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Background: Preeclampsia (PE) is a pregnancy complication defined by new 
onset hypertension and proteinuria or other maternal organ damage after 
20  weeks of gestation. Although non-invasive prenatal testing (NIPT) has been 
widely used to detect fetal chromosomal abnormalities during pregnancy, its 
performance in combination with maternal risk factors to screen for PE has not 
been extensively validated. Our aim was to develop and validate classifiers that 
predict early- or late-onset PE using the maternal plasma cell-free DNA (cfDNA) 
profile and clinical risk factors.

Methods: We retrospectively collected and analyzed NIPT data of 2,727 pregnant 
women aged 24–45  years from four hospitals in China, which had previously 
been used to screen for fetal aneuploidy at 12  +  0  ~  22  +  6  weeks of gestation. 
According to the diagnostic criteria for PE and the time of diagnosis (34  weeks 
of gestation), a total of 143 early-, 580 late-onset PE samples and 2,004 healthy 
controls were included. The wilcoxon rank sum test was used to identify the 
cfDNA profile for PE prediction. The Fisher’s exact test and Mann–Whitney 
U-test were used to compare categorical and continuous variables of clinical 
risk factors between PE samples and healthy controls, respectively. Machine 
learning methods were performed to develop and validate PE classifiers based 
on the cfDNA profile and clinical risk factors.
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Results: By using NIPT data to analyze cfDNA coverages in promoter regions, 
we  found the cfDNA profile, which was differential cfDNA coverages in gene 
promoter regions between PE and healthy controls, could be used to predict 
early- and late-onset PE. Maternal age, body mass index, parity, past medical 
histories and method of conception were significantly differential between PE 
and healthy pregnant women. With a false positive rate of 10%, the classifiers 
based on the combination of the cfDNA profile and clinical risk factors predicted 
early- and late-onset PE in four datasets with an average accuracy of 89 and 
80% and an average sensitivity of 63 and 48%, respectively.

Conclusion: Incorporating cfDNA profiles in classifiers might reduce performance 
variations in PE models based only on clinical risk factors, potentially expanding 
the application of NIPT in PE screening in the future.

KEYWORDS

preeclampsia, non-invasive prenatal testing, cell-free DNA, prediction, in vitro 
fertilization

1 Introduction

Preeclampsia (PE) is a pregnancy complication defined by new 
onset hypertension and proteinuria or other maternal organ 
damage (e.g., kidney, liver or brain) after 20 weeks of gestation 
(1–4). The overall prevalence of PE is about 2–8% (2, 5). PE and its 
related complications of hypertensive disorders are the second 
leading cause of maternal mortality (6, 7). Depending on the time 
of diagnosis (34 weeks of gestation), PE is divided into early- and 
late-onset PE (8–10). As the disease progresses, the main treatment 
for PE remains the termination of pregnancy. However, premature 
delivery can lead to adverse consequences for the fetus. Previously 
clinical trials showed using low-dose aspirin in early pregnancy 
may reduce the risk of PE in pregnant women at high risk (11). 
Therefore, there is a need for an early and accurate PE prediction 
method, especially for early-onset PE.

To date, the history of PE, chronic hypertension and diabetes 
mellitus, older age, higher body mass index (BMI) and in vitro 
fertilization (IVF) are known to increase the risk of PE in pregnant 
women (2, 12, 13). However, models based on these clinical risk 
factors alone usually showed low accuracy or high false positives 
(14, 15). The Fetal Medicine Foundation (FMF) has proposed a 
combined predictive model incorporating mean arterial pressure 
(MAP), uterine artery pulsatility index (UtA-PI), serum placental 
growth factor (PLGF) and pregnancy-associated plasma protein-A 
(PAPPA) for the evaluation of PE risk in the first trimester (2, 
16–19). With a false positive rate (FPR) of 10%, the detection rates 
were 60.7 and 21.3% for preterm and term PE in mainland China, 
respectively. The demanding and complex measurement technique 
of UtA-PI makes the method difficult to be widely used, so a more 
general and convenient method is needed to predict pregnant 
women at high risk of PE.

