute cardiac allograft rejection (126). sST2 has also shown 
to correlate with the extent of disease and mortality associated with 
hepatitis B virus in acute on chronic liver failure (127). Together, these 
findings suggest that sST2 may be a viable biomarker for delineating 
liver injury and liver failure, but more work still needs to be done to 
understand why the level of sST2 is sustained and how this impacts 
subsequent immune processes.

Autoimmune hepatitis

Autoimmune hepatitis (AIH) presents another challenge due to 
its cryptic pathogenesis (128). It has been shown to be caused by viral 
infection, exposure to certain drugs, and other insults (128). While 
there are effective treatments such as steroids, the disease can cause 
both acute and chronic injury and may progress to liver failure 
requiring transplant (128, 129). AIH occurs when individuals develop 
either autoantibodies or T cells against components of the liver after 
some triggering event (130). It is classically diagnosed by the presence 
of autoantibodies and elevated liver enzyme levels, but there have been 
instances of seronegative autoimmune hepatitis (131). Confirmation 
is normally done by liver biopsy, which comes with its own challenges 
for collection and analysis and drives the need for a less invasive 
diagnostic test and a better understanding of the different 
initiating pathways.

Given the diverse range of initiating insults that can start AIH, 
there is a challenge for developing an animal model that can be used 
to help describe the pathogenesis mechanistically (132). A T cell 
mediated development of AIH in mice has been described with the 
use of concanavalin A (133–135). This model is advantageous as it is 

easily reproduced with a single injection; however it only describes 
one possible mechanism of developing AIH (134).

In contrast to developing an animal model, some progress has 
been made showing that some DAMPs correlate with disease severity 
and treatment response in AIH (136–138). AIH patients had higher 
levels of circulating EN-RAGE (extracellular newly binding RAGE 
ligand) and lower sRAGE (soluble RAGE) compared to healthy 
controls (138). The RAGE pathway has been implicated in the 
expansion of the myofibroblast population (139) and activation of the 
monocyte/macrophage populations by EN-RAGE (140). The amount 
of sRAGE could be used to separate non-cirrhotic livers from cirrhotic 
livers, suggesting that the dampening capacity of the decoy receptor 
plays a major role in the development of cirrhosis (138). While 
analysis of the RAGE system may prove to be beneficial for delineating 
AIH from other conditions, more work needs to be  done to 
understand which DAMPs are specific to AIH.

Adaptive immunity after sterile 
inflammation; recipient 
pre-conditioning

As previously mentioned, liver transplantation is a life-saving 
procedure for patients with end-stage liver disease. For many years, 
the focus of research in this field has been on optimizing donor organs 
to improve outcomes. However, it is becoming increasingly clear that 
the immune system of transplant recipients requires further attention, 
as its activation and conditioning after pathology involving sterile 
inflammation likely plays a significant role in determining the balance 
between allograft tolerance and immunity upon implantation, 
ultimately determining the success of the transplant (141–143).

Determinants for outcomes in liver transplant recipients has 
largely been shifted away from HLA mismatching (144, 145) or the 
presence/absence of donor specific antibody (146). This is attributed 
to the liver’s ability to regenerate quickly, the capacity of Kupffer cells 
to remove activated complement and immune complexes, and the 
liver’s low expression of HLA class II antigens (147). On the other 
hand, the state of recipient immune systems has been heavily 
implicated in graft failure; underlying liver inflammation and 
increased secretion of cytokines after viral hepatitis, alcoholic and 
non-alcoholic steatohepatitis, and hepatic carcinoma may result in 
recipient immune preconditioning that increases the likelihood of 
graft failure after implant. As previously discussed, alcoholic 
steatohepatitis causes stress related hepatocyte apoptosis and 
subsequent DAMP release (148). HMGB1 release from hypoxic 
mitochondria is a hallmark of IRI injury in the liver (149). It is also 
well known that HMGB1 induces cytokine production and chemotaxis 
as its concentration increases in circulation (150). Other pathology, 
such as hepatitis B infection, can cause significant DAMP release and 
high concentrations of pro-inflammatory cytokines to exist in 
circulation (151). Logically, it is possible that liver transplant recipients 
who have increased circulating concentrations of DAMPs due to their 
transplant indicating condition are more likely to have higher 
incidence of poor outcomes after transplant due to pre-sensitized 
immune related complications.

