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Mining associations between
glycemic variability in
awake-time and in-sleep
among non-diabetic adults
Zilu Liang1,2*
1Ubiquitous and Personal Computing Lab, Faculty of Engineering, Kyoto University of Advanced
Science (KUAS), Kyoto, Japan, 2Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

It is often assumed that healthy people have the genuine ability to maintain tight
blood glucose regulation. However, a few recent studies revealed that glucose
dysregulation such as hyperglycemia may occur even in people who are
considered normoglycemic by standard measures and were more prevalent
than initially thought, suggesting that more investigations are needed to fully
understand the within-day glucose dynamics of healthy people. In this paper,
we conducted an analysis on a multi-modal dataset to examine the
relationships between glycemic variability when people were awake and that
when they were sleeping. The interstitial glucose levels were measured with a
wearable continuous glucose monitoring (CGM) technology FreeStyle Libre 2
at every 15 min interval. In contrast to the traditional single-time-point
measurements, the CGM data allow the investigation into the temporal
patterns of glucose dynamics at high granularity. Sleep onset and offset
timestamps were recorded daily with a Fitbit Charge 3 wristband. Our analysis
leveraged the sleep data to split the glucose readings into segments of awake-
time and in-sleep, instead of using fixed cut-off time points as has been done
in existing literature. We combined repeated measure correlation analysis and
quantitative association rules mining, together with an original post-filtering
method, to identify significant and most relevant associations. Our results
showed that low overall glucose in awake time was strongly correlated to low
glucose in subsequent sleep, which in turn correlated to overall low glucose in
the next day. Moreover, both analysis techniques identified significant
associations between the minimal glucose reading in sleep and the low blood
glucose index the next day. In addition, the association rules discovered in this
study achieved high confidence (0.75–0.88) and lift (4.1–11.5), which implies
that the proposed post-filtering method was effective in selecting quality rules.

KEYWORDS
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1. Introduction

Glucose homeostasis is critically important to human health. A disruption to glucose

homeostasis may lead to hyperglycemia and hypoglycemia, both of which are associated

to oxidative stress, inflammatory cytokines and increased cardiovascular risks (1).

Diabetes, a disease characterized by extended and chronic hyperglycemia, has become
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a major public health concern in recent years. Correspondently,

a large body of studies have investigated the glycemic patterns of

patients with type-1 and type-2 diabetes (2–4). However, much

less is known about the temporal glycemic patterns in non-

diabetic populations. It is often assumed that healthy people

have the genuine ability to maintain tight regulation of blood

glucose and thus abnormal glycemic levels are rarely a

concern. Nonetheless, a few studies have revealed that glucose

dysregulation such as hyperglycemia may occur even in

people who are considered normoglycemic by standard

measures and were more prevalent than initially thought (5,

6). Examining the within-day glucose dynamics of healthy

people may cast light on behavioral interventions that help

prevent the progression of metabolic disorders.

Blood glucose regulation in daytime is influenced by many

external disturbances such as feeding and exercise (7, 8).

Conversely, glucose regulation in sleep is primarily autonomic

and endogenous, and thus may provide a better picture on

the basal stability of glucose regulation. An investigation into

the relationships between the glucose regulation in daytime

and in-sleep and especially among healthy people may reveal

new insights into human glycemic dynamics. Currently, only

a few studies have examined the glucose profiles of healthy

people in daytime and at night separately (3, 9–13). However,

the sleep and wake phases were simplified using fixed ranges

in those studies, e.g., 12:00 AM–5:59 AM/6:00 AM–11:59 PM.

No study has conducted analysis on the glucose traces

alongside everyday sleep and wake cycle of participants.

In this study, we examined the associations between awake-

time glucose and in-sleep glucose among normoglycemic people

using data collected with continuous glucose monitoring

(CGM) technologies. The advances in CGM technologies have

made it possible to collect glucose data at high temporal

granularity. While traditional blood test or SMBG provides

only a single “point-in-time” or isolated glucose

measurements, CGM can provide measures of interstitial

glucose through the day at fixed intervals (e.g., 5 min or

15 min) and thus capture the daily nuances of glycemic

excursions. The statistics generated by the CGM data were

more valid than those garnered from SMBG (14, 15). CGM

has been developed and introduced firstly to the management

of Type-1 diabetes and then gradually recognized as an

important tool for the management of Type-2 diabetes (16,

17). One CGM sensor can usually be used for an extended

period of time (usually up to 14 days). Providing glucose

readings in real time, the CGM technologies allow to detect

glucose fluctuation and enable continuous monitoring of

glucose dynamics even during sleep, which has not been

possible using traditional glucose measurement technologies.

