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In this study, we  analyzed a relatively large subset of proteins, including 109 
kinds of blood-circulating cytokines, and precisely described a cytokine storm 
in the expression level and the range of fluctuations during hospitalization for 
COVID-19. Of the proteins analyzed in COVID-19, approximately 70% were 
detected with Bonferroni-corrected significant differences in comparison 
with disease severity, clinical outcome, long-term hospitalization, and disease 
progression and recovery. Specifically, IP-10, sTNF-R1, sTNF-R2, sCD30, 
sCD163, HGF, SCYB16, IL-16, MIG, SDF-1, and fractalkine were found to be major 
components of the COVID-19 cytokine storm. Moreover, the 11 cytokines (i.e., 
SDF-1, SCYB16, sCD30, IL-11, IL-18, IL-8, IFN-γ, TNF-α, sTNF-R2, M-CSF, and 
I-309) were associated with the infection, mortality, disease progression and 
recovery, and long-term hospitalization. Increased expression of these cytokines 
could be explained in sequential pathways from hematopoietic progenitor cell 
differentiation to Th1-derived hyperinflammation in COVID-19, which might also 
develop a novel strategy for COVID-19 therapy with recombinant interleukins 
and anti-chemokine drugs.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel 
β-coronavirus that emerged in China in December 2019, leading to the global pandemic 
known as coronavirus disease 2019 (COVID-19) (1). Reportedly, severe COVID-19 is 
characterized by hypoxia with the risk of rapid deterioration that may require intensive 
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care support and, in some cases, can progress to acute respiratory 
distress syndrome (ARDS), multiple organ failure, and death (1). 
Precision medical care using biomarkers is currently uncertain due 
to an inadequate understanding of the pathogenesis and 
heterogeneity among severe COVID-19 patients (2). Moreover, in 
some severe COVID-19 patients, a dysregulated hyperinflammatory 
state can occur, consistent with using a glucocorticoid (e.g., 
dexamethasone), interleukin (IL)-6 receptor inhibitors (e.g., 
tocilizumab and sarilumab), and a Janus kinase (JAK) inhibitor 
(e.g., baricitinib) in the treatment of severe disease (3–6). However, 
the blood signatures of COVID-19 severity are diverse, including 
immune suppression, myeloid dysfunction, lymphopenia, 
interferon-derived immunopathology, T-cell activation and 
exhaustion, and immune senescence (7–11). On the other hand, 
urinary levels of fatty acids and docosahexaenoic acid (DHA) are 
increased by approximately 3-fold in the COVID-19 patients, 
compared to healthy controls, and furthermore, markedly increased 
levels of PGE2, TXA2, and PGF2α as metabolites of major 
proinflammatory lipid mediators are also detected in the urine of 
the COVID-19 patients (12). While in the human lungs, severe 
COVID-19 is reportedly characterized by widespread neutrophil 
and macrophage infiltration and T-cell cytokine production (13). 
Alveolitis with COVID-19 is also caused by altered redox balance, 
endothelial damage, and thrombosis (13).

Serum concentrations of proinflammatory cytokines are 
strongly correlated with disease and clinical outcomes and are 
increased in patients with severe COVID-19 (14). In such cases, the 
induced expression of inflammatory cytokines, including IL-6 and 
tumor necrosis factor (TNF)-α, causes systemic inflammation by 
dysregulation of immune pathways (15, 16). It has been posited that 
one of the main causes of such hyperinflammation, as well as the 
development of serious complications, in patients afflicted with 
COVID-19, is a delayed or impaired type-I interferon (IFN) 
response as the first line of antiviral defense (17). In addition to 
IFNs, serum levels of cytokines have been measured for the 
discovery of prospective inflammation markers in COVID-19 
patients (18–21). Disease severity correlates with several 
immunological cytokine profiles (18, 19) and various patient-
related demographic characteristics, including age, sex, and 
non-infectious comorbidities (19, 22–25). Of those factors, IFN-γ, 
IL-6, IL-10, and TNF-α have been proposed for use as predictors of 
disease severity and pharmacological targets in anti-cytokine 
therapy (16, 20).

In this study, we  performed profiling of the expression and 
coefficient of variation (CV) of 109 kinds of blood-circulating 
cytokines in peripheral blood samples obtained from 23 COVID-19 
patients. Several cytokine signatures associated with COVID-19 
were identified. In addition, the patterns of early-phase and late-
phase cytokine expression levels between the patient groups by their 
severity were investigated. Subsequently, our findings revealed 
cytokine signatures reflecting variable cytokine storms and their 
immune pathways, as well as the patient’s severity, the hospitalization 
period, the clinical outcome, and the specific hallmarks of increasing 
and decreasing severity. These findings are useful for the diagnosis 
of COVID-19 and may contribute to the further development of safe 
and effective therapeutic strategies in patients afflicted with 
the disease.

Materials and methods

Clinical samples

Serum samples were obtained from 23 adult COVID-19 patients 
(age range: 20–91 years) treated at the University Hospital Kyoto 
Prefectural University of Medicine during the third and fourth waves 
of COVID-19 incidence in Japan from November 2020 to June 2021. 
To measure the serum cytokine levels, we obtained a total of 134 
samples from the 23 COVID-19 patients and 26 samples from 13 
healthy volunteer control subjects not infected with SARS-CoV-2 
viruses. The study protocols were approved by the Institutional Review 
Board at Kyoto Prefectural University of Medicine (ERB-G-109 and 
ERB-C-1810). All experiments were performed following the 
institutional guidelines and in accordance with the tenets outlined in 
the Declaration of Helsinki, and prior written informed consent was 
obtained from all study participants.