Cell-free DNA (cfDNA) was first discovered in 1948 (20). It is 
mainly derived from apoptotic cells in healthy or diseased individuals. 
In pregnant women, about 10–15% of cfDNA originates from 
placental trophoblasts (21). Transcriptionally active gene promoters 
are nucleosome-depleted regions in the placenta. Naked DNA 
fragments are more susceptible to degradation as they enter the 

circulatory system. Lower levels of cfDNA derived from these 
promoters are exhibited. Thus, the abundance of cfDNA in maternal 
plasma could reflect gene expression in the placenta. Abnormal gene 
expression in the placenta might cause placental dysfunction. 
Therefore, cfDNA in the plasma of pregnant women might have the 
potential to be used as a biomarker for the diagnosis and prediction 
of diseases caused by placental dysfunction during pregnancy. 
Recently, studies have determined the promoter profiling, the 
concentration and DNA methylation of maternal plasma cfDNA can 
be  used to predict pregnancy complications (22–28). However, it 
remains unknown whether the non-invasive prenatal testing (NIPT) 
data used to screen for fetal chromosomal abnormalities could also 
be used for PE prediction.

Therefore, we  aimed to uncover cfDNA biomarkers with 
predictive value for PE by analyzing NIPT data. We evaluated whether 
the predictive performances of PE classifiers based on cfDNA 
coverages of gene promoter regions and clinical risk factors could 
be validated in internal and external validation datasets and showed 
reasonable accuracies, which might extend the use of NIPT for PE 
screening in the future.

2 Materials and methods

2.1 Participants

In the study, we  retrospectively collected NIPT data of 2,727 
pregnant women aged 24–45 years who underwent NIPT at 
12 + 0 ~ 22 + 6 weeks of gestation at four hospitals in China from 2019 
to 2021, including Zhuhai Center for Maternal and Child Health Care, 
Shenzhen Baoan Women’s and Children’s Hospital, Changsha Hospital 
for Maternal and Child Health Care and Jiangmen Central Hospital. 
This study was approved by the Ethics Committees of Beijing 
Genomics Institute (BGI) and these four hospitals (BGI-IRB 22026, 
LLSC-2022-01-04-04-KS, 2022030 and [2022]02), and all the 
participants provided their informed consent at the time of NIPT.

PE patients were diagnosed according to the following criteria: 
maternal systolic blood pressure is ≥140 mmHg and/or diastolic blood 
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pressure is ≥90 mmHg after 20 weeks of gestation with the proteinuria 
level of ≥0.3 g/24 h or dipstick urine test ≥1+. Early- and late-onset PE 
were classified based on the time of PE diagnosis (34 weeks of 
gestation) (8–10). Pregnant women with PE were excluded if they had 
malignant neoplastic diseases or fetal chromosomal abnormalities. 
Pregnant women with singleton pregnancy were considered as healthy 
controls if they did not meet the following criteria: (1) pregnancy 
complications, such as PE, gestational diabetes mellitus and 
cholestasis; (2) severe cardiac, hepatic and renal insufficiency; (3) 
malignant neoplastic diseases; (4) fetal chromosomal abnormalities. 
Moreover, PE and healthy individuals who had taken aspirin before 
sampling were excluded from the study cohort. A total of 143 early-
onset PE samples, 580 late-onset PE samples and 2,004 healthy 
controls with complete clinical information were included in 
this study.

2.2 cfDNA extraction, library preparation 
and sequencing

Five milliliters of maternal peripheral blood were collected into 
Streck Cell Free DNA BCT® blood collection tubes (Streck, La Vista, 
NE, United States). Two hundred microliters of maternal plasma were 
used for cfDNA extraction, library construction and sequencing as 
described previously (29). Briefly, end repairing and adding a 
non-template dA tail to cfDNA were carried out and DNA 
amplification products were obtained by polymerase chain reaction 
(PCR). Then, the amplified double-stranded DNA was thermally 
denatured to single-strand DNA, cyclized and made into DNA 
nanoballs (DNBs). Finally, the DNBs were loaded onto chips and 
sequenced on the BGISEQ-500 sequencing platform (BGI, Shenzhen, 
China). The average depth of coverage is 0.1X.

2.3 Low-coverage whole-genome 
sequencing data processing

Raw reads were aligned to the hg38 human reference using BWA 
aln (30). After extracting uniquely mapped reads based on Sequence 
Alignment/Map (SAM) tags, removing PCR duplicates was performed 
using SAMTOOLS (31).