Fortunately, there exist mechanisms that may provide opportunity 
for recipient immune conditioning. For example, Ono et al. (152) 
show that graft-infiltrating recipient CD11c+ dendritic cells are capable 
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of recognizing donor MHC-I antigens and presenting them as “self ” 
while expressing high levels of PD-L1, disarming the T effector cell 
proliferative response. In a murine model, Khanna et al. (153) show 
that treating liver transplant recipients with liver-derived myeloid 
dendritic cells induces native T cells to produce anti-inflammatory 
IL-10. Additionally, it has been shown that in response to continuous, 
low level LPS stimulation, Kupffer cells will begin to secrete anti-
inflammatory IL-10 and TGF-b (154, 155). This phenomenon, termed 
“LPS tolerance,” could potentially be used to pretreat liver transplant 
recipients. Similarly, liver sinusoidal endothelial cells have also been 
shown to utilize Fas–Fas ligand and CD80/86 to cause immune 
tolerance inducing effects on both naive CD4+ and CD8+ T cells (156, 
157); these mechanisms could also be potential targets for recipient 
immune preconditioning.

Previously much of the research focused on improving outcomes 
in liver transplant recipients is centered around donor optimization, 
attempting to answer questions like: how can we assess, treat, and 
ultimately preserve the viability of a donor organ? However, it is clear 
that further research must address the immunologic state of the 
recipient’s innate and adaptive immune systems. It is likely that the 
immune activation and conditioning, or lack thereof, of the recipient 
has significant influence on the post-transplant viability of liver 
allografts. Considering the possibility of pre-transplant adaptive 
immune preconditioning in transplant recipients presents a gap in the 
current literature that may explain current unanswered questions 
regarding improving outcomes in liver transplant recipients. 
Nevertheless, exploring techniques to improve the quality and alter 
characteristics of donor organs is still critical in improving 
transplant outcomes.

Therapeutic interventions

Pharmacologic

The ability of pharmacological therapies to abrogate hepatic 
sterile inflammation has historically relied on antioxidants (to 
reduce quantity of reactive oxygen species), vasodilators, and 
anesthetics, all of which yield inefficient and insufficient results 
(158). Because of this, approaches to mitigating sterile 
inflammation after liver transplantation have changed from 
retroactive to proactive. Instead of attempting to interrupt sterile 
inflammation once it has begun, the paradigm for intervention has 
shifted to approaches that halt inflammatory pathways before they 
can occur. There exist a variety of potential therapies that target the 
intermediates between DAMP production/recognition and 
proliferation of pro-inflammatory signals and effectors. Two 
cytokines that have previously attracted attention in this context 
are IL-23 and IL-17A, which are believed to cooperatively act to 
induce mass neutrophil infiltration in hepatic IRI  (159). These 
cytokines, released by Kupffer cells and hepatic NK cells, 
respectively, recruit neutrophils in a manner accessory to the 
TLR-4/NF-κB/HMGB1 pathway, and may prove to be an effective 
target for inhibition to downregulate IRI. Similarly, Gao et al. (84) 
found that intravenous injections of melatonin may have a 
mitigation effect on hepatic IRI after partial liver ischemic injury 
in a manner dependent on inhibition of the NF-KB pathway. Since 
they found that NF-kB levels were increased after IRI but decreased 

with melatonin treatment, this reinforces the potential of targeting 
the NF-kB pathway to prevent sterile inflammation.

Another class of potential therapeutics are senolytics, which have 
recently become of interest for optimizing older organs for 
transplantation in the context of inflammation (160). Recent evidence 
has supported the idea that age is a strong predictor of organ 
susceptibility to IRI in the setting of liver transplantation (161). The 
reasoning for this is postulated to revolve around the reduced capacity 
of mitochondria in aged livers to produce ATP and thus retain 
intracellular energy after IRI (162). This effect has been observed in 
humans (163) and investigated in translational experiments using rat 
liver IRI models (164). Conveniently, senolytics act to selectively 
deplete senescent cells (165), theoretically conditioning older organs 
to diminish age-related inflammation that would inherently cause an 
organ to be less desirable for transplant (166). These therapeutics have 
this effect by acting upon many pathways that have been previously 
studied, such as the PI3K/AKT pathway (167). Although this is an 
attractive approach these drugs are still in very preliminary stages of 
study, and the effects of which will need to be further interrogated.

Additional recently investigated mechanistic targets and 
therapeutics are summarized in the Table 1 below.