Thanks to the high sampling rate of CGM compared to

tradition methods, researchers are now able to derive a set of

metrics to characterize glycemic variability (GV). GV

quantifies the oscillations in glucose level and have has
Frontiers in Medical Technology 02
emerged as an important index of glucose homoeostasis.

There has been increasing evidence that the GV metrics are of

high clinical significance as they are not only better predictors

of diabetes complications, but also are possible independent

risk factors. For example, GV was associated with

cardiovascular events (18), arterial stiffness (19), and

hypoglycemia (20). There are two categories of GV metrics:

long-term GV assessed by HbA1c, serial fasting plasma

glucose (FPG) and post-prandial glucose (PPG), and short-

term GV assessed by both within-day and day-to-day GV

metrics (1). In this study, we derived a set of short-term

within-day GV metrics from the CGM data as they are the

most relevant to the present study. We then applied repeated

measure correlation analysis and association rules mining to

generate answers to the following questions:

• How does the GV in awake-time associate to that in

subsequent sleep?

• How does the GV in sleep associate to that in awake time the

next day?

To the best of our knowledge, this is the first study that

investigated the reciprocal relationship of glycemic variability

in-sleep and in awake-time. The findings generate new

insights into the glucose profiles of healthy adults and pave

the way for future studies into human metabolism.
2. Materials and methods

2.1. Dataset

We performed a retrospective analysis of a dataset that was

collected in (21). At the time of the study, that was the only

dataset in which both 24-hour CGM data and sleep data were

concurrently recorded in naturalistic settings from a cohort

considered normoglycemic. This dataset constitutes in total

5,124 h of CGM data collected from 12 adults with no

diagnosed metabolic diseases. Fifty percent of the participants

were male. The average age of the cohort was 32.7 years

(range: 19–51 years). The data collection experiment last up

to 14 days and the valid amount of data of each participant

ranged from 4 to 14 days (median: 13 days). The CGM data

were measured with the FreeStyle Libre system which

combines the features of both intermittently scanned CGM

(isCGM) and real-time CGM (rtCGM). It measures the

glucose level in the interstitial fluid, which is considered to

have equal or even more significant clinical relevance than

blood glucose (22). The sleep data were collected using a

Fitbit Charge 3 worn on the non-dominant wrist. The time

stamps of sleep onset and offset were used to split the CGM

data into waketime segment and in-sleep segment. Prior

studies have validated that Fitbit is reasonable accurate in

detecting sleep onset and offset (23).
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2.2. Glycemic variability metrics

The CGM data were split into the in-sleep segment

(denoted as Gsleep) and awake-time segment (denoted as

Gawake) based on Fitbit recorded sleep onset and offset

timestamps. GV is defined by the metrics that characterize the

glucose fluctuations or glucose homoeostasis within a given

time interval (1). We derived a set of short-term GV metrics

listed below that best represents the intra-day glucose

dynamics according to clinical literature (16, 24–31), with

necessary adaptation to the objective of this study. Other GV

metrics that characterize day-to-day glucose dynamics were

discarded as they were not relevant to this study. The GV

metrics were computed separately for Gsleep and Gawake based

on sleep onset/offset time stamps, rather than the 24 h (i.e.,

midnight-to-midnight) time span used in existing literature.

• Mean (denoted as mean; mg/dl): the average value of all

glucose readings within a time interval T.

• Standard deviation (sd; mg/dl): the standard deviation of all

glucose readings within a time interval T, reflecting the

variability of glycemic levels over that time span. As the

distribution of glucose values is highly skewed, the sd

would be influenced predominantly by hyperglycemic

events and not sensitive to hypoglycemic events.

• Maximum (max; mg/dl): the maximum of all glucose

readings within a time interval T.

• Minimum (min; mg/dl): the minimum of all glucose readings

within a time interval T.

• Coefficient of variation (cv; %): the sd of all glucose readings

within a time interval T normalized over the mean of all the

readings within that time span. It reflects the extent of

variability in relation to the mean. The cv has the

advantage of being more descriptive of hypoglycemic

excursions than the sd alone.

• Time spent in range (tir; %): the percentage of time that

glucose is in the target range (between GL–GH mg/dl)

within a time interval T. In clinical practice, GLand GH are

often set to 70 and 180 mg/dl, respectively. This range is

considered a good predictor of long-term diabetes

complications (32), but it is a wide range for people with

normative glycemia control. Inspired by prior studies (33),

we set GLand GH to mean� k � sd and meanþ k � sd
(k = 1), respectively, to better account in inter-personal

differences in glucose baseline.

• Mean glucose level outside range (mge; mg/dl): the mean of

glucose readings outside the range GL–GH mg/dl within a

time interval T.

• Mean glucose level inside range (mgn; mg/dl): the mean of

glucose readings inside the range GL–GH mg/dl within a

time interval T.

