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The continuous monitoring of the health status of patients is essential for the 
effective monitoring of disease progression and the management of symptoms. 
Recently, health monitoring using non-contact sensors has gained interest. 
Therefore, this study aimed to investigate the use of non-contact sensors 
for health monitoring in hospital settings and evaluate their potential clinical 
applications. A comprehensive literature search was conducted using PubMed 
to identify relevant studies published up to February 26, 2024. The search terms 
included “hospital,” “monitoring,” “sensor,” and “non-contact.” Studies that used 
non-contact sensors to monitor health status in hospital settings were included 
in this review. Of the 38 search results, five studies met the inclusion criteria. The 
non-contact sensors described in the studies were radar, infrared, and microwave 
sensors. These non-contact sensors were used to obtain vital signs, such as 
respiratory rate, heart rate, and body temperature, and were then compared 
with the results from conventional measurement methods (polysomnography, 
nursing records, and electrocardiography). In all the included studies, non-
contact sensors demonstrated a performance similar to that of conventional 
health-related parameter measurement methods. Non-contact sensors are 
expected to be a promising solution for health monitoring in hospital settings.
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1 Introduction

Health monitoring is crucial in hospital settings for early detection and prevention of 
diseases as well as for assessing the effectiveness of treatments (1, 2). Regular monitoring of 
health status enables the early detection of disease onset or health-related issues and helps 
identify the risk of comorbidities and complications (3). Moreover, monitoring disease 
progression can help decelerate or prevent deterioration (4, 5). Health monitoring of patients 
being treated in hospitals can also help track patient recovery and increase treatment efficiency 
(6, 7). Furthermore, patients admitted to hospitals often experience post-hospital syndrome 
characterized by temporary frailty and an increased risk of readmission due to inactivity or 
sleep deprivation following admission (8). Monitoring of the heart rate (HR) and sleep can 
help reduce the incidence of post-hospital syndrome (8). Considering various clinical 
situations, hospital health monitoring is perceived as both important and essential.
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Traditionally, contact-based devices (e.g., electrocardiogram 
recorders, continuous blood glucose monitoring devices, and 
respiratory belts) have been utilized in clinical settings for hospital-
based health monitoring. Electrocardiograms measure vital signs via 
patches attached to the skin that receive electrical signals; however, 
they carry the risk of skin disorders owing to patch usage (9, 10). 
Invasive devices can also induce fear in patients (11), whereas wearable 
devices can cause inconvenience owing to difficulties in wearing the 
devices (12). Additionally, general vital sign monitors can induce 
psychological distress in patients owing to their bulky size (13). 
Moreover, the cables connecting the patient to the device can cause 
discomfort when the patients move (14, 15). Non-contact sensors have 
been developed to overcome the limitations of conventional devices in 
health monitoring. Through non-contact sensors, patients can monitor 
their health status in real-time without wearing specific equipment, 
thereby improving convenience and comfort in daily life (16, 17). 
Additionally, non-contact sensors pose a minimal risk of skin disorders 
because they do not directly touch the patient’s body and can reduce 
psychological burdens owing to their small size and inconspicuous 
nature (18, 19). Non-contact sensors can be  particularly useful in 
hospital environments where the risk of infection is high. Hospitals are 
recognized as places where infection control is critical. Thus, 
non-contact sensing technology can play a significant role in reducing 
the spread of infections within hospitals by minimizing direct contact 
between patients and healthcare providers (20). In addition, 
non-contact sensing technology is known to be effective for quickly 
monitoring the health status of many patients. Non-contact 
thermometers or heart rate monitors can reduce the waiting time 
necessary for medical examinations and increase efficiency by reducing 
the workload of healthcare providers, as they do not require direct 
intervention. Several previous studies have demonstrated the 
performance of non-contact sensors in health monitoring. In 2019, 
Michler et  al. (21) highlighted the usefulness of radar-based 
non-contact sensors in measuring the HR and respiratory rate (RR). 
In 2022, He et al. (22) reported that non-contact sensors based on 
depth cameras and radar could accurately detect the RR and respiratory 
patterns. Similarly, in 2022, Talukdar et al. (23) reported that a camera-
based non-contact sensor using remote photoplethysmography (PPG) 
technology could be a novel solution for monitoring HR, RR, oxygen 
saturation, and blood pressure. Non-contact sensors in health 
monitoring appear to overcome the limitations of traditional methods 
and have the potential to be useful in hospital settings.