Peripheral blood cytokine analysis

Serum samples frozen and stored at −80°C prior to thawing were 
tested for simultaneous quantification of 109 kinds of blood-
circulating cytokines via the use of a Bio-Plex Pro™ Human Cytokine 
Screening Panel, 48-Plex, a Bio-Plex Pro™ Human Chemokine 
40-Plex Panel, a Bio-Plex Pro™ Human Inflammation 37-Plex Panel, 
a Bio-Plex Pro™ Human Th17 Cytokine 15-Plex Panel, and a Bio-Plex 
Pro™ TGF-β 3-plex Assay (all from Bio-Rad Laboratories, Inc., 
Hercules, CA) (Supplementary Table S1). All assays were performed 
using Bio-Plex® Assay Kits (Bio-Rad Laboratories) according to the 
manufacturer’s protocol for serum samples and utilizing the 
recommended sample dilutions and standard curve concentrations. 
Acquisitions were performed using a Bio-Plex® Manager v6.2 and 
Bio-Plex® Data Pro™ Software v1.3 (Bio-Rad Laboratories). Values 
outside calibration curves were considered to be  below the limit 
of detection.

Statistical analysis

In this study, the cytokine storms were comprehensively defined 
by not only the expression levels but also CV. Cytokine concentrations 
at baseline (admission date or treatment start date; day 1) and at the 
end of the observation (patient outcome or last treatment date) were 
analyzed by the Steel-Dwass test for multiple comparisons. For 
comparisons of cytokine expression levels and CV between two or 
more independent groups, a mixed-effects regression model was used. 
Fixed effects included patient age, gender, disease severity (severe, 
moderate, mild, and no infection), and outcome (decease, transfer, 
discharge, and no infection). In addition, if the model did not include 
any infection samples, the observation period from admission and the 
patient as a random effect were included. Mean values and ranges 
(min–max) of clinical characteristics measured during the observation 
period for each subject were calculated. Differences between the 
groups concerning clinical characteristics were assessed using Fisher’s 
exact test or analysis of variance (ANOVA). Statistical analyses 
described above were performed using R v4.0.3 (R Foundation for 
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Statistical Computing, Vienna, Austria) statistics software. A mixed-
effects regression model analysis was executed with the R package 
lme4 and lmerTest. A p-value of < 0.05 (0.00035 when adjusted for 
Bonferroni correction) was considered statistically significant. The 
study was an exploratory data analysis with unknown effect sizes and 
confidence intervals for the hypotheses to be tested, and no statistical 
sample size calculations were performed. However, post-hoc powers 
with a mean of the cytokines were calculated with a sample size of 13 
patients per group using a two-group t-test with a two-sided 
significance level of p < 0.05 to detect mean differences in comparing 
cytokine expression levels between COVID-19 patients and 
healthy volunteers.

Results

Patient classification in the COVID-19 
cohort

In this study, a total of 134 serum samples were obtained from 23 
adult COVID-19 patients treated at the University Hospital Kyoto 
Prefectural University of Medicine, Kyoto, Japan, during the third and 
fourth waves of COVID-19 that occurred in Japan from November 
2020 to June 2021, and a total of 26 serum samples were obtained from 
13 healthy volunteer subjects (Supplementary Figure S1A), in order to 
measure the level of cytokines circulating in the blood. One hundred 
and nine kinds of blood-circulating cytokines (Supplementary Table S1) 
were investigated using a fluorescent-labeled microbeads assay system. 
As the blood-circulating cytokine levels were measured over time from 
the identical patients, statistical analyses were performed using a 
mixed-effects regression model. Moreover, the cytokine levels were 
independently measured via multiple panels in a repeat method. The 
quantitative polymerase chain reaction (qPCR) method for SARS-
CoV-2 viruses in nasopharyngeal swabs was used to determine 
COVID-19 positives at the Faculty of Clinical Laboratory. Twenty-
three COVID-19 patients were selected randomly and classified into 
four severity groups based on clinical characteristics and the official 
Japanese Ministry of Health, Labour, and Welfare guideline for the 
management of COVID-19 (Supplementary Figure S1A). The main 
criteria were percutaneous oxygen saturation (SpO2) and intensive care 
unit (ICU) requirements. Some patients required oxygen therapy, 
which included non-mechanical and mechanical ventilation (MV) 
with oxygen. The subgroup of severe COVID-19 patients belonged to 
the requirement of ventilator management therapy [i.e., MV and 
extracorporeal membrane oxygenation (ECMO)] (n = 4), and the 
moderate II COVID-19 patients were included in the subgroup of 
SpO2 ≤ 93%, i.e., respiratory failure and the requirement of 
supplemental oxygen (n = 16). Moderate I COVID-19 patients were 
included in the subgroup of 93% < SpO2 < 96% and respiratory distress; 
however, those patients were not included in our cohort (n = 0). The 
mild COVID-19 patients had SpO2 ≥ 96% and no respiratory 
symptoms (n = 3). The clinical characteristics of the 23 patients are 
summarized in Supplementary Tables S2, S3. In brief, almost all 
COVID-19 patients examined had hypertension, diabetes mellitus, or 
chronic kidney disease, and a few patients had lung disease, malignant 
lymphoma, Parkinson’s disease, ulcerative colitis, ischemic heart 
disease, or immune-mediated thrombocytopenia 
(Supplementary Table S2). Patients were mainly treated using 

remdesivir (antiviral agent), dexamethasone (corticosteroid), 
prednisolone (corticosteroid), and tocilizumab (recombinant 
humanized anti-IL-6 receptor monoclonal antibody), along with 
oxygen administration (Supplementary Table S2). Moreover, the 
patients were also classified by hospitalization periods termed as “long-
term” (≥5 weeks) and “short-term” (<5 weeks) 
(Supplementary Figure S1B). Patients with remission of COVID-19 
symptoms were discharged without any additional therapies. Those 
who were no longer in severe condition but needed rehabilitation were 
transferred to affiliated hospitals. The University Hospital Kyoto 
Prefectural University of Medicine serves as a special functioning 
hospital that is authorized as a tertiary care facility for patients 
requiring intensive treatment including those with severe infectious 
diseases. The numbers of patients with decease, transfer, and discharge 
were 10, 7, and 6, respectively (Supplementary Figure S1B, 
Supplementary Table S2). The numbers of patients who stayed at the 
hospital in the long term and short term were 5 and 18, respectively 
(Supplementary Figure S1B, Supplementary Table S2). The timing of 
sampling during hospitalization covered over 78% of hospitalization 
periods in each patient (Supplementary Figure S2).