Machine perfusion

Preservation of the liver graft, a fundamental obstacle in liver 
transplantation, began with static cold storage (SCS), the first established 
preservation method for procured organs (175). Upon flushing the liver 
with cold preservation solution, cell metabolism, electron transport 
chain activity, and the production rate of succinate and reactive oxygen 
species (ROS) is significantly reduced in the tissue. Inevitably, however, 
cellular energy consumption continues ever so slowly, and with no 
oxygen present to oxidize end products of the electron transport chain, 
the tissue will still begin to accumulate harmful metabolic byproducts 
leading to ischemic injury (176, 177). Then, immediate exposure to 
normothermic temperatures and readily bioavailable oxygen sparks 
reperfusion injury; the return of abundant oxygen causes mass ROS to 
be produced and triggers sterile inflammation, which causes damage to 
tissue and further DAMP release (175). By employing machine 
perfusion as an intermediary, remedial preservation system, the 
prolonged cold storage period that sets the stage for this type of injury 
after organ transplantation could be eliminated. Machine perfusion has 
presented opportunity to improve outcomes in liver transplantation by 
reducing the length of prolonged ischemic time in donor organs and 
lessening tissue injury from DAMP release and sterile inflammation, as 
this is a major risk factor for the development of early allograft 
dysfunction (178, 179) (Figure 3). The mechanisms by which this type 
of injury occurs, and potential therapeutic targets, are more thoroughly 
reviewed in Dar et al. (180).

The first iteration of organ preservation by machine perfusion 
was in the form of non-oxygenated hypothermic machine perfusion 
(HMP). Even without supplemental oxygen, at HMP temperatures 
(4°C–8°C) the partial pressure of oxygen was hypothesized to be high 
enough in the circulating perfusate to satisfy the significantly 
reduced, but ever-present, oxygen demand of the slowly-metabolizing 
hepatic tissue. This modality, versus SCS, provided less potential for 
IRI and subsequent sterile inflammation upon implantation 
and reperfusion.

https://doi.org/10.3389/fmed.2023.1223224
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kahan et al. 10.3389/fmed.2023.1223224

Frontiers in Medicine 09 frontiersin.org

The next iterations of machine perfusion aimed to maintain slow 
tissue metabolism while allowing the organ access to increased levels of 

oxygen to more effectively prevent a backup in mitochondrial function 
and avoid severe IRI after implantation. These modalities were aptly 

TABLE 1 Pharmacological therapies for sterile inflammation and their associated mechanisms.

Intervention Mechanism Species Findings Reference

Thrombomodulin TLR-4/NF-κB/HMGB1 axis 

(inhibitor)

Mouse Decreased expression of HMGB-1, 

downregulated caspase 3 expression and 

apoptosis, upregulated Bcl-2 (anti-

inflammatory)

(168)

Dexmedetomidine TLR-4/NF-κB/HMGB1 axis 

(inhibitor)

Rats Decreased expression of cellular NF-κB, 

TLR-4, serum TNF-α, IL-1β, and 

myeloperoxidase

(169)

rhRelaxin Apoptotic HMGB1 release 

(inhibitor)

Mouse Reduced apoptosis frequency and caspase 

3 expression, increased Bcl-xL/Bcl-2 

expression, suppressed HMGB1 release

(24)

ML355 MAPK/NF-κB (inhibitor) Mouse, porcine, non-

human primate

Downregulation of proteins involved in 

MAPK pathway specific to the liver 

[12-hydroxyeicosatetraenoic acid (12-

HETE)] and NF-κB

(170)

Dual specificity phosphatase 14 

(Dusp14)

TAK1/Jnk1 TAK1/NF-κB 

(inhibitor)

Mouse Decreased frequency of necrotic tissue, 

decreased neutrophil and macrophage 

infiltration, downregulation of caspase 3, 

downregulation of proinflammatory 

cytokines, upregulation of Bcl-2/Bcl-xL

(171)

mTOR (knockout model) mTOR/NF-κB axis (prevents 

dysregulation)

Mouse Decreased expression of caspase 3 and 

frequency of apoptosis, decreased 

expression of MCP1, TNFα, IL-6 

(proinflammatory) cytokines

(172)

Omega-3 fatty acids PI3k/Akt axis (activator) Rat Downregulation of NLRP3 and apoptosis, 

increased expression of glutathione, 

superoxide dismutase, and catalase 

(proteins that counteract oxidative stress), 

decreased expression of malondialdehyde, 

IL-18 and IL-1β (reflective of 

inflammation/oxidative stress)

(173)

Tanshinone IIa PI3k/Akt axis (activator) TLR-

4/NF-kB/HMGB1 axis 

(inhibitor)

Rat Reduced expression of TNFα, IL-4, and 

HMGB1, lower frequency of cell death, 

increased expression of IL-10 and TGF-β 

(anti-inflammatory)

(172)

Regulator of G-protein 

signaling 14 (RGS14) (knockout 

model)

TAK1/Jnk1/p38 MAPK 

(inhibitor)

Mouse Reduced frequency of cell necrosis, 

apoptosis (caspase 3 cleavage), and 

infiltrating immune cells, downregulation 

of Bcl-2 with upregulation of Bad and 

Bax, downregulation of inflammatory 

kines MCP1, TNFα, IL-1β

(174)