In this study, we  compared the performance of traditional 
measuring devices with that of non-contact sensors for health 
monitoring in hospital settings. We  conducted an in-depth 
examination of the current limitations of non-contact sensing 
technology and assessed the potential clinical applicability of 
non-contact sensors. In addition, by proposing future research 
directions, we  aim to provide new perspectives in the fields of 
medicine and sensing technologies.

2 Methods

2.1 Search strategy

We searched the PubMed database for relevant studies published 
up to February 26, 2024. The following search terms were used: 

“hospital,” “monitoring,” “sensor,” and “non-contact.” The inclusion 
criteria for the studies were as follows: (1) studies of non-contact 
sensors used to monitor health status in hospitals and (2) studies that 
compared the performance of non-contact sensors and traditional 
methods for health monitoring. The exclusion criteria were as follows: 
(1) studies involving only healthy individuals; (2) studies involving 
wearable devices; (3) reviews, conference presentations, letters to the 
editor, or other unidentified types of articles; (4) studies published in 
languages other than English owing to the authors’ limited 
language abilities.

2.2 Data extraction

All search results were exported to Endnote 20 software. Two 
independent reviewers (Y. J. C. and M. C. C.) confirmed the 
retrieved studies and selected eligible ones. We checked the titles 
and abstracts to select studies that met the selection criteria and 
read the full texts to determine which articles were to be included 
in this study. Any disagreements between the reviewers were 
resolved through discussion.

3 Results

3.1 Selection of studies

Of the 38 studies, 27 were excluded after checking the titles and 
abstracts of the studies that met the selection criteria. On checking the 
full texts of the remaining 11, four were excluded because they 
included wearable devices and two were excluded because they were 
conducted in a home environment. Finally, five studies (24–28) were 
included in this narrative review (Figure 1). The characteristics of the 
included studies are summarized in Table 1.

3.2 Summary of selected studies

In 2009, Zaffaroni et  al. (28) compared the effectiveness of 
non-contact sensors (SleepMinder, BiancaMed, Dublin, Ireland) and 
polysomnography (PSG) in estimating the apnea-hypopnea index 
(AHI) of 157 participants with suspected sleep apnea. SleepMinder is 
a radar sensor-based non-contact sleep status monitoring device, 
developed to measure the breathing status and body movement 
during sleep. SleepMinder extracts respiratory signals from a patient’s 
chest movements and is typically placed facing the patient’s upper 
body because it has directionality that allows it to measure movement 
only in front of the sensor (29). In addition, it has a limited range and 
can only respond to objects within 2.5 meters of the sensor (29). The 
operating principle of SleepMinder is similar to that of the Doppler 
effect, a phenomenon in which the wave frequency changes depending 
on the relative motion of the wave source (26). SleepMinder detects 
and analyzes the phase shifts occurring in moving objects, such as 
breathing. Radiofrequency energy at 5.8 GHz was transmitted as two 
short pulses, each 5 ns long (30). The two pulses serve as the main 
transmit pulse, which is reflected from the object and received by the 
sensor, and the mixer pulse, which generates a signal proportional to 
the phase change of the main transmit pulse inside the receiver. 

https://doi.org/10.3389/fmed.2024.1421901
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Choo et al. 10.3389/fmed.2024.1421901

Frontiers in Medicine 03 frontiersin.org

SleepMinder operates at a low power with an average radiated power 
of 0.25 mW, meeting the safety and regulatory guidelines for 
radiofrequency devices (29). PSG is considered the gold standard for 
diagnosing sleep disorders (31). In PSG, apnea is generally defined as 
the complete cessation of breathing or a decrease in airflow of 90% or 
more lasting for more than 10 s (32). Hypopnea is typically defined as 
a 50% or greater decrease in airflow or a 3% or greater decrease in 
oxygen saturation lasting >10 s (32). AHI is a scale that determines the 
severity of sleep apnea and is classified into normal (AHI < 5), mild 
(5 ≤ AHI < 15), moderate (15 ≤ AHI < 30), and severe (AHI ≥ 30) (28). 
In Zaffaroni et al.’s study (28), SleepMinder was installed along with 
PSG to record biomotion signals simultaneously. The correlation 
coefficient between AHI estimates from SleepMinder and PSG was 
0.91, indicating a strong positive correlation.