• Low blood glucose index (LBGI): a metric assessing the

average risk of hypoglycemia within a time interval T. The
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glucose readings were firstly converted to risk scores using

Equation (1). Risk scores below 0 are used to compute

LBGI using Equations (2). Strictly speaking, the flash

glucose monitoring system measures the glucose

concentration in the interstitial fluid, which is an

estimation of the blood glucose.

• High blood glucose index (HBGI): a metric assessing the

average risk of hyperglycemia within a time interval T. The

glucose readings were firstly converted to risk scores using

Equation (1). Risk scores above 0 are used to compute

HBGI using Equations (4, 5).

r(gi) ¼ 1:509� [(ln gi)
1:084 � 5:381] (1)

rl(gi) ¼ 10� r(gi)
2, r(gi) , 0

0, r(gi) � 0

�
(2)

LBGI ¼ 1
n

Xn
i¼1

rl(gi) (3)

rh(gi) ¼ 10� r(gi)
2, r(gi) . 0

0, r(gi) � 0

�
(4)

HBGI ¼ 1
n

Xn
i¼1

rh(gi) (5)

• Mean amplitude glycemic excursion (mage; mg/dl): the

average of all glucose excursions (peak to trough) that are

greater than k � sd of all readings for a given glucose time

series. Smaller excursions of less than k � sd are ignored. In

this study, k was set to 1. This metric was the first within-

day GV metric and was developed primarily to assess

mealtime-related glucose excursions.

• J-index ( j_index; mg2/dl2): a measure of both the mean level

and the variability of all glucose readings within a time

interval T. Equation (6) shows how to calculate j_index.

j index ¼ 0:001� (meanþ sd)2 (6)

2.3. Data analysis

2.3.1. Descriptive statistics
We used boxplots to illustrate the distribution of the GVsleep

and GVawake. Mann-Whitney U test was used to examine

whether a GV metric had the same median in sleep and in

awake-time. This test is a non-parametric counterpart of the

unpaired t-test. It makes no assumptions on the underlying

distribution of the data and is thus suited for often skewed

GV metrics. All tests were two-tailed, and p < 0.05 was taken

to indicate statistical significance.
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TABLE 1 Discretization of GV metrics.

Metric Discretization method labels

mean, min,
max, mge,
mgn

Discretized into 5 intervals by
clinical cutoffs [0, 54, 70, 140, 180,
250]

“severe low”, “low”,
“normal”, “high”,
“severe high”

sd, cv, tir,
LBGI, j_index

Discretized into 3 intervals by equal
frequency

“L1”, “L2”, “L3”

HBGI Discretized into 3 intervals by equal “L1”, “L2”, “L3”

Liang 10.3389/fmedt.2022.1026830
2.3.2. Correlation analysis
We performed repeated measure correlation (rmcorr)

analysis (34) to examine the linear relationships between the

GVsleep and GVawake. The rmcorr is more appropriate than

Pearson’s or Spearman’s correlation for handling the

dependence among observations in the nested dataset used in

this study, where multiple observations were collected from

each individual participants (35).

interval
2.3.3. Quantitative association rules mining
We conducted quantitative association rules mining (ARM)

to discover interesting patterns and associations between the the

GVsleep and GVawake. While rmcorr examines pairwise co-

variance of the GV metrics, ARM detects the co-occurrence of

two metrics when they fall into certain ranges.

The ARM technique was initially developed to analyze

transactional database of categorical attributes with binary

values. Let I = {i1, i2, …, im} be a set of m binary attributes

called items. Let D = {t1, t2, …, tn} be a set of data records.

Each record has a unique ID and contains a subset of the

items in I, i.e., t⊆I. A rule is defined as an expression in the

form of X⇒ Y where X, Y⊆I and X∩Y =∅. The itemset X

and Y are called antecedent and consequent of the rule,

respectively. Rules that satisfy a user-specified minimum

threshold on the selected interest measures (e.g., support and

confidence) are called association rules (36, 37).

The traditional association rules mining scheme is not

suited for mining the dataset used in this study because the

GV metrics are numeric. We adopted quantitative ARM

scheme instead. An important preprocessing step in

quantitative ARM is to convert numeric attributes to

categorical intervals through discretization before generating

association rules. In what follows we describe in detail the

quantitative ARM algorithm.

2.3.3.1. Dataset preprocessing
The purpose of the preprocessing is to convert the numeric

attributes to categorical and to transform the original dataset

to a binominal dataset that suits the subsequent mining

algorithm. The output of preprocessing is a standard

transaction dataset in which the input grid should have

binominal (true or false) data with items in the columns and

each transaction as a row. Let G1, G2, …, Gp be all the GV

metrics of interest and R = {r1, r2, …, rn} be the original

dataset with n records, where n and p are the size and

dimensionality of the dataset. We transformed the original

dataset into a transaction dataset D = {t1, t2, …, tn} of n

transaction records using the following steps:

• Discretizing numeric attributes. The numeric GV metrics

were discretized into intervals using the cutoffs shown in

Table 1. Each interval was assigned a corresponding label.