Serelaxin Notch1 (activator) Mouse Reduced expression of MCP1, IL-1β, 

CXCL10, CXCL2 (inflammatory 

cytokines), markedly reduced immune 

cell infiltration, reduced frequency of 

apoptotic cells

(24)

Heme oxygenase 1 (knockout 

Model)

Heme oxygenase-1/sirtuin1/

p53 axis

Mouse, human Human: decreased caspase 3 cleavage 

(apoptotic frequency)

Mouse: decreased macrophage activation, 

decreased MCP1, TNFα expression

(35)
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named HOPE (hypothermic oxygenated perfusion) and DHOPE (dual 
oxygenation of the portal vein and hepatic artery during hypothermic 
perfusion) (181). van Rijn et al. (182) evaluated the efficacy of DHOPE 
in reducing bile duct injury after transplantation in a cohort of DCD 
livers, as biliary strictures due to epithelial damage are a frequent 
complication of liver transplantation. They found that DHOPE 
significantly reduced the severity of IRI in bile compartments of DCD 
livers after transplantation, and they hypothesized that the supplemental 
oxygen provided in their application of DHOPE, in tandem with the 
slowed metabolism of the mitochondria due to hypothermia, allowed for 
resuscitation of mitochondrial function, subsequent restoration of 
cellular ATP, and significant reduction of ROS production that would 
otherwise alter the structures of cell membranes and DNA molecules in 
a deleterious manner (182). In addition, the supplemental oxygen 
included in oxygenated hypothermic machine perfusion may have 
lessened the sterile inflammation response as it alone has been observed 
to lessen Kupffer cell activation and dampen HMGB1 release, attenuating 
activation of the innate and adaptive immune systems and resultant 
tissue damage (183).

Although HOPE and DHOPE proved to be  promising 
preservation techniques compatible with successful liver 
transplantation and amelioration of post-implantation IRI, 

preservation under physiological conditions was still an appealing 
approach (30). Thus, oxygenated machine perfusion at normothermic 
(physiological) temperatures (NMP) was implemented (175). Nasralla 
et al. (184) executed a clinical randomized control trial to evaluate the 
efficacy of NMP vs. SCS; with increased supplemental oxygen to 
match the physiological mitochondrial metabolic rate at 
normothermic temperature, NMP displayed promise in improving 
outcomes post implantation. Jassem et  al. (185) went further to 
uncover the mechanisms NMP may act on to ameliorate hepatic IRI 
after transplant. They found that in grafts subjected to NMP before 
transplant, release of proinflammatory cytokines and biomarkers were 
downregulated, including: IL-2, IL-6, IL-12, TNFα, and IFNγ. 
Additionally, sterile inflammation processes such as platelet activation, 
neutrophil infiltration, and activation of T lymphocytes were also 
downregulated (185). Recently, Clavien et al. (186) have successfully 
transplanted a human liver discarded by all transplant centers after 
3 days of normothermic machine perfusion, and upon implant the 
graft displayed minimal signs of reperfusion injury, sterile 
inflammation, and need for immunosuppression.

Lastly, other groups such as (187, 188) have illustrated the efficacy 
of optimizing the balance between metabolic demand (controlled by 
temperature) and oxygenation level of the perfusate. In doing so, they 

FIGURE 3

Machine perfusion: a balancing act. Created with biorender.com.
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have introduced a modality termed subnormothermic machine 
perfusion (SNMP): perfusion of an organ at room temperature (21°C), 
in an effort to keep the organ metabolizing at a level sufficient to allow 
assessment and treatment while keeping its demand for oxygen low 
enough to prevent IRI injury (187). This also allows for the use of an 
acellular perfusate, which is more readily available than blood based 
perfusates. Since the advent of DHOPE, the role of oxygen and the 
oxygen requirements of the organ at different temperatures suggests 
that a balance between protection from ischemia-reperfusion injury 
and the ability to assess the metabolites of the organ can be achieved.

The progression of machine perfusion is readily advancing from 
SCS with upper limits of 12 h to allowing for keeping an organ ex vivo 
for days and if progress continues, for weeks. Recovery of organs that 
were previously discarded such as in Clavien et  al. (186), and 
maintaining viability for multiple days would greatly help with the 
graft shortage crisis and allow for an expansion of the distance that 
organs could reasonably travel to be given to a patient in need.

Conclusion

Sterile inflammation in liver transplant still presents a clear and 
burdensome problem in ensuring allograft function and complication 
free survival. Recent advances into understanding the specific 
biomarkers of sterile inflammation may provide a real time ‘road map’ 
for understanding not only the grafts’, but also the recipients’ immune 
state and targeted therapeutics for reducing allograft dysfunction and 
long-term rejection. More exploration is needed to fully understand 
the implications of the recipient disease state and the particular 
challenges for allograft function.
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