In 2018, Weinreich et  al. (26) evaluated the performance of 
SleepMinder in detecting obstructive sleep apnea (OSA) and periodic 
limb movements during sleep (PLMS). Fifty-seven patients with sleep 
disorders, including 19 with PLMS, participated in this study. The 
levels of OSA and PLMS are typically determined using the AHI and 
periodic limb movement index (PLMI), respectively. Weinreich et al. 

(26) introduced a new sleep disorder index (SDI), the sum of the AHI 
and PLMI, and compared the agreement between SleepMinder-
derived SDI and PSG-derived SDI. The correlation coefficient of the 
association between the SDIs generated by SleepMinder and PSG was 
0.79, indicating a strong positive correlation. According to Zaffaroni 
et al. (28) and Weinreich et al. (26), SleepMinder is a viable alternative 
to conventional methods of detecting OSA and PLMS.

In 2020, Tasi et al. (25) applied a non-contact sensor to monitor 
the vital signs and body movements of patients with coronavirus 
disease (COVID-19) in an isolation ward. The non-contact sensor was 
a non-contact self-injection locking (SIL) radar (SIL Radar Technology 
Inc., Kaohsiung, Taiwan). The SIL radar was developed to measure 
vital signs, and it includes the following components: (1) receive 
antenna, (2) transmit antenna, (3) differential voltage-controlled 
oscillator with an injection port, (4) frequency demodulator composed 
of a mixer and a delay line, (5) low-pass filter, (6) bandpass filter, and 
(7) digital signal processor with built-in analog-to-digital converter 
and digital-to-analog converter (33). The continuous wave signal 
emitted from the oscillator embedded in the SIL radar is reflected by 
the target and injected back into the same oscillator, thereby forming 

FIGURE 1

Flow chart for the selection of studies.
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an SIL state (34). The generated signals were modulated by a voltage-
controlled oscillator, processed, and analyzed using a digital signal 
processor (33). The SIL radar can operate at a distance of 4 m from 
objects and is capable of stable vital sign measurement, even at an 
operating frequency of 3.6 GHz and an output power of 0 dBm (35). 
In a study by Tasi et al. (25), an SIL radar was fixed to the ward ceiling 
to detect a patient’s body temperature and HR. The monitoring results 
of body temperature and HR from the SIL radar for two COVID-19 
patients were compared with the nurses’ records. The p-value obtained 
using Fisher’s exact test was 0.139 for body temperature and 0.292 for 
HR, indicating that the data collected by the SIL radar and nursing 
records were not significantly different. Additionally, the SIL radar can 
detect human face and body movements, allowing for real-time 
confirmation of patients’ coughing and breathing movements. 
Coughing and dyspnea are considered significant symptoms of 
COVID-19. Therefore, the SIL radar allows for continuous monitoring 
of COVID-19 patients’ conditions, enabling clinicians to save time 
compared to the conventional method of direct observation. 
Moreover, continuous health monitoring of patients in nursing 
stations (clean zones) can reduce the risk of infection.

In 2020, Yoon et al. (27) demonstrated the feasibility of using a 
non-contact sensor for sleep monitoring compared with PSG in a 
sample of 10 participants with sleep disorders. The non-contact sleep 
monitoring device consisted of a passive infrared sensor, a microwave 
sensor (WAVE, Sharp, Japan), and a smartphone (Galaxy Note 8, 
Samsung, Korea). The activity of the object was detected by an infrared 

sensor and recorded every 2 s, whereas the RR and HR were measured 
every 200 ms by a microwave sensor and then averaged over minutes. 
Changes in the RR- and HR-related frequencies over time were 
visualized in graphs and checked using the smartphone. The collected 
activity, RR, and HR data were used to predict sleep stages and 
evaluate sleep quality. Sleep was classified into four stages: awake, 
rapid eye movement (REM), light, and deep sleep. Additionally, the 
total sleep time, sleep efficiency, and wake after sleep onset (WASO) 
were used to evaluate sleep quality. Sleep efficiency was defined as the 
percentage of total time spent sleeping in bed, and WASO was defined 
as the time spent awake after sleep onset. The accuracy of the 
non-contact sensors in estimating sleep stages was 98.65%, and a 
significant positive correlation was found between the non-contact 
sensors and PSG for evaluating sleep quality (total sleep time, r = 0.97; 
sleep efficiency, r = 0.996; WASO, r = 0.99).