Overview of the blood-circulating cytokine 
levels in COVID-19

The blood-circulating cytokine levels in 23 COVID-19 patients 
and 13 healthy volunteers were summarized for clinical outcomes, 
severity, and hospitalization period (Supplementary Table S3). In the 
patients analyzed, the gender ratio (male to female) was 2.28 (16 men 
to 7 women). The median age was 73 years (range: 20–91 years), and 
the duration of hospitalization was 20 days (range: 5–96 days). Similarly, 
at hospital admission before therapies, blood tests were conducted as 
follows: white blood cell (WBC) (×109/L): 6.3 (1.1–18.1), hemoglobin 
(g/dL): 13.1 (8.7–16.4), platelet (×109/L): 184.5 (20.0–401.0), D-dimer 
(μg/mL): 1.4 (0.6–20.3), lactate dehydrogenase (LD) (U/L): 437.0 
(115.0–838.0), ferritin (ng/mL): 584.5 (106.0–10,565.0), and C-reactive 
protein (CRP) (mg/dL): 8.2 (0.1–31.2) (Supplementary Table S3). In 
comparison to the no infection subgroup, the expression levels of 
cytokines, especially IL-26 (median [interquartile range: IQR]: 585.44 
[382.12–975.80] pg/mL, 68,136.81-fold), pentraxin-3 (47,892.44 
[31,370.65–71,891.42] pg/mL, 13.90-fold), IP-10 (4,080.35 [2,458.71–
6,672.04] pg/mL, 13.47-fold), sCD30 (2,686.48 [2,103.98–3,990.13] 
pg/mL, 12.65-fold), MMP-2 (31,544.07 [24,793.58–36,341.59] pg/mL, 
10.40-fold), MMP-3 (27,590.05 [21,809.63–39,108.24] pg/mL, 8.27-
fold), I-TAC (131.20 [82.31–166.80] pg/mL, 3.44-fold), I-309 (40.18 
[28.89–57.50] pg/mL, 2.90-fold), CHI3L1 (26,700.92 [20,655.66–
35,549.19] pg/mL, 2.57-fold), SDF1α + β (2,162.61 [1,915.03–2,602.42] 
pg/mL, 1.57-fold), and SCYB16 (739.40 [554.93–902.37] pg/mL, 1.78-
fold), in the SARS-CoV-2 infection subgroup were extremely increased 
with significant differences with Bonferroni correction (p < 0.00035) 
(Figure 1A). On the other hand, IL-31 (25.24 [0.00–71.01] pg/mL, 
0.49-fold), macrophage-derived chemokine (MDC) (258.61 [167.72–
366.29] pg/mL, 0.52-fold), and TGF-β2 (3,850.26 [3,500.03–3,995.26] 
pg/mL, 0.91-fold) were decreased (p < 0.05) (Figure  1A). In the 
hospitalization period, the expression levels of cytokines, especially 
IL-22 (0.00 [0.00–0.00] pg/mL, 15.47-fold), IL-2 (41.09 [33.87–47.31] 
pg/mL, 4.48-fold), IL-11 (1.92 [0.00–9.82] pg/mL, 2.95-fold), IL-8 
(200.62 [99.14–280.05] pg/mL, 1.69-fold), IL-26 (973.62 
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FIGURE 1

Differential expression of blood cytokines in COVID-19. (A) Markedly expressed cytokines in the COVID-19 patients compared to the healthy volunteer 
subjects (p  <  0.05; mixed-effects regression model). (B) Markedly expressed cytokines in the long-term inpatients (≥5  weeks) compared to the short-
term inpatients (<5  weeks) (p  <  0.05; mixed-effects regression model). (C) Markedly expressed cytokines in the decease subgroup compared to the no 
infection subgroup (p  <  0.05; mixed-effects regression model). (D) Markedly expressed cytokines in the severe subgroup compared to the no infection 
subgroup (p  <  0.05; mixed-effects regression model). Asterisk (*): Bonferroni correction (p  =  0.00035); FC, fold change.
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[749.68–1,311.64] pg/mL, 1.68-fold), IL-1β (6.57 [6.45–6.69] pg/mL, 
1.31-fold), IL-4 (70.06 [56.63–76.18] pg/mL, 1.13-fold), VEGF 
(1,147.31 [1,143.48–1,622.59] pg/mL, 6.59-fold), IFN-β (3.09 [0.00–
3.85] pg/mL, 4.92-fold), MCP-3 (106.99 [78.47–116.64] pg/mL, 4.63-
fold), MCP-4 (148.30 [102.81–165.26] pg/mL, 2.01-fold), eotaxin-3 
(225.44 [179.24–239.69] pg/mL, 2.95-fold), sTNF-R1 (7,762.24 
[5,025.83–17,588.57] pg/mL, 1.72-fold), sTNF-R2 (2,746.18 [2,086.44–
4,806.09] pg/mL, 2.42-fold), osteopontin (90,049.42 [70,454.42–
104,808.06] pg/mL, 2.30-fold), MMP-3 (71,280.18 [51,496.25–
74,096.90] pg/mL, 2.20-fold), BCA-1 (304.41 [264.00–452.77] pg/mL, 
2.13-fold), M-CSF (76.79 [68.71–132.11] pg/mL, 1.91-fold), GCP-2 
(72.90 [69.78–90.20] pg/mL, 1.69-fold), sCD163 (282,092.83 
[257,135.99–700,110.78] pg/mL, 1.61-fold), MIP-1δ (7,852.14 
[4,897.99–8,226.48] pg/mL, 1.44-fold), MPIF-1 (509.22 [348.72–
680.76] pg/mL, 1.42-fold), ENA-78 (1,193.73 [1,147.85–1,305.69] pg/
mL, 1.36-fold), stem cell factor (SCF) (197.40 [108.90–230.02] pg/mL, 
1.31-fold), sIL-6Rα (25,743.16 [16,380.50–35,781.82] pg/mL, 1.27-
fold), GRO-α (394.61 [278.31–471.72] pg/mL, 1.26-fold), SCGF-β 
(260,226.07 [252,813.31–291,356.01] pg/mL, 1.22-fold), SDF-1α 
(1,953.00 [1,842.71–2,159.84] pg/mL, 1.13-fold), and leukemia 
inhibitory factor (LIF) (41.30 [30.42–47.31] pg/mL, 1.01-fold), in the 
long-term hospitalization subgroup were extremely increased 
compared to the short-term hospitalization subgroup (p < 0.00035) 
(Figure 1B). Inversely, platelet-derived growth factor bb (PDGF-ββ) 
(1,749.67 [1,697.58–3,086.65] pg/mL, 0.50-fold), IL-12 (4.04 [0.00–
5.01] pg/mL, 0.59-fold), IL-10 (0.00 [0.00–7.43] pg/mL, 0.72-fold), 
TGF-β3 (1,136.97 [1,123.09–1,372.05] pg/mL, 0.89-fold), TGF-β2 
(3,850.26 [3,604.44–3,869.15] pg/mL, 0.92-fold), and RANTES 
(6,797.84 [4,044.30–8,535.95] pg/mL, 0.90-fold) were decreased 
(p < 0.05) (Figure  1B). These results suggested that various blood-
circulating cytokines dramatically increase depending on the SARS-
CoV-2 infection and severities requiring long-term hospitalization. On 
the other hand, a few cytokines were decreased with the SARS-CoV-2 
infection. A sample size of 13 subjects per group corresponded to a 
mean post-hoc power of 0.81 (min = 0.30, max = 1.00) with 66 
differentially expressed cytokines (p < 0.05).