The mean, min, max, mge, mgn were discretized based on
Frontiers in Medical Technology 04
clinical recommendations, with 54 mg/dl, 70 mg/dl,

140 mg/dl, 180 mg/dl being the cutoffs of severe

hypoglycemia, hypoglycemia, normal, pre-hyperglycemia

and hyperglycemia, respectively (32). The rest of the GV

metrics except HBGI were discretized into 3 intervals by

equal frequency, and HBGI was discretized into 3 intervals

by equal interval.

• Constructing transformation table. Each interval and its

corresponding label were mapped to an item in the

transaction dataset D and a transformation table M is

constructed.

• Converting to transaction dataset. Attribute values in each

tuple ri in the original dataset R were mapped to items

based on M. After transformation, the transaction dataset

constituted n transaction records, and each record was a

binary vector. If the value of the j-th column is 1, it

indicates the presence of item gp,k (i.e., the k-th interval of

the corresponding numeric GV metric Gp), and vice versa.

2.3.3.2. Association rules generation
The Apriori algorithm was used to find association rules (36).

ARM often generates a vast number of rules. Long and

redundant rules are difficult to interpret and offer no insight.

Therefore, we set the following constraints when generating

association rules. First, we limited the maximal association

size to 3; that is, only rules that contain at most two items in

antecedent and one item in consequent were selected. This

constraint is simple, but essential to get interpretable rules. It

also eliminated the search for rules of larger sizes and hence

helped reduce computational complexity. Second, the minimal

support (denoted as supp), confidence (conf) and lift (lift) of a

rule were heuristically set to 0.01, 0.75, 2.0, respectively. Rules

with lower values in any of the three interest measures were

discarded.
2.3.3.3. Proposed post filtering method for selecting
significant rules
Even with the constraints described in the previous subsection,

we still obtained a large set of association rules. Sifting through

these rules manually is strenuous, and many of the rules are not

useful because they are irrelevant, redundant, or difficult to

interpret (38). We thus proposed the five constraints below to
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further post filter the rules, aiming to obtain a small set of

significant rules that are most relevant, interesting, and useful.

• Antecedent/consequent pair (AC pair constraint). An item

can appear in either the antecedent or the consequent of a

rule in the raw rule set. In practice, however, it is often

preferrable that potential causes or independent attributes

appear in the antecedent and predicted or dependent

attributes appear in the consequent. Hence, we designed

the AC constraint to better reflect the temporal sequences

of the antecedent and consequent. Only two types of AC

pairs are allowed. The first type of rules contains GVawake

items of day N−1 in the antecedent and GVsleep items of

day N. The second type of rules contains GVsleep items of

day N and GVawake items of day N.

• Clinical significance (SC constraint). Not all glucose levels

are of equal clinical significance. Severally low or high

glucose levels may be life threatening and may require

immediate medical treatment, and thus association rules

related to these events are clinically more important than

those related to normal glucose levels. We were more

interested in items that contain extreme values of the GV

metrics. Correspondingly, we kept the rules that only

contain items with either low values (i.e., “low”, “severe

low”, “L1”) or high values (i.e., “high”, “severe high”, “L3”).

• Statistical significance (SS constraint). Not all rules reflect

statistically significant associations and the ones due to

random chance should be eliminated. We performed

Fisher’s one-sided exact test and only kept the rules that

yielded p < 0.05.

• Mutual information content (MI constraint). Normalized

mutual information (denoted as MI) is an entropy-based

measure for evaluating the dependencies among variables

(37). It measures the information gain for the consequent

of a rule given the antecedent of the rule. The calculation

of normalized mutual information is shown in Equation

(7). The range of MI is [0, 1]. A MI of 0 means that the

antecedent provides no information for the consequent. In

this study, only rules that yield a MI > 0.3 were considered

as significant.

MI(Iant ) Icsq)¼
P

i[{Iant , �Iant }

P
j[{Icsq , �Icsq}

P(i> j) log
P(i> j)
P(i)P(j)

min �P
i[{Iant , �Iant }

P(i) logP(i),�P
j[{Icsq , �Icsq}

P(j) logP(j)
� �

(7)

• Certainty (κ constraint). Cohen’s kappa (denoted as κ) of a

rule is defined as the observed rule accuracy as

characterized by the conf corrected by the expected

accuracy (37). Equation (8) shows how to calculate κ. The

range of κ is [−1, 1] and a κ of 0 is equivalent to random
Frontiers in Medical Technology 05
guess. In this study, significant rules need to satisfy κ > 0.3.