2.4 Analysis of the cfDNA profile

To identify the cfDNA profile in NIPT data that could stably 
predict pregnant women at high risk of early- or late-onset PE in 
different hospitals, we analyzed maternal plasma cfDNA coverages 
at primary transcription start sites (pTSSs), called pTSS coverage 
(Supplementary Figure 1A). For each transcript downloaded from 
GENCODE (v37, 32), we  used the pTSS as a promoter region, 
which is a 2 kb region centered on the transcription start site. Read 
coverages at pTSSs were calculated from aligned BAM files using 
BEDtools (ver. 2.29.2, 33) and normalized using the reads per 
kilobase per million mapped reads (RPKM) method. Then, 
we calculated the multiple of the median (MoM) value of each 
pTSS coverage by dividing the raw value by the median value of 
control samples in each dataset.

 
pTSS coverage

The number of mapped reads on the TSS

The t
i

i=
×109

ootal number of mapped reads× 2000

2.5 Pathway enrichment analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
WikiPathways analyses were performed using g: Profiler (34). The 
p < 0.05 by computing multiple testing correction was considered 
statistically significant.

2.6 Experimental design

We followed the workflow encompassing sample allocation, 
classifier construction, and classifier evaluation. We first calculated 
pTSS coverages of 2,727 NIPT data as described above and 
performed the principal components analysis (PCA) using pTSS 
coverages. Samples whose the mean values of the first and second 
principal components differed within three standard deviations 
were retained. The PCA excluded 3 early-onset PE, 22 late-onset 
PE and 15 control samples (Figure 1; Supplementary Figure S1B). 
Then, we chose 899 samples from the Zhuhai Center for Maternal 
and Child Health Care as an external validation set. The remaining 
1,788 NIPT data were used as the discovery dataset to identify 
cfDNA coverages at gene promoters regions and clinical risk 
factors relevant to PE prediction. In the discovery stage, the 
differential analysis of pTSS coverages was performed 1,000 times, 
each time using 70% samples randomly sampled from the 
discovery dataset. The wilcoxon rank sum test was used to identify 
significantly differential pTSS coverages between PE samples and 
healthy controls. The pTSS coverage was considered as a candidate 
cfDNA biomarker if the p-value (the upper limit of 95% CI for 
1,000 times) < 0.05 and had the same trend of change. For clinical 
characteristics, MoM values of maternal age and BMI were 
calculated. The parity, past medical history and method of 
conception were discrete values. The past medical history was the 
sum of number of histories of chronic hypertension, PE, systemic 
lupus erythematosus (SLE) and antiphospholipid syndrome, on a 
scale of 0–4. The method of conception was defined as 1 for IVF 
and 0 for natural pregnancy. To retain the independence of 
different hospitals, the samples from the same hospital were 
assigned to a single dataset. In the classifier construction stage, 
machine learning methods (logistic regression, LR and random 
forest, RF) were performed to construct PE classifiers using 
samples from Jiangmen Central Hospital. Receiver operating 
characteristic (ROC) analysis was used to evaluate the performance 
of each classifier. In the evaluation stage, classifiers were validated 
in two internal validation datasets (800 samples from Shenzhen 
Baoan Women’s and Children’s Hospital, 584 samples from 
Changsha Hospital for Maternal and Child Health Care) and an 
external validation dataset (899 samples from Zhuhai Center for 
Maternal and Child Health Care). The 95% confidence intervals of 
area under curves (AUCs) of the training set and validation sets 
were calculated from 1,000 bootstrap samples. The sample size of 
each random sampling was equal to the size of the original dataset. 
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ROC curves were plotted and AUC, sensitivity and specificity 
values were calculated by custom scripts in python to evaluate 
performances of classifiers.

2.7 Statistical analyses

The Fisher’s exact test was used to compare categorical variables 
between PE samples and healthy controls, such as gravidity, parity, 
past medical history and method of conception. The Mann–Whitney 
U-test was used to compare continuous variables, such as maternal age 

and BMI. The DeLong’s test was used to compare AUCs. p < 0.05 was 
considered statistically significant.