Differential expression of cytokines 
corresponding to severe clinical outcomes 
and disease severity

Next, we attempted to determine the differential expression of 
cytokines corresponding to severe clinical outcomes and disease 
severity. In the decease subgroup compared to the no infection 
subgroup, 69 cytokines were markedly increased (p < 0.05) (Figure 1C). 
In specific, IL-26 (median [IQR]: 861.65 [458.98–1,278.02] pg/mL, 
86,618.85-fold), IL-8 (114.64 [54.77–140.04] pg/mL, 28.74-fold), IL-12 
(385.98 [210.04–523.26] pg/mL, 9.14-fold), IL-16 (159.41 [116.18–
186.03] pg/mL, 5.31-fold), IL-10 (15.18 [9.10–18.72] pg/mL, 3.01-
fold), sTNF-R1 (12,675.41 [5,079.70–26,175.81] pg/mL, 270.73-fold), 
sTNF-R2 (3,446.63 [1,867.74–4,703.10] pg/mL, 7.66-fold), TNF-α 
(12.09 [5.79–20.32] pg/mL, 67.85-fold), pentraxin-3 (59,299.30 
[45,314.30–85,274.09] pg/mL, 17.64-fold), MIP-3β (182.16 [141.30–
336.80] pg/mL, 16.04-fold), IP-10 (5,780.81 [3,033.90–6,917.04] pg/
mL, 15.40-fold), sCD30 (3,605.39 [2,586.51–4,927.79] pg/mL, 15.31-
fold), MMP-2 (33,740.70 [31,639.53–42,870.48] pg/mL, 13.79-fold), 
MMP-3 (38,073.69 [24,767.77–48,922.08] pg/mL, 9.97-fold), sCD163 