k(Iant ) Icsq)¼
P(Iant > Icsq)þP(�Iant >�Icsq)�P(Iant)(Icsq)�P(�Iant)P(�Icsq)

1�P(Iant)(Icsq)�P(�Iant)P(�Icsq)

(8)

3. Results

3.1. Descriptive statistics

The boxplots in Figure 1 illustrate the distribution of the

GVsleep and GVawake. For better visual comparison, the HBGI

was scaled up 100 times. Mann-Whitney test shows that the

median of the GV metrics were significant different between

in sleep and in awake time except that of the min, mage, and

tir. Particularly, the mean, max, mge, mgn, std, cv, j_index,

and HBGI were significantly higher when participants were

awake than when they were sleeping. The biggest difference

was found for max and HBGI. On the contrary, only the

LBGI was significantly lower in awake time compared to that

in sleep.
3.2. Correlation analysis

The heatmaps in Figures 2, 3 demonstrate statistically

significant (p < 0.05) and moderate/strong correlations (rmcor

> 0.4) between the GVsleep and the GVawake metrics. Results

show that LBGIsleep was correlated to many GV metrics in

awake time of the same day and those of the previous day. To

be specific, the LBGIsleep of day N was found to strongly and

positively correlated to the LBGIawake of day N−1 (rmcor =

0.75) and that of day N (rmcor = 0.68). Furthermore, the

LBGIsleep was found to strongly but negatively correlated to

the meanawake of day N−1 (rmcor =−0.68) and that of

day N (rmcor =−0.62), and to the mgnawake of day N−1
(rmcor =−0.65) and that of day N (rmcor =−0.60).

The meansleep and mgnsleep are another two important GV

metrics. The meansleep of day N was strongly and negatively

correlated to the LBGIawake of day N−1 (rmcor =−0.64) and

was moderately and negatively correlated to the LBGIawake
of day N (rmcor =−0.55). The meansleep of day N was

strongly and positively correlated to the meanawake of day

N−1 (rmcor = 0.60) and was moderately and positively

correlated to the meanawake of day N (rmcor = 0.55). In

addition, the meansleep of day N was moderately and positively

correlated to the mgnawake of day N−1 (rmcor = 0.58) and that

of day N (rmcor = 0.53). The mgnsleep demonstrates similar

correlations to the same set of awake-time GV metrics as

the meansleep.
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FIGURE 1

Boxplots of glycemic variability metrics (ns: p > 0.5; *: 0.01 < p≤ 0.05; **: 0.001 < p≤ 0.01; ***: 0.0001 < p≤ 0.001; ****: p≤ 0.0001; HBGI was scaled
up 100 times).

FIGURE 2

Heatmap of significant correlations between in sleep GV metrics of day N and awake time GV metrics of day N−1. Only moderate (0.4 < rmcor ≤ 0.6)
to strong correlations (rmcor > 0.6) are shown.

Liang 10.3389/fmedt.2022.1026830
3.3. Association rules mining

Association rules mining identified in total 10 significant

rules. Eight rules demonstrate the associations between the

GVsleep metrics of day N and the GVawake metrics of day N,

and the rest demonstrate the associations between the GVawake
Frontiers in Medical Technology 06
metrics of day N−1 and the GVsleep metrics of day N. The

rules are ranked in descending order by lift in Table 2.

Rules 1–8 show that the glucose variability in sleep mainly

associated to the LBGI of the subsequent awake-time glucose.

Low glucose readings as well as low glucose fluctuation during

sleep as characterized by severely low min, low mean, low std, low
frontiersin.org
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FIGURE 3

Heatmap of significant correlations between in sleep GV metrics of day N and awake-time GV metrics of day N. Only moderate (0.4 < rmcor ≤ 0.6) to
strong correlations (rmcor > 0.6) are shown.

TABLE 2 Significant rules identified through association rules mining.

ID Significant rules Κ MI supp conf lift

1 {minsleep_N = “severe low”, mgnsleep_N = “low”} => {LBGIawake_N = “L3”} 0.48 0.44 0.03 0.86 11.55

2 {minsleep_N = “severe low”, meansleep_N = “low”} => {LBGIawake_N = “L3”} 0.48 0.44 0.03 0.86 11.55

3 {minsleep_N = “severe low”, mgesleep_N = “low”} => {LBGIawake_N = “L3”} 0.41 0.40 0.02 0.83 11.23

4 {minsleep_N = “severe low”, stdsleep_N = “L1”} => {LBGIawake_N = “L3”} 0.41 0.40 0.02 0.83 11.23

5 {minsleep_N = “severe low”} => {LBGIawake_N = “L3”} 0.51 0.40 0.03 0.78 10.48

6 {minsleep_N = “severe low”, magesleep_N= “L1”} => {LBGIawake_N = “L3”} 0.51 0.40 0.03 0.78 10.48