3 Results

3.1 Clinical characteristics for study 
cohorts

We retrospectively collected NIPT data of pregnant women at 
12 + 0 ~ 22 + 6 weeks of gestation from 2019 to 2021 at four hospitals 

FIGURE 1

The workflow for developing early- and late-onset PE classifiers. We collected 2,727 NIPT data from pregnant women at 12  +  0  ~  22  +  6  weeks of 
gestation from four hospitals. The cfDNA profiles which were cfDNA coverages at gene promoter regions were identified. Before the construction and 
evaluation of classifiers for PE prediction, 40 samples were removed based on the PCA analysis. The remaining 2,687 NIPT data were used as the 
training and three validation datasets. Samples from the same hospital were assigned to a dataset. In the discovery stage, clinical risk factors and the 
cfDNA profile used to develop PE classifiers were screened. In the classifiers construction stage, samples from Jiangmen Center Hospital were used to 
build classifiers by the machine learning method. In the evaluation stage, the classifiers were further validated in three validation datasets.
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in China. A total of 2,727 individuals with complete clinical 
information met the enrollment criteria (Figure  1). This study 
included four datasets: a training dataset, two internal validation 
datasets and one external dataset. The demographic and pregnancy 
details of pregnant women in the training and validation datasets were 
shown in Table 1 and Supplementary Table S1. As expected, pregnant 
women with older maternal age, higher BMI, past medical histories 
(chronic hypertension, PE, SLE or antiphospholipid syndrome) or IVF 
were more likely to develop early- or late-onset PE in at least two 
datasets. By contrast, parous women had a decreased risk of 
developing LPE in three datasets (Table 1; Supplementary Table S1). 
The maternal age, BMI, past medical histories, parity and IVF were 
subsequently used to construct classifiers for predicting early- and 
late-onset PE.

3.2 Characterization of differential cfDNA 
profiles between PE and control samples

To find promoters with stably differential cfDNA coverages 
between PE and control samples, we repeated the differential analysis 
1,000 times. Each time, 70% of the samples in training and internal 
validation datasets were randomly sampled and used. In total, pTSS 
coverages of 117 and 137 promoters were significantly higher and 
lower in early-onset PE samples compared to healthy controls, 
respectively (Figure 2A). Similarly, there were 266 and 344 promoters 
with significantly differential higher and lower pTSS coverages in late-
onset PE samples compared to healthy controls (Figure 2B). Of these, 
pTSS coverages of CACNB2 and NRF1 gene promoters were lower in 
both early- and late-onset PE samples.

Then, we  performed the KEGG pathway and WikiPathways 
enrichment analyses using genes with significantly differential cfDNA 
coverages in promoters between early- or late-onset PE and control 
samples. The results of pathway analyses showed that these genes were 
enriched in multiple pathways associated with PE (Figures 2C,D). For 
early-onset PE, genes with significantly differential cfDNA coverages 
in promoters enriched in “Hedgehog signaling pathway,” “Hippo 
signaling pathway,” “AMPK signaling pathway,” “Apelin signaling 
pathway,” “Autophagy,” “Oxytocin signaling pathway,” “Wnt signaling 
pathway” and “VEGFA-VEGFR2 signaling.” For late-onset PE, the 
results of pathways enriched in “HIF-1 signaling pathway,” “Ras 
signaling pathway,” “PI3K-Akt signaling pathway” and “MAPK 
signaling pathway”.

3.3 Development and validation of 
classifiers based on the cfDNA profile and 
clinical risk factors

For early-onset PE prediction, the cfDNA profile and clinical risk 
factors were combined to construct the early-onset PE classifier (CEPE). 
The cfDNA profile included pTSS coverages of FOSL2, CAMKK2, 
CCND1, ITPR1, PRKACB and WNT7B genes, which played roles in 
least three PE-associated pathways, in addition to pTSS coverages of 
CACNB2 and NRF1 genes (Supplementary Figure S2). The clinical risk 
factors were maternal age, BMI, parity, past medical histories and 
method of conception. Similarly, the cfDNA profile, which was the 
ratio of pTSS coverages of FLT3LG and EGF genes T
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(Supplementary Figure S3), and the same clinical risk factors as CEPE 
were used to construct the late-onset PE classifier (CLPE).