(407,035.54 [253,100.61–769,089.47] pg/mL, 6.52-fold), sIL-2Rα 
(179.06 [131.66–290.17] pg/mL, 5.72-fold), M-CSF (93.10 [50.87–
125.80] pg/mL, 5.63-fold), osteopontin (64,084.37 [49,198.38–
88,504.00] pg/mL, 5.54-fold), SCF (213.71 [120.40–487.21] pg/mL, 
3.98-fold), fractalkine (409.96 [328.90–627.89] pg/mL, 3.23-fold), 
sIL-6Rα (23,505.90 [17,595.14–35,248.49] pg/mL, 3.05-fold), I-309 
(45.47 [22.75–60.26] pg/mL, 3.05-fold), IFN-γ (53.14 [43.10–68.50] 
pg/mL, 2.49-fold), ENA-78 (1,180.54 [1,030.94–1,336.41] pg/mL, 2.19-
fold), SCYB-16 (862.16 [632.75–1,054.36] pg/mL, 2.01-fold), 
SDF1α + β (2,359.06 [2,088.08–2,624.00] pg/mL, 1.65-fold), and gp130 
(135,605.43 [117,422.69–150,998.83] pg/mL, 1.62-fold) were extremely 
increased (p < 0.00035) (Figure 1C). However, TGF-β1 was decreased 
(p < 0.05) (Figure  1C). Of those, 37 cytokines were specific in the 
decease subgroup (Figure 1D). In the severe subgroup compared to 
the no infection subgroup, 72 cytokines were markedly increased 
(p < 0.05) (Figure 1D). In specific, IL-8 (143.50 [121.90–169.74] pg/
mL, 40.98-fold), IL-12 (515.95 [488.11–696.09] pg/mL, 14.53-fold), 
IL-18 (363.91 [236.47–477.30] pg/mL, 12.29-fold), IL-16 (188.74 
[167.98–217.29] pg/mL, 6.73-fold), IP-10 (3,120.36 [1,539.07–
4,719.25] pg/mL, 25.85-fold), sCD163 (4,540.07 [3,917.65–4,839.25] 
pg/mL, 17.22-fold), MIP-3β (276.71 [199.99–392.59] pg/mL, 21.42-
fold), hepatocyte growth factor (HGF) (3,063.01 [2,222.22–4,205.46] 
pg/mL, 13.58-fold), MMP-3 (49,435.11 [25,816.77–72,980.78] pg/mL, 
12.04-fold), sTNF-R2 (4,792.95 [4,106.47–6,117.41] pg/mL, 11.10-
fold), sCD163 (746,096.57 [595,606.29–901,475.49] pg/mL, 9.19-fold), 
sIL-2Rα (320.66 [265.01–415.75] pg/mL, 8.55-fold), M-CSF (131.03 
[114.65–143.55] pg/mL, 7.77-fold), MIF (633.05 [593.25–759.77] pg/
mL, 6.31-fold), osteopontin (80,251.92 [64,375.58–93,739.08] pg/mL, 
5.99-fold), I-309 (59.24 [54.88–64.71] pg/mL, 4.42-fold), fractalkine 
(607.18 [522.45–688.25] pg/mL, 4.00-fold), CHI3L1 (35,549.19 
[33,328.48–42,175.44] pg/mL, 3.33-fold), SCYB16 (1,041.27 [988.34–
1,105.83] pg/mL, 2.55-fold), ENA-78 (1,326.17 [1,277.70–1,347.73] 
pg/mL, 2.50-fold), SDF-1α (1,988.95 [1,925.42–2,058.63] pg/mL, 2.01-
fold), TNF-α (203.60 [200.59–223.28] pg/mL, 2.00-fold), and gp130 
(149,444.36 [141,600.13–164,800.49] pg/mL, 1.83-fold) were extremely 
increased (p < 0.00035) (Figure 1D). However, IL-31 (23.39 [9.26–
35.09] pg/mL, 0.16-fold) and TGF-β1 (39,668.11 [36,377.93–
40,574.39] pg/mL, 0.60-fold) were decreased (p < 0.05) (Figure 1D). In 
the decease subgroup compared to the transfer or discharge subgroups, 
38 cytokines were markedly increased (p < 0.05) (Figure  2A). In 
specific, IL-8 (50.37 [8.47–80.51] pg/mL, 4,674.04-fold) was extremely 
increased (p < 0.00035) (Figure 2A). However, IL-7 (0.35 [0.00–3.47] 
pg/mL, 0.25-fold), IL-13 (0.73 [0.42–1.17] pg/mL, 0.48-fold), eotaxin-1 
(52.40 [44.72–61.67] pg/mL, 0.50-fold), TGF-β1 (39,668.11 
[23,518.12–49,453.23] pg/mL, 0.63-fold), TGF-β3 (912.31 [797.22–
1,133.50] pg/mL, 0.64-fold), TNF-like weak inducer of apoptosis 
(TWEAK) (267.17 [198.81–290.95] pg/mL, 0.64-fold), RANTES 
(5,470.80 [3,779.77–6,605.33] pg/mL, 0.66-fold), MIP-1δ (3,950.52 
[2,894.01–4,961.29] pg/mL, 0.77-fold), and SCGF-β (237,082.22 
[174,123.05–253,307.90] pg/mL, 0.86-fold) were decreased (p < 0.05) 
(Figure 2A). In the severe subgroup compared to the mild or moderate 
subgroups, 39 cytokines were markedly increased (p < 0.05) 
(Figures 2B,C). In specific, IL-11 (15.90 [7.37–22.45] pg/mL, 1,392.88-
fold), IL-18 (363.91 [236.47–477.30] pg/mL, 5.10-fold), IL-8 (143.50 
[121.90–169.74] pg/mL, 3.18-fold), M-CSF (131.03 [114.65–143.55] 
pg/mL, 3.76-fold), and sCD163 (746,096.57 [595,606.29–901,475.49] 
pg/mL, 3.27-fold) were extremely increased (p < 0.00035) (Figure 2B). 
No cytokines were decreased (Figures 2B,C). These findings suggest 
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that approximately the same cytokines (i.e., IL-8, IL-12, M-CSF, 
sCD163, IP-10, MIP-3β, MMP-3, sTNF-R2, osteopontin, I-309, 
fractalkine, SCYB16, ENA-78, SDF-1, TNF-α, and gp130) seem to 
be increased in cases of severe clinical outcomes and disease severity 
(Supplementary Table S2). On the other hand, TGF-β1 would 
be  decreased in the severe clinical outcomes and disease severity 
(Supplementary Table S2) in COVID-19.

Temporal changes in cytokine levels 
associated with disease progression and 
recovery

Our findings on the local changes in cytokine expression levels 
during disease progression and recovery revealed that the expression 
of ENA-78 (mean: 790.76 to 1,043.67 pg/mL, 1.31-fold), MCP-4 