7 {minsleep_N = “severe low”, LBGIsleep_N = “L3”} => {LBGIawake_N = “L3”} 0.51 0.40 0.03 0.78 10.48

8 {minsleep_N = “severe low”, j_indexsleep_N= “L1”} => {LBGIawake_N = “L3”} 0.45 0.36 0.03 0.75 10.10

9 {stdawake_N−1= “L3”, LBGIawake_N−1= “L3”} => {magesleep_N= “L1”} 0.39 0.32 0.03 0.78 7.42

10 {stdawake_N−1= “L3”, tirawake_N−1= “L3”} => {cvsleep_N= “L1”} 0.36 0.31 0.06 0.88 4.09

Liang 10.3389/fmedt.2022.1026830
mage, high LBGI, low mge, low mgn, low j_index was associated to

high LBGI during awake time after the sleep event. Rules 9 indicates

that even when glucose variability was relatively high in awake time,

as characterized by high std, themage in subsequent sleep time was

relatively low if the LBGI in awake time was relatively high.

Similarly, Rule 10 shows that even when glucose variability in

awake time was relatively high, the cv in subsequent sleep time

was relatively low if the tir in awake time was relatively high.
4. Discussion

The advances of ubiquitous and wearable technologies are

transforming the way chronic diseases are monitored and
Frontiers in Medical Technology 07
managed. There has been an increasing interest in using CGM

systems for diabetes management. The CGM technologies have

great potential for other applications involving the healthy

population, such as performance enhancement of athletes and

personalized diet management. In what follows, we discuss our

principal findings in relation to existing literature.
4.1. GV of healthy people

CGM technologies have been increasingly used for diabetes

management in the past decade, and an international consensus

on the use of CGM and the interpretation of CGM data has

been established recently (32, 39). There are also potential
frontiersin.org
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applications of the CGM technologies for health promotion

among the general public as well as for performance

enhancement among athletes (40). However, how to analyse

and interpret the CGM data of healthy people remains an

open question. Only a few studies have examined the glucose

profiles of people with normal glucose control and have

separately examined the GV metrics in daytime and in night

time (9–13). However, all those studies used fixed cut-offs for

daytime and night-time and failed to count in the

interpersonal differences in people’s sleep-wake cycles. In

practice, daytime and night-time are only a rough and often

inaccurate representations of people’s active phase and sleep

phase. To our knowledge, the present study is the first one

that explicitly examines the glucose profiles of healthy people

in sleep time and in awake time.

A comparison between the current study and prior studies on

the ranges of the GV metrics is presented in Table 3. Interestingly,

the definition of daytime and night-time is not consistent across

existing literature. While some studies defined daytime as from

6:00 A.M. to midnight and night time as from midnight to 6:00

A.M. (9, 11), others defined daytime as from 6:00 A.M. to 10:00

P.M and night time as from 10:00 P.M. to 6:00 A.M (12, 13).

Yet one study set daytime to from 6:00 A.M. to midnight, and

night-time to from 3:00 A.M. to 6:00 A.M. In the present study,

we leveraged the sleep onset and offset timestamps recorded

with a Fitbit Charge 3 to accurately split the glucose time series

into awake-time and in-sleep segments.

As shown in Table 3, the range of the mean in our study is

slightly lower than those in prior studies, probably because our

participants were primarily young people (median age = 28 years)

while the other studies included participants of a wider age
TABLE 3 Comparison with prior studies on GV metrics ranges of healthy pe

Metric Prior study (daytime/nig

Mean (mg/dl) 106 ± 12/99 ± 12 (Zhou et al., 2009)
99 ± 10/95 ± 13 (Juvenile Diabetes Research Foundation Continuous Glu
101 ± 11/85 ± 13 (Noordam et al., 2018)
100 ± 7/98 ± 9 (Shah et al., 2019)
105 ± 3/106 ± 4 (Sofizadeh et al., 2022)

tir 90.4/90.3 in 70–120 mg/dl (median) (Juvenile Diabetes Research Founda
et al., 2010)