In the training dataset, the CEPE and CLPE based on the logistic 
regression (LR) or random forest (RF) model achieved accuracies 
of 0.87 and 0.90, respectively (Table 2). The AUCs of CEPE and CLPE 
were 87 and 96% (Figures 3A,B). To further evaluate the accuracies 
of classifiers for predicting early- and late-onset PE, we validated 
CEPE and CLPE in two internal and one external validation datasets 
(Figure 1). The CEPE exhibited AUCs ranging from 80 to 90% in 
three datasets (Figure 3A). For CLPE, the three validation datasets 
showed AUCs of 76, 74 and 72%, respectively (Figure 3B). With a 
false positive rate (FPR) of 10%, the average detection rates for 
predicting early- and late-onset PE were 63 and 48%, and the 
average PPVs were 33 and 55% in four datasets, respectively 
(Tables 2, 3).

In addition, classifiers based on the combination of the cfDNA 
profile and clinical risk factors showed higher AUC values in 
predicting early- or late-onset PE than based on clinical risk factors 
or the cfDNA profile alone in training and validation datasets 
(Tables 2, 3). Some of these reached statistical significance by 
DeLong’s test. These results showed the combination of the cfDNA 
profile and clinical risk factors enhanced performances of early- 
and late-onset PE prediction.

4 Discussion

In this study, we analyzed cfDNA coverages in gene promoter 
regions using NIPT data, namely pTSS coverage, and clinical risk 
factors from 2,727 pregnant women. We found that the combination 
of differential pTSS coverages and clinical risk factors could effectively 
distinguish PE patients from normal controls by machine learning 
methods. The early- and late-onset PE classifiers (CEPE and CLPE) 
showed good performances for early- and late-onset PE prediction in 
four datasets (average AUCs of 0.84 and 0.80), with average accuracies 
of 89 and 80% and average detection rates of 63 and 48% at a 10% false 
positive rate. These results showed the CEPE and CLPE outperformed the 
FMF’s competing risk model in predicting PE for the Chinese (19).

Clinical risk factors in CEPE and CLPE included maternal age, BMI, 
parity, past medical histories and method of conception, exhibited 
significant differences in early- or late-onset PE samples compared to 
healthy controls. The relationship between these factors and the risk 
of PE had been previously evaluated (2, 12, 13). An effective method 
for disease prediction requires high accuracy, low cost, and easy 
application. While predicting PE using basic clinical information may 
be more accessible and cost-effective for clinicians, our investigation 
revealed variations in the performance of PE models based solely on 
clinical risk factors across different hospitals. The AUCs for early- and 

FIGURE 2

Differential pTSS coverages between early- or late-onset PE and controls. Volcano plots showed promoters with differential cfDNA coverages between 
early-onset PE and healthy samples (A) or between late-onset PE and healthy samples (B). The red, blue, and grey dots indicated pTSS coverages were 
significantly higher, lower, and non-significant in early- or late-onset PE compared to control samples, respectively. Barplots showed the results of 
pathway enrichment analysis based on genes with differential pTSS coverages between early-onset PE and healthy samples (C) or between late-onset 
PE and healthy samples (D). KEGG, Kyoto Encyclopedia of Genes and Genomes; WP, WikiPathways.
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late-onset PE models based on clinical risk factors in three validation 
datasets ranged from 0.70 to 0.79 and from 0.68 to 0.74, respectively 
(Tables 2, 3). This shortcoming was mitigated by incorporating the 
cfDNA profile obtained through NIPT data. Although the addition of 
cfDNA profiles in external validation increased the AUC by only 1% 
compared to predictions based on clinical risk factors, the AUC for 
the early-onset PE classifier exceeded 0.79 in each hospital. Herein, 
we demonstrated NIPT data could be applied to predict pregnant 
women at high risk for PE. The predictive test that is a by-product of 
the NIPT would be  inexpensive and could provide valuable 
supplementary clinical information (unrelated to aneuploidy 
screening). Even if its diagnostic performance is not excellent, it could 
assist clinicians in selecting pregnant women who need reassessment 
using additional techniques, especially for those without clinical risk 
factors. Therefore, our study has the potential to expand the value of 
NIPT for screening patients with PE.