FIGURE 2

Clinical outcomes and disease severity-associated cytokines in COVID-19. (A) Markedly expressed cytokines in the decease subgroup compared to the 
transfer and discharge subgroups (p  <  0.05; mixed-effects regression model). (B,C) Markedly expressed cytokines in the severe subgroup compared to 
the mild (B) and moderate (C) subgroups (p  <  0.05; mixed-effects regression model). Asterisk (*): Bonferroni correction (p  =  0.00035); FC, fold change.
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(107.70 to 135.34 pg/mL, 1.26-fold), and sIL-2Rα (133.68 to 166.83 pg/
mL, 1.25-fold) were temporally increased after disease progression in 
individual patients (i.e., mild to moderate; n = 2 or moderate to severe; 
n = 5) (p < 0.05) (Figure 3A), while cutaneous MMP-2 (47,558.94 to 
27,729.73 pg/mL, 0.58-fold) and T-cell-attracting chemokine 
(CTACK) (2,123.97 to 1,445.90 pg/mL, 0.68-fold) were decreased in 
individual patients (p < 0.05) (Figure  3B). Temporal expression of 
pentraxin-3 (60,978.98 to 20,128.98 pg/mL, 0.33-fold), MMP-3 
(29,093.80 to 18,580.21 pg/mL, 0.64-fold), and MMP-2 (28,463.28 to 
11,250.30 pg/mL, 0.40-fold) were extremely decreased after disease 
recovery in individual patients (i.e., severe to moderate; n = 5 or 
moderate to mild; n = 2) (p < 0.05), while no cytokines were increased 
in individual patients (Figure 3C). Similarly, MIP-1δ, CD30, SDF-1, 
SCYB16, MPIF-1, IL-16, BCA-1, sIL-2Rα, MCP-1, IL-18, M-CSF, LIF, 
TNF-α, IL-8, and IFN-γ were also decreased after disease recovery in 
individual patients (p < 0.05) (Figure  3C). The increases of IL-10 
(mean: 5.74 pg/mL in decease and 0.00 pg/mL in transfer), IL-1β 
(6.57 pg/mL and 3.66 pg/mL), IL-8 (345.34 pg/mL and 31.10 pg/mL), 
IL-6 (253.24 pg/mL and 6.08 pg/mL), IL-18 (76.83 pg/mL and 
65.22 pg/mL), TECK (1,388.24 pg/mL and 814.26 pg/mL), sTNF-R1 
(15,218.47 pg/mL and 3,072.05 pg/mL), sTNF-R2 (2,394.11 pg/mL and 
1,142.10 pg/mL), MCP-1 (204.10 pg/mL and 54.87 pg/mL), 6Ckine 
(30,989.29 pg/mL and 14,480.94 pg/mL), M-CSF (55.19 pg/mL and 
36.15 pg/mL), TWEAK (561.13 pg/mL and 452.24 pg/mL), fractalkine 
(357.11 pg/mL and 243.08 pg/mL), sCD163 (358,425.69 pg/mL and 
279,630.70 pg/mL), BCA-1 (147.23 pg/mL and 84.78 pg/mL), gp130 
(140,337.38 pg/mL and 94,292.02 pg/mL), and MIG (1,360.73 pg/mL 
and 988.76 pg/mL) (Figure 3D) or the decrease in TGF-β3 (802.56 pg/
mL and 1,703.23 pg/mL) at the last sampling (Figure 3E) in hospital 
stay were observed in the patients who were deceased even if they 
were diagnosed moderate or mild severities at hospitalization (n = 4) 
(p < 0.05). Therefore, these findings suggest a possibility that the 
decreased levels of sIL-2Rα, ENA-78, IL-8, IL-18, MCP-1, MCP-4, 
M-CSF, and BCA-1 and/or the increased levels of TGF-β3 and 
CTACK, which might be required for recovery and survival from 
COVID-19. Whether such immunomodulators simply returned to 
normal range or represent primary processes responsible for clinical 
outcomes needs further investigation in the future. Based on the 
findings described above, we especially selected 11 cytokines that 
would be involved in the inflammation pathway in COVID-19, i.e., 
SDF-1, SCYB16, sCD30, IL-11, IL-18, IL-8, IFN-γ, TNF-α, sTNF-R2, 
M-CSF, and I-309 (Supplementary Figure S3). A sample size of 13 
subjects per group returned a mean post-hoc power of 0.83 (min = 0.29, 
max = 1.00) with the 11 cytokines described above in comparing 
COVID-19 patients and healthy volunteers.

Cytokine storm marker candidates in 
consideration of the CV of cytokine levels 
during the entire hospitalization period in 
COVID-19

We also analyzed the CV of the cytokine levels during the entire 
hospitalization period of the patients. The CVs of these cytokines, 
especially IL-6 (median [IQR]: 1.35 [0.96–1.85], 140.95-fold), IL-10 
(1.15 [0.85–1.68], 120.37-fold), IL-1α (1.08 [0.31–1.46], 99.89-fold), 
IL-26 (0.94 [0.38–1.37], 99.48-fold), MCP-3 (1.38 [0.66–1.87], 130.28-
fold), MMP-1 (0.73 [0.21–1.30], 95.75-fold), IFN-α2 (0.69 [0.00–1.59], 

95.61-fold), IL-1ra (0.87 [0.57–1.20], 94.89-fold), and TNF-α (0.78 
[0.51–0.96], 83.64-fold), in the SARS-CoV-2 subgroup were extremely 
increased compared to the no infection subgroup, with significant 
differences with Bonferroni correction (p < 0.00035) (Figure  4A). 
Compared to the moderate and mild subgroups, the CVs of IFN-β, 
IFN-γ, IL-8, IL-18, IL-1β, IL-11, IL-5, IL-17, IL-9, sIL-2Rα, sTNF-R1, 
sCD163, MIP-1δ, MIP-3α, MIP-1β, TECK, SCF, eotaxin-3, M-CSF, 
HGF, BCA-1, LIF, MIG, GRO-α, MCP-1, CTACK, and TNF-β were 
increased in the severe subgroup (p < 0.05) (Figures 4B–D). Compared 
to the transfer and discharge subgroups, the CVs of IL-8, IL-10, 
MIP-1α, TWEAK, TNF-α, TGF-β3, and IFN-γ were increased in the 
decease group (p < 0.05) (Figures 4E,F). The CVs of IL-3, IL-8, IL-2, 
IL-18, IL-5, IL-1β, IFN-α2, IFN-γ, SCF, sTNF-R2, M-CSF, BCA-1, 
MIP-1δ, sCD163, sCD30, eotaxin-3, TECK, sIL-2Rα, MIG, PDGF-ββ, 
and LIF in the long-term hospitalization subgroup were increased 
compared to the short-term hospitalization subgroup (p < 0.05) 
(Figure 4G). These findings suggest a possibility that various blood-
circulating cytokines, especially IL-10, IL-8, IL-18, IL-1β, IFN-α2, 
IFN-γ, TNF-α, sIL-2Rα, sCD163, MIP-1δ, TECK, SCF, eotaxin-3, 
M-CSF, BCA-1, LIF, MIG, sTNF-R1, and sTNF-R2, would 
be dysregulated in COVID-19.

Discussion

In this study, matrix metalloproteinase MMP-3 and 
microenvironment remodeling factors including MCP-3, MIF, IL-8, 
SDF-1, and SCYB16 were detected as highly expressed cytokines in 
COVID-19. These findings suggested that potential treatment for 
COVID-19 should not only focus on conventional therapies targeting 
the immune pathway but also consider stabilizing and controlling 
microenvironment remodeling as a potential strategy. Here, 
we detected 76 cytokine marker candidates with Bonferroni-corrected 
significant differences in comparison with disease severity, clinical 
outcome, long-term hospitalization, and disease progression and 
recovery in COVID-19 (Appendix 1). On the other hand, this study 
also detected decreases of 19 cytokines (Appendix 2). Reduced 
cytokines might be also therapeutic targets for oxidative stress-related 
MAPK and JAK/STAT pathways, TGF-β signaling, and extracellular 
matrix (ECM) remodeling in COVID-19. These provide a hint for 
targeting therapy and anti-cytokines in COVID-19, but further studies 
are needed to confirm their efficacy in the future.