96/99 in 70–140 mg/dl (median) (Shah et al., 2019)
90.4 ± 2.1/91.3 ± 2.6 within 70–145 mg/dl (Sofizadeh et al., 2022)

sd (mg/dl) 13.5/10.9 (median) (Juvenile Diabetes Research Foundation Continuous
17 ± 3/12 ± 4 (Shah et al., 2019)
20.9 ± 1.8/18.2 ± 1.8 (Sofizadeh et al., 2022)

cv 14/12 (median) (Juvenile Diabetes Research Foundation Continuous Gl
17 ± 3/13 ± 4 (Shah et al., 2019)
3.6 ± 0.2/3.1 ± 0.2 (Sofizadeh et al., 2022)

max (mg/dl) 131/109 (median) (Juvenile Diabetes Research Foundation Continuous

min (mg/dl) 73/80 (median) (Juvenile Diabetes Research Foundation Continuous Gl

mage (mg/dl) 28.0/15.8 (median) (Juvenile Diabetes Research Foundation Continuous
46.4 ± 3.8/39.6 ± 3.8 (Sofizadeh et al., 2022)
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spectrum. Consistent with (10, 13), the mean glucose level at

night (or in sleep in this study) was perceivably lower than that

in daytime (or during awake time in this study). As for tir, no

significant difference was found between in-sleep and awake-

time, which agrees with prior studies (9, 12). The tir in this study

was much lower than that in prior studies. This is largely due to

the different ways of calculating tir. In this study, the normal

range was defined as mean± sd, which was approximately in the

range of 83–103 mg/dl when participants were awake and 72–

98 mg/dl when participants were sleeping. This definition ensures

a better adaptation to individual’s glucose profile than using a

fixed universal range (e.g., 70–140 mg/dl, or 70–120 mg/dl).

The different choices of normal range may also account for

the much higher results of mage in this study compared to

existing literature. The sd in awake-time was close to that

found in (9), but was lower than that found in the other

studies. Consistent with prior studies, the sd in sleep was

significantly lower than that in awake time. Similar trend was

observed for cv. As for max and min, the results in awake-

time agreed with those in (9), while the results in sleep were

perceivably lower. It is likely that younger population has

wider day-night differences in the min of glucose readings.

Overall, our results partly echo the findings in prior studies,

and the disparity may be attributed to the differences in the time

intervals, in the study cohorts and in the definitions of normal

glucose range [note that normal range may varies according to

the population (41)]. Another possible factor that may have

contributed to the disparity is the potential difference in the

timing of the data collection experiment. People tend to have

higher mean glucose level in winter and lower readings in

summer (42). This trend has been observed in both healthy
ople.

httime) This study
(awake-time/in-sleep)

cose Monitoring Study Group et al., 2010)
93 ± 10/85 ± 13

tion Continuous Glucose Monitoring Study Group 66.5 ± 7.8/68.9 ± 10.3 in
mean ± sd mg/dl

Glucose Monitoring Study Group et al., 2010) 13.4 ± 4.0/6.7 ± 3.4

ucose Monitoring Study Group et al., 2010) 14.4 ± 4.1/8.0 ± 3.5
13.9/7.6 (median)

Glucose Monitoring Study Group et al., 2010) 131.4 ± 20.2/99.0 ± 18.1

ucos\e Monitoring Study Group et al., 2010) 71.0 ± 9.8/72.1 ± 13.2; 72/74
(median)

Glucose Monitoring Study Group et al., 2010) 74.1 ± 29.3 / 84.6 ± 17.3;
85.8/85.8 (median)
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and diabetes patients. The seasonality of glucose level impedes

direct comparison across studies. On the other hand, sensor

insertion sites—upper arm or abdominal—is not likely to have

significant effect on sensor readings as was indicated in (43).

It is noteworthy that we did not find daytime and night-

time reference values to compare with for mgn, mge, LBGI,

HBGI, and j_index. Alternatively, we compared our results

with those in prior studies that were calculated using data of a

72-hour window, and found that our results lies in the ranges of

those in prior studies (44). Our analysis shows that mgn, mge

and j_index were significantly lower when participants were

sleeping than when they were awake. The HBGI was often

much lower than LBGI. Participants were more likely to have

higher LBGI when they were sleeping, but more likely to have

higher HGBI when they were awake.

We also found that no participant had 100% of glucose readings

falling in the normoglycemic range of 70–140 mg/dl, which echoes

the finding in (5, 9). Strikingly, participants’ interstitial glucose

occasionally reached clinically significant hyperglycemic

(>180 mg/dl) and hypoglycemic (<70 mg/dl) levels. As expected,

hypoglycemic level occurred more often than hyperglycemic level,

and severely low glucose (<54 mg/dl) were rarer than slightly low

glucose (<70 mg/dl). There is established evidence that both

chronic hyperglycemia and hypoglycemia cause damage to the

endocrine system and lead to endothelial disfunction, which

eventually contribute to the onset of diabetes and its

cardiovascular complications (1). However, abnormal glycemic

events often go unnoticed among healthy population. To this end,

the CGM technologies have great potential in raising the

awareness of hyperglycemia and hypoglycemia, and in guiding

behavior change to prevent the onset of chronic glucose

dysregulation in the long term.
4.2. Associations between in-sleep
glucose and awake-time glucose