While in some countries, NIPT is currently restricted to high-risk 
populations, the expanding utilization of NIPT data might have the 
potential to prompt initiatives in certain countries to provide financial 
support for NIPT through healthcare insurance or public health 
programs. This would ensure that a greater number of mothers can 
benefit from the advantages provided by NIPT. Moreover, as the cost 
of sequencing decreases in the future, the sequencing depth of NIPT 
continues to increase. We believe that the prediction effect of the NIPT 
data on PE will be further improved.

The cfDNA profile in CEPE model contained eight genes, of which 
pTSS coverages of FOSL2, CAMKK2, CCND1, ITPR1, PRKACB, 
WNT7B, CACNB2 and NRF1 genes were stably differential between 
pregnant women with early-onset PE and healthy controls. CAMKK2, 
CCND1, ITPR1, PRKACB and WNT7B genes were enriched in more 
than two pathways associated with PE, including “Hedgehog signaling 
pathway” (35), “Hippo signaling pathway” (36), “AMPK signaling 

pathway” (37), “Apelin signaling pathway” (38), “Autophagy” (39), 
“Oxytocin signaling pathway” (40), “Wnt signaling pathway” (41) and 
“VEGFA-VEGFR2 signaling” (42). The AMPK signaling pathway has 
been repeatedly reported to be associated with PE based on omics data 
(37, 43). FOSL2 is a transcription factor in the progression of 
angiogenesis. Down-regulated expression of FOSL2 gene in PE 
placentas could cause placental vascular dysfunction, which is 
consistent with higher cfDNA coverage at its pTSS (44). The cfDNA 
profile in CLPE contained pTSS coverages of FLT3LG and EGF genes. 
These two genes are enriched in “Ras signaling pathway,” “PI3K-Akt 
signaling pathway” and “MAPK signaling pathway” (45, 46). Of these, 
the PI3K-Akt and MAPK signaling pathways are critical for 
trophoblast function and implicated in underlying causes of 
preeclampsia, such as dysfunction of the placental endothelial nitric 
oxide synthase. The EGF family regulates the development of 
trophoblast and plays a role in trophoblast cell invasion. The EGF 
levels in plasma and serum have been verified to be  significantly 
decreased (47, 48).

The strength of this study lies in the development and validation 
of PE classifiers within a larger population compared to other studies, 
albeit being a retrospective case–control study. The established early- 
and late-onset PE classifiers were validated in three datasets which 
means changes of these differential pTSS coverages and clinical risk 
factors are more common in patients with PE. Our study has some 
limitations. First, the CEPE and CLPE were constructed and validated 
from case–control cohorts of four hospitals. Although we retained the 
population differences between hospitals, the number of hospitals in 
this study was relatively small. It is necessary to validate these 
classifiers in a larger number of hospitals in the future. Second, this 
study is performed in China in specific maternal and environmental 
characteristics. It is imperative to validate these classifiers in different 
populations before advocating its use as a universal screening method. 

TABLE 2 The performance of the logistic regression model for predicting early-onset PE in the training and three validation datasets.