Previous COVID-19 studies have clarified several diagnostic 
markers and biomarkers, such as IP-10, CRP, and various ILs and IFNs 
(26) such as CD163 (27), MIF (28), IL-8 (29), IL-18 (30), FGF-basic 
(30), and CHI3L1 (31). Of great interest are MMP-3 as a progression 
marker (32), MCP-3 as a urine marker (33), and IL-2 as a heart disease 
marker (34). FGF-basic (35), CHI3L1 (36), and MCP-3 (37, 38) have 
also been identified as COVID-19 biomarkers with both transcriptome 
and proteome. Reportedly, SDF-1 recruits CD34+ hematopoietic 
stem/progenitor cells (39) and CD3-stimulated T-lymphocytes (40) 
into the virus-infected area. In addition, SDF-1 has fundamental roles 
in hematopoietic disruption, regeneration, and healing (39), which is 
the reason why plerixafor, also called Mozobil, the SDF-1 receptor 
antagonist has been used to protect CD34+ hematopoietic stem/
progenitor cells. Therefore, SDF-1 may be involved in a wide range of 
COVID-19 symptoms and after-effects. Similarly, SCYB16 reportedly 
sequesters differentiated CD4+ T cells and natural killer T (NKT) cells 
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around virus-infected cells (41). IL-11 plays a role in hematopoietic 
stem cell (HSC) differentiation into progenitor cells (42), which 
modulates and stabilizes reciprocal differentiation of CD4 + CD8+ 

cells into CD8+ NKT-cells and CD4+ helper T-cells via IL-11 signaling 
coupled with gp130 and their downstream JAK/STAT and Ras/MAPK 
signaling pathways for cell proliferation (42). Otherwise, IL-11 

FIGURE 3

Local temporal expression changes of cytokine levels at severity and recovery. (A,B) Increase (A) and decrease (B) in cytokine levels at severity from 
mild and moderate (n  =  2) to moderate and severe (n  =  5), respectively. *p  <  0.05: Wilcoxon signed-rank test. (C) Decreased cytokine levels at recovery 
from severe and moderate (n  =  5) to moderate and mild (n  =  2), respectively. *p  <  0.05: Wilcoxon signed-rank test. (D,E) Last sampled blood cytokine 
levels indicating clinical outcomes as progress to decease (n  =  4) and transfer (n  =  5) from moderate and mild disease statuses at hospital admission. 
(D) Decreased are IL-10, IL-1β, IL-8, IL-6, IL-18, TECK, sTNF-R1, sTNF-R2, MCP-1, 6Ckine, M-CSF, TWEAK, fractalkine, sCD163, BCA-1, gp130, and MIG in 
the transfer compared to the decease subgroups. (E) TGF-β3 is increased in the transfer compared to the decease subgroups. *p  <  0.05; Wilcoxon rank 
sum test.
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represses T-cell differentiation by activating CD11b + and CD14+ cells 
(43). CD4+ cells are differentiated into Th1 and Th2 by IL-12, IL-18, 
IL-27, and IFN-γ, and Th2 by IL-4, respectively (44). Although few 
studies have reported IL-11 in COVID-19, IL-11 might be a novel 
cytokine marker candidate in COVID-19. sCD30 binds CD30L (also 
known as CD153) or competes CD30-binding to CD30L on the cell 
surface (45, 46). The ratio of sCD30 and CD30 binding to CD30L 
could determine the Th1/Th2 balance, which would activate Th1 
properties by IL-2, IFN-γ, and TNF and the JAK/STAT, MAPK, 
NF-κB, and sTNF-R2 signaling pathways, and also suppress the Th2 
activities for B-cell class switching and antibody production, thus 
resulting in excessive cytokine release and hyperinflammation (47). 
Moreover, M-CSF differentiates HSCs into macrophages and other 
types of cells and plays roles in hematopoietic-lineage cell proliferation 

and differentiation (48). In addition, M-CSF activates macrophages 
and monocytes in their phagocytic and chemotactic activities (49). 
IL-18 is an integral membrane protein in M-CSF-differentiated 
macrophages with lipopolysaccharide stimulation and induces IFN-γ 
release from NK cells in a caspase-1-dependent fashion (50). IL-8 is 
also known to be a neutrophil chemotactic factor that induces the 
chemotaxis of neutrophils and granulocytes toward the virus infection 
area (51). IL-8 induces a series of physiological responses such as 
intracellular Ca2+ accumulation, exocytosis of substrate, and 
respiratory burst and is required for migration and phagocytosis of 
neutrophils and macrophages (52). I-309 binds to CCR8 on the cell 
surfaces of Th2 and Treg cells and activates these cells, competing with 
the hyperinflammation pathway via Th1 (53, 54). I-309-CCR8 
signaling could modulate the Th1/Th2 balance determining disease 

FIGURE 4

Alteration of coefficient of variation of blood cytokine levels in COVID-19. (A) Marked increase in the coefficient of variation (CV) in the COVID-19 
patients compared to healthy volunteer subjects (p  <  0.05; Wilcoxon rank sum test). (B) Increased CV in the severe subgroup compared to the 
moderate subgroup (p  <  0.05; Steel-Dwass test for multiple comparisons). Disease severity was determined at hospitalization. (C,D) Increased CV of 
cytokines in the severe subgroup compared to the moderate (C) and mild (D) subgroups (p  <  0.05; Steel-Dwass test for multiple comparisons). Disease 
severity was determined at the final measurement. (E,F) Increased CV in the severe subgroup compared to the transfer (E) and discharge (F) subgroups 
(p  <  0.05; Steel-Dwass test for multiple comparisons). (G) Increased CV in the long-term (≥5  weeks) in patients compared to the short-term (<5  weeks) 
in patients (p  <  0.05; Wilcoxon rank sum test). FC, fold change.
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progression and recovery. A recent study also demonstrates that 
M-CSF and I-309 markedly increased in the patients who ultimately 
died of COVID-19 (18). Thus, we propose a hypothetical model of the 
mechanism for the COVID-19 cytokine storm, in which SDF-1, 
SCYB16, IL-11, and sCD30, followed by M-CSF, IL-8, IL-12, IL-18, 
IFN-γ, sTNF-R2, and I-309 (Supplementary Figure S3), might play a 
pivotal role in hematopoietic stem/progenitor and helper T-cell 
differentiation and excessive cytokine release with hyperinflammation, 
yet further studies are needed to validate the proposal.