In 2022, Edanami et al. (24) evaluated the heart-signal detection 
performance of a non-contact medical radar-based vital sign 
monitoring system. Their sample included three infants in the 
neonatal intensive care unit (NICU); an electrocardiogram (ECG) bed 
monitor (BSM-6301, NIHON KOHDEN Co., Japan) simultaneously 
measured heart signals with a non-contact sensor. The non-contact 
sensor included a 24-GHz radar (NJR4262, New Japan Radio Co., 
Ltd., Japan) and signal acquisition and analysis software. The distance 
between the radar sensor and the target object was 5 cm, and the radar 
detected the movement of the object by continuously emitting radio 
waves of a certain frequency and receiving the reflected waves. 

TABLE 1 Characteristics of selected studies.

Study Participants Target disorder Non-contact 
sensor

Conventional 
measurement 
methods

Outcome 
parameters

Edanami et al. 2022 

(24)
N = 3, mean age = 34 days

One patient with 

urinary tract infection 

and two patients with 

newborn jaundice

24 GHz radar 

(NJR4262; New Japan 

Radio Co., Ltd., Japan)

Electrocardiogram (ECG) bed 

monitor (BSM-6301; NIHON 

KOHDEN Co., Japan)

Heart rate, inter-beat 

interval, and heart rate 

variability

Tasi et al. 2020 (25)
N = 2, mean age = no 

information
Coronavirus disease

Self-injection locking 

radar (SIL Radar 

Technology INC., 

Kaohsiung, Taiwan)

Nursing record
Heart rate, repiratory rate, 

and body temperature

Weinreich et al. 

2018 (26)

N = 57, mean 

age = 56.4 ± 14.0 years

Obstructive sleep 

apnea in 51 patients, 

Cheyne-Strokes 

respiration in six 

patients. Periodic limb 

movements of sleep in 

19 out of 57 patients.

SleepMinder 

(BiancaMed, Dublin, 

Ireland)

Polysomnography Sleep disorder index

Yoon et al. 2020 (27)

N = 10, mean age = no 

information, range of age = 40 

to 80 years

Sleep disorders

Passive infrared 

sensor, a microwave 

sensor (WAVE, Sharp, 

Japan), and a 

smartphone (Galaxy 

Note 8; Samsung, 

Korea) application

Polysomnography
Sleep stages and sleep 

quality

Zaffaroni et al. 2009 

(28)

N = 157, mean 

age = 53.9 ± 13.7 years
Sleep apnea

SleepMinder 

(BiancaMed, Dublin, 

Ireland)

Polysomnography Apnea-hypopnea index
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Heartbeat peaks were estimated from the heart signal to obtain the 
interbeat interval (IBI) and heart rate variability (HRV) values. IBI was 
defined as the time interval between two neighboring heartbeat peaks, 
and HRV was estimated as a time series of IBI. The agreement between 
the non-contact radar sensor and ECG for the HR was 99%, and the 
correlation coefficients of the associations between the non-contact 
sensor and ECG for the IBI, low-frequency (LF), and high-frequency 
(HF) HRV were 0.82, 0.98, and 0.95, respectively. These results 
indicate the excellent performance of radar-based non-contact sensors 
in analyzing infant heart signals.

4 Discussion

This study explored the application of non-contact sensors for 
health monitoring in hospital settings. Based on the included studies, 
non-contact sensors are believed to have ample potential for 
monitoring cardiac and respiratory activities and body movements 
during sleep (26–28), vital signs of patients in COVID-19 isolation 
wards (25), and cardiac activity of infants in NICU settings (24). 
Additionally, monitoring health status using non-contact sensors can 
alleviate the excessive workload of the nursing staff, and real-time 
monitoring can help the hospital personnel detect the risk to patients 
in the ward at any time (25).