AUC (95% CI) Acc Sen Spe PPV NPV

Clinical risk factors

Training set 0.84 (0.79–0.84) 0.86 0.59 0.91 0.57 0.92

Internal validation dataset1 0.79 (0.75–0.80) 0.89 0.57 0.91 0.26 0.97

Internal validation dataset2 0.70 (0.65–0.72) 0.88 0.31 0.90 0.11 0.97

External validation dataset 0.79 (0.71–0.80) 0.89 0.58 0.90 0.23 0.98

The cfDNA profile

Training set 0.69 (0.63–0.69) 0.80 0.30 0.90 0.37 0.87

Internal validation dataset1 0.79 (0.65–0.79) 0.87 0.27 0.91 0.14 0.96

Internal validation dataset2 0.76 (0.64–0.76) 0.89 0.38 0.91 0.14 0.97

External validation dataset 0.60 (0.54–0.62) 0.87 0.20 0.91 0.10 0.96

Clinical risk factors + the cfDNA profile

Training set 0.87NS, *** (0.81–0.87) 0.87 0.69 0.91 0.59 0.94

Internal validation dataset1 0.90**, ** (0.79–0.90) 0.89 0.63 0.90 0.27 0.98

Internal validation dataset2 0.80 NS, NS (0.72–0.81) 0.90 0.63 0.91 0.21 0.98

External validation dataset 0.80NS, *** (0.72–0.82) 0.89 0.58 0.91 0.24 0.98

The data were presented in terms of area under curves (AUCs), accuracies, sensitivities, specificities, positive predictive values (PPVs), and negative predictive values (NPVs) of the final 
classifiers. The 95% confidence intervals of AUCs for the training and validation sets were computed based on 1,000 bootstrap samples. *Represented the AUC of the classifier based on clinical 
risk factors and the cfDNA profile was greater than based on clinical risk factors or the cfDNA profile alone by DeLong’s test. *, ** and *** represented the different significance of p < 0.05, 
p < 0.01 and p < 0.001. Acc, accuracy; Sen, sensitivity; Spe, specificity; CI, confidence interval.
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Third, NIPT data we used is single-end reads. It lacks information on 
the length of cfDNA fragments. A study verified that pregnant women 
with late-onset PE had a significantly higher cfDNA fragment size 
distribution compared to controls (25). The potential of combined this 
cfDNA signal with pTSS coverages for PE prediction needs to 

be further explored. Fourth, the accuracy of the CLPE was lower than 
that of the CEPE. The reason might be that there is higher heterogeneity 
in the pathogenesis of late-onset PE. In the future, we hope to develop 
classification models for different subtypes of late-onset PE in 
larger samples.

TABLE 3 The performance of the random forest model for predicting late-onset PE in the training and three validation datasets.

AUC (95% CI) Acc Sen Spe PPV NPV

Clinical risk factors

Training set 0.96 (0.86–0.93) 0.90 0.88 0.90 0.71 0.97

Internal validation dataset1 0.74 (0.67–0.76) 0.72 0.31 0.90 0.59 0.74

Internal validation dataset2 0.72 (0.63–0.76) 0.73 0.28 0.91 0.55 0.76

External validation dataset 0.68 (0.61–0.71) 0.85 0.38 0.90 0.28 0.93

The cfDNA profile

Training set 0.93 (0.71–0.81) 0.87 0.70 0.91 0.68 0.92

Internal validation dataset1 0.53 (0.45–0.55) 0.66 0.14 0.90 0.39 0.70

Internal validation dataset2 0.53 (0.45–0.56) 0.69 0.12 0.91 0.35 0.72

External validation dataset 0.50 (0.44–0.53) 0.84 0.10 0.92 0.11 0.91

Clinical risk factors + the cfDNA profile

Training set 0.96NS, * (0.87–0.94) 0.90 0.87 0.91 0.71 0.96

Internal validation dataset1 0.76NS, *** (0.67–0.77) 0.73 0.33 0.91 0.63 0.75

Internal validation dataset2 0.74NS, *** (0.64–0.77) 0.74 0.30 0.91 0.58 0.77

External validation dataset 0.72*, *** (0.63–0.72) 0.85 0.40 0.90 0.29 0.94

The data were presented in terms of area under curves (AUCs), accuracies, sensitivities, specificities, positive predictive values (PPVs), and negative predictive values (NPVs) of the final 
classifiers. The 95% confidence intervals of AUCs for the training and validation sets were computed based on 1,000 bootstrap samples. *Represented the AUC of the classifier based on clinical 
risk factors and the cfDNA profile was greater than based on clinical risk factors or the cfDNA profile alone by DeLong’s test. *, ** and *** represented the different significance of p < 0.05, 
p < 0.01 and p < 0.001. Acc, accuracy; Sen, sensitivity; Spe, specificity; CI, confidence interval.

FIGURE 3

Performances of classifiers in predicting PE. Receiver operating characteristic (ROC) curves were drawn to evaluate performances of the early (A) and 
late-onset PE classifiers (B) based on the cfDNA profile and clinical risk factors in four datasets. TS, training dataset; IVS, internal validation dataset; EVS, 
external validation dataset.
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5 Conclusion

The classifiers established by integrating cfDNA profiles could 
mitigate the performance variations observed in PE models based on 
clinical risk factors alone. This could potentially broaden the 
application of NIPT in PE screening in the future.
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