The associations between the glucose variability in daytime

and that in subsequent sleep, and the associations between the

glucose variability in sleep the previous night and that in the

subsequent day were identified through repeated measure

correlation analysis and quantitative ARM. Overall, the quality

of glucose control when participants were awake was correlated

to that during subsequent sleep, which in turn was correlated to

that in the next day after the sleep event. To be more specific,

low overall glucose in awake time (as characterized by low

mean, low mgn, and high LBGI) was strongly correlated to low

glucose in subsequent sleep (as characterized by low mean and

high LGBI), which in turn correlated to overall low glucose in

the next day (as characterized by low mean, low mgn, low mge

and high LGBI). Awake-time LGBI and in-sleep LGBI, awake-

time LGBI and in-sleep mean, awake-time mgn and in-sleep

LGBI demonstrated bi-direction relationships with a time lag.
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Both analysis techniques identified significant associations

between the min of the glucose in sleep and the LBGI of the

glucose the next day (rmcor =−0.47; Rule 3–8). However, the

interpretation of the two techniques slightly differs. The

repeated measure correlation analysis shows that in the whole

sampling range, the min of in-sleep glucose and the LBGI of

awake-time glucose were moderately and negatively correlated,

which implies that an increase in one will be accompanied by

the decrease in the other. On the other hand, the ARM

indicates that when the min of in-sleep glucose is in the range

of “severe low” (i.e., 0–54 mg/dl), it is associated with the

occurrence of high LBGI in the next day (i.e., L3: 3.45–21.25).

One way to think of the difference between the repeated

measure correlation and the association of rules is that the

former characterizes the relationship between two GV metrics

in the whole sample range, while the latter only captures the

co-occurrence when the two GV metrics fall into the

corresponding ranges as specified in the association rule.

Association rules mining has only been previously applied

to extract risk patterns for Type-2 diabetes (45) and to look

for interesting relationships in quantified-self data (46, 47).

The quality of the association rules discovered in (45) were

0.65–0.78 (median: 0.75) in terms of conf, and 6.2–6.7

(median: 6.6) in terms of lift, and no statistical test was

performed. The interest measures were all much lower in (46,

47). In contrast, the association rules discovered in the

current studies demonstrate higher quality and with statistical

significance. Our association rules achieved 0.75–0.88

(median: 0.81) in conf and 4.1–11.5 (median: 10.5) in lift,

which implies that the original post-filtering method proposed

in this study was effective in selecting quality rules.
4.3. Limitations and future directions

The strengths of our study include using a dataset of high

ecological validity and combining repeated measure correlation

analysis and association rules mining to gain a multi-facet

perspective on the relationships between the in-sleep GV metrics

and the awake-time GV metrics. Meanwhile, the current study

has several limitations. First, the accuracy of the CGM sensors

may have been affected by participants’ sleep positions (48) and

may have deteriorated at low glucose levels (49). Nonetheless, a

prior study shows that FreeStyle Libre was more accurate than

other CGM systems during glucose swings (49). Second, the

collinearity among the GV metrics were not well addressed in

the correlation analysis. Third, the post-filtering method

proposed in this paper is not able to filter out redundant rules.

For example, rules 6–7 had the same performance as rule 5 on

all interest measures, while rule 8 had worse performance than

rule 5 on all interest measures except supp. These rules offer no

additional information than what was already demonstrated in

rule 5. They may be considered as redundant and thus removed.
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Last but not the least, the reliability and generalizability of the

associations discovered in this study may be limited due to the

small data size. That being said, this study generated hypothesis

that can be used to design larger confirmatory studies. Future

large-scale studies along this line of research should focus on

enhancing the quality of CGM data, optimizing the data mining

algorithm, as well as comparing groups of different demographic

characteristics (e.g., age, gender, race).
5. Conclusion

In this study, we analyzed a multimodal dataset to identify

potential associations between the glucose dynamics in awake

time and that in sleep among healthy people. Glucose dynamics

was characterized by a set of glycemic variability metrics of

clinical significance. Repeated measure correlation analysis

revealed that low overall glucose in awake time was strongly

correlated to low glucose in subsequent sleep, which in turn

correlated to overall low glucose in the next day. Moreover, both

repeated measure correlation analysis and quantitative association

rules mining identified significant associations between the

minimal glucose reading in sleep and the low blood glucose index

the next day. In addition, the association rules discovered in this

study achieved high confidence (0.75–0.88) and lift (4.1–11.5),

which implies that the proposed post-filtering method was

effective in selecting quality rules. The findings of this study add

to the body of knowledge looking at the glucose profiles of

healthy adults. In closing, we argue that the CGM technologies

will become mainstays in studying the glucose profiles of healthy

populations in free-living conditions. Repeated measures

correlation and quantitative AMR could be powerful data analysis

techniques to discover the multivariate pattern among the

glycemic variability metrics derived from the CGM data.
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