Of the five included studies (24–28), four (24–26, 28) used radar-
based non-contact sensors, and one (27) used an infrared sensor and 
a microwave sensor to detect body movement and parameters related 
to cardiac and respiratory activities. Radar sensors detect the 
position and velocity of an object by analyzing the signals that radio 
waves reach and then reflect (36). Infrared sensors determine the 
presence of an object by detecting the infrared radiation generated 
by the heat emitted by the object (37). The energy level of the infrared 
light changes depending on the temperature of the object, allowing 
it to detect changes in the temperature or position of the object (37, 
38). Microwave sensors detect movement by emitting microwaves 
and receiving signals reflected from objects (39). The operating 
principles of radar sensors and microwave sensors are rather similar, 
and when radar sensors and microwave sensors are combined, they 
are classified as microwave radar sensors (39). Radar and infrared 
sensors are commonly used as non-contact sensors for monitoring 
health status, and this technology is becoming more sophisticated 
with the introduction of algorithms for accurate signal processing 
and analysis (24). However, the health status that can be monitored 
using non-contact sensors is limited to vital signs such as HR, RR, 
blood pressure, body temperature, and oxygen saturation. Blood 
glucose is often cited as a major concern in health-conscious people 
(40, 41). The most widely used device for measuring blood glucose 
is continuous glucose monitoring (CGM), which is an invasive 
method for checking blood glucose levels by inserting a needle into 
the skin (11). Although CGM is known to help manage blood 
glucose profiles, it has been reported to be underutilized by people 
with diabetes, citing fear of invasive equipment and the hassle of 
wearing the devices (42, 43). Recently, various sensors such as 
colorimetric and fluorescent sensors have been developed as 
wearable sensors for health monitoring (44). Colorimetric and 
fluorescence sensors can be  used to collect and analyze various 
biochemical information, such as glucose or chloride ion 
concentration (45–47). The development of a device that can analyze 

the composition of sweat using non-contact sensors is expected to 
provide significant benefits for blood glucose management in health-
conscious individuals or patients with diabetes. Furthermore, the 
development of technologies capable of accurately recognizing sleep 
positions has recently gained interest (48). Movements of the body 
during sleep are closely correlated with sleep quality and health 
outcomes (e.g., sleep apnea or sudden infant death syndrome), 
making them an important factor in health monitoring (49, 50). In 
2022, Islam et al. (51) developed a technology using a microwave 
Doppler radar that could accurately measure cardiopulmonary 
movement patterns in three sleep positions: supine, side, and prone. 
Applying this technology in hospital settings, such as the NICU or 
wards for patients with sleep disorders, could enable the immediate 
detection of potentially risky situations during sleep, allowing for 
prompt early intervention.

With the growing interest in non-contact sensors for health 
monitoring, related technologies are constantly being developed. 
Many previous studies have reported that non-contact sensors provide 
more accurate measurements than standard laboratory methods for 
measuring vital signs (52–54). However, non-contact sensors are not 
widely used in clinical practice. Despite the abundance of evidence 
supporting their superior performance, non-contact sensors are yet to 
become commercially available for several reasons.

First, if the results of a standard measurement tool, which serves 
as a benchmark for evaluating the accuracy of non-contact sensors, 
are deemed unreliable, there is a potential risk of misinterpreting the 
performance of the non-contact sensor. One example is the 
controversial reliability of PSG, which is the standard method for 
determining sleep disorders. In 2008, Levendowski et al. (55) reported 
that high night-to-night variability in OSA could compromise the 
reliability of PSG results. In 2022, Lee et al. (56) conducted a meta-
analysis to evaluate the inter-rater reliability of manual scoring of sleep 
stages using PSG results. Pooling results from 11 articles, they reported 
that inter-rater reliability was high for wake (stage W) and REM sleep 
(stage R), “moderate” for moderate sleep (stage N2) and deep sleep 
(stage N3), and “fair” for light sleep (stage N1). Overall, the results of 
the PSG were considered reliable, but the results were poor at certain 
stages, suggesting that validity needs improvement. These issues 
should be considered when interpreting the results and evaluating the 
performance of non-contact sensors.