On the other hand, this study has also several issues as below. The 
unbalanced timing and distribution of sampling may cause a selection 
bias. The follow-up and information regarding transferred patients are 
missing; there is no information for these patients who survived or 
recovered. Considering the low number of patients in the study 
cohort, this may affect all the analyses performed and the differential 
expression of cytokines reported. Post-hoc statistical power is 
calculated for the COVID-19 marker subset constituted of the 11 
cytokines (Supplementary Table S4). Cytokines with post-hoc 
statistical power > 0.7 are sCD30, SDF-1α, IFN-γ, SCYB16, M-CSF, 
I-309, TNF-α, IL-8, IL-18, and sTNF-R2 in SARS-CoV-2 infection vs. 
non-infection. Similarly, M-CSF, IL-8, IL-18, sTNF-R2, and IL-11 are 
detected by post-hoc statistical power > 0.7  in severe vs. moderate 
disease. In addition, the detected cytokines with post-hoc statistical 
power > 0.7 are sCD30 in severe vs. mild disease, IL-8 in decease vs. 
transfer, IFN-γ and IL-8 in decease vs. discharge, and IFN-γ, I-309, 
TNF-α, and IL-18  in long hospitalization (≥5 weeks) vs. short 
hospitalization (<5 weeks). However, due to the small sample size, the 
results need to be validated in a large cohort. In addition, this study 
mentions no demographic information or comorbidities of the 
patients and healthy controls, which may affect the cytokine levels. It 
is also important to use inclusion and exclusion criteria in this study, 
as many clinical parameters, such as secondary infections, intubation, 
mechanical ventilation, and thrombotic complications, may affect 
cytokine levels. Blood culture found that three patients were infected 
by bacteria. The one case was negative on reanalysis after days, and it 
is considered that there are few clinical effects. The other two cases 
were positive in the last specimens during follow-up, and it could not 
exclude a possibility of bacterial infection during a COVID-19 
treatment (e.g., intubation) and hospital stay. In addition, four cases 
of ARDS were observed, all of which had hypoxemia (SpO2 < 90%), no 
cardiomegaly, and abnormal opacities in both lungs on computed 
tomography (CT) or X-ray imaging, according to ARDS Clinical 
Practice Guidelines 2016 and Berlin protocol. Therefore, in the four 
patients, it is considered that ARDS occurred following COVID-19 
pneumonia. In general, although elevated levels of cytokines are 
known in COVID-19 patients with cytokine storm, these levels are 
much lower than in patients with ARDS or sepsis. This suggests that 
the COVID-19 cytokine storm is hard to evaluate because of the high 
expression of cytokines. Additionally, of the COVID-19 marker subset 
consisting of the 11 cytokines, there is no difference between the 
COVID-19 patients with diabetes comorbidity (n = 15) and those 
without it (n = 8) (Supplementary Table S5). However, at discharge and 
transfer, IL-18 in the patients with hemoglobin A1c (HbA1c) ≥7.0 is 
1.96-fold higher than those with HbA1c <7.0 (p = 0.012) 
(Supplementary Table S6). In addition, I-309 is increased in the 
patients with a comorbidity of inflammatory bowel disease (n = 1) 
(Supplementary Figure S4). Furthermore, SDF-1α, SCYB16, and I-309 
are also increased in the patients with thrombocytopenia (n = 1) 
(Supplementary Figure S4). Therefore, it must be carefully observed 

whether COVID-19 patients with high cytokine levels are associated 
with ARDS, sepsis, or comorbidities in a large cohort.

Previous studies have reported that various cytokines, 
interleukins, and chemokines including IL-6, IL-10, TNF-α, and 
IFN-γ are stimulated with COVID-19 infection (3, 15–18, 20). 
Although many of the cytokines detected in the study have already 
been reported as possible diagnostic marker candidates (3–6, 16, 18, 
20), IL-11 might also be  a novel diagnostic marker candidate in 
COVID-19. These findings could develop personalized medicine with 
recombinant proteins and anti-chemokine drugs, e.g., the 
recombinant IL-11, oprelvekin, to stimulate the proliferation of HSCs 
followed by the anti-SDF-1 reagent, plerixafor, to mobilize HSCs 
around infected cells. On the other hand, reactivation of the signaling 
pathways involved in the decreased cytokines, such as IL-31, 
chemokines RANTES, MDC, PDGF, and TGF-β family members, 
might also be a novel strategy for COVID-19 therapy. While there is 
extensive research into biomarkers, studies on biological relevance 
might be relatively understudied in the context of COVID-19 around 
the world. Our findings also suggested that the cytokines increased 
with COVID-19 infection, compared to no infection, yet decreased 
by mortality, severe disease, and progression. Further detailed 
analyses in large populations are required for investigations of 
potential confounding factors, confirmations of the claims and 
proposals of this study, and generalizability of these findings to 
different populations.

In summary, we here described the cytokine storm precisely by 
investigating not only the expression level but also the range of 
fluctuations during hospitalization as CV, which would be a novel 
insight for evaluating the COVID-19 cytokine storm. Based on our 
findings, we considered that ECM remodeling might be a therapeutic 
target in addition to the conventional anti-interleukin treatment 
targeting the immune and inflammatory pathways. In addition, 
we proposed a hypothetical model that SDF-1, SCYB16, IL-11, sCD30, 
and I-309 might all play a pivotal role in helper T-cell differentiation 
and excessive cytokine release with immune response and 
inflammation in COVID-19.
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