Second, the measurement performance of non-contact sensors 
using PPG can vary depending on skin type, sex, or surrounding 
environment. In 2020, Nowara et al. (57) reported that dark skin types 
significantly affected the PPG sensor measurement results, with 
women tending to have a slightly lower measurement accuracy. In 
2023, Zhao et al. (58) reported that the non-isothermal nature of the 
human body can cause discrepancies in readings when non-contact 
infrared sensors measure the body temperature at a location different 
from that of a reference device. In addition, blood flow or skin 
thickness at a particular measurement site can have an impact and 
environmental factors such as ambient temperature or humidity can 
act as confounding variables (58, 59). Studies reporting the 
performance of non-contact sensors have focused on small 
populations and not on multicenter and multicultural populations. 
Furthermore, these studies were not designed to consider all human 
characteristics. Future studies should evaluate the performance of 
non-contact sensors in diverse healthcare settings and individuals 
with different characteristics to produce generalizable results.
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Third, separating cardiac and respiratory signals perfectly remains 
a significant challenge. As the amplitude of the heartbeat signal is 
smaller than that of the respiratory signal, it can be easily distorted by 
the harmonics of the respiratory signal, necessitating advanced 
techniques to clearly distinguish between cardiac and respiratory 
signals (60). In 2023, Uddin et al. (61) developed a system using a 
microwave Doppler radar that can classify normal breathing, apnea, 
and hypopnea patterns through HRV-based feature extraction. HRV 
refers to the variation in time intervals between consecutive 
heartbeats, and the HF and LF components of HRV exhibit significant 
changes under different breathing patterns (61). Therefore, future 
research should consider using HRV as a key biomarker to advance 
the technologies for separating cardiac and respiratory signals. 
Another approach is to use ultra-wide band (UWB) sensors. Several 
previous studies demonstrated that UWB is highly resistant to 
multipath effects, making it excellent for separating cardiopulmonary 
signals (62–64).

Fourth, the technology for processing the signals caused by 
random body movements (RBM) has limitations. During sleep, the 
signals generated by unexpected RBM are much larger than those 
obtained from regular chest movements, which can obscure the 
respiratory signals (65). Previous studies set the maximum amplitude 
and normal breathing rate standards for respiratory signals based on 
data collected over a period of time from participants in a static 
position after falling asleep. Sudden increases in amplitude beyond 
these standards were classified as unexpected RBM, and signals from 
these movements were excluded from the analysis (65, 66). However, 
this signal-processing method is difficult to apply in clinical settings. 
In the technology development stage, biosignals are generally 
measured and verified within a defined range of movements of healthy 
volunteers. However, in clinical settings, patients exhibit various 
clinical characteristics, including sudden muscle spasms, seizures 
during sleep, apnea, and hypopnea, making it difficult to predict their 
sleep behavior patterns. Therefore, future research should consider a 
wider range of movement characteristics during the development 
process to enable non-contact sensing technology to learn from 
diverse output signals. In addition, there is a need for further 
advancements in techniques to precisely separate the noise caused by 
movement from respiratory signals.

Finally, concerns regarding privacy violations must be addressed. 
Sensor devices collect and analyze user biometric information; hence, 
the risk of violation of personal information cannot be ignored (67). 
To address this issue, clear and easy-to-understand privacy policies 
must be published to help users recognize that non-contact sensors 
pose a low risk of privacy infringement and leakage (68). Additionally, 
installing non-contact sensors for real-time monitoring increases the 
risk of users feeling like they are being watched, and they may feel 
uncomfortable being recorded all day (69). Before applying the device 
to the user, the personal information to be  collected should 
be disclosed, the monitoring procedures should be explained in detail, 
and consent must be obtained.

Owing to these technical limitations, current non-contact 
sensors may be  perceived as less reliable. However, in hospital 
environments, where accurate health monitoring results are 
expected, a compromise should be sought. We discuss the following 
trade-off scenario: a large-scale temperature detection system can 
quickly screen many people, but the accuracy of individual 
measurements may be  lower. In situations where it is crucial to 

quickly determine the infection status of a large group, even at the 
expense of individual accuracy, non-contact sensing technology can 
be adopted. For instance, at the hospital entrance, basic screening 
and non-contact temperature checks can be  used to identify 
patients with potential COVID-19 symptoms. In this case, 
minimizing the infection risk holds greater value than achieving a 
precise diagnosis, thus justifying the use of non-contact sensors. 
When using non-contact methods to monitor large groups and 
selectively re-examine those who exceed certain thresholds, several 
advantages emerge: (1) it significantly reduces the time required 
compared to measuring each individual with contact-based 
equipment, (2) it alleviates the excessive workload of healthcare 
providers, (3) it saves costs related to labor and equipment use, and 
(4) it alleviates the psychological burden of infection risk for both 
patients and healthcare providers. By prioritizing infection 
prevention over absolute reliability, non-contact solutions can 
be used as the primary health monitoring method to maximize 
their benefits.

In conclusion, non-contact sensors are expected to be suitable 
alternatives to contact devices for health monitoring in hospital 
settings. However, challenges regarding performance enhancement 
and privacy protection remain unaddressed. In the future, non-contact 
sensors are expected to overcome these limitations and be widely used 
for full-cycle health monitoring.
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