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Introduction

In a key study published on December 6, 2022, in Nature Communications Medicine,

Ewart et al. introduced a paradigm-shifting solution to the inefficient drug discovery

process (1). It entails the incorporation of Liver-Chip platforms as refinement tools

within the preclinical assessment and lead optimization stages. This work first appeared

in bioRxiv and is now entitled “Performance assessment and economic analysis of a

human Liver-Chip for predictive toxicology.”

Today, there are fundamental challenges in the process of pharmaceutical drug

development. According to the National Center for Advancing Translational Sciences

(NCATS), one of 27 Institutes and Centers at the National Institutes of Health (NIH),

“Therapeutic development is a costly, complex and time-consuming process. The

average length of time from target discovery to approval of a new drug is about 14

years. The failure rate during this process exceeds 95 percent, and the cost per

successful drug can be $2 billion or more.” Such failure rate can be attributed, in part,

to the dearth of “human relevance” among the experimental models used in drug

screening and the modeling of human pathologies—challenges that have burdened the

pharmaceutical industry for decades and contributed to its “productivity crisis” (2, 3).

In fact, an objective examination of the many artificial animal models used to study

humans reveals disparate characteristics—with hardly any capturing the sequela of

human diseases. Radical structural, physiological, anatomic, digestive, genomic,

metabolic and behavioral differences underlie those discrepancies among species.

Ewart et al. is ostensibly the largest systematic investigation evaluating the advantage

of using human Liver-Chips to predict drug toxicity in humans, a critical step in drug

development. Briefly, the study showed, using a panel of characterized drugs, that the

Liver-Chip correctly identified 87% of agents causing drug-induced liver injury in

humans. Furthermore, the Liver-Chip did not falsely label any safe drug tested as

toxic—in essence preventing the premature jettison of useful drugs. Such outcomes
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are superior to those produced with standard preclinical

packages for hepatic toxicity, including routine cell culture

techniques, 3D hepatic spheroids, or animal models.

The findings were articulated through large comparative

analyses coupled with methodical economic assessments. The

latter focused on evaluating the productivity gains acquired by

adopting the Liver-Chip platforms in preclinical stages of

drug development. In doing so, Ewart et al. tackled at once

stubborn challenges in pharmaceutical medicine like safety,

efficacy, productivity, and cost. To that end, the solutions

presented in the study could alter industry practice for the

foreseeable future. As such, they merit the attention of the

scientific community and FDA regulators. Here, we highlight

the key findings of the study. We also discuss the implication

of the work in the context of the growing demand for human

relevancy across the preclinical stages of drug development,

and the expanding field of Micro-Physiological Systems.
Key findings

Micro-Physiological Systems, or MPS, are experimental

tools and platforms engineered to capture with fidelity, cell-

to-cell communication, fluid dynamics, physio-mechanical

features as well as other structural, dimensional and

functional parameters of a physiological system for research

and discovery purposes. Their value as consolidated

investigative models is made possible by progress in fields like

biophysics, regenerative medicine, materials science and

electrical engineering. Among the most popular MPS are

Organ-Chip platforms [7]. These platforms experienced rapid

growth over the last decade, both in the number of their

developers and users, as well as the applications they offer.

On the market today are Chips designed to study specific

organs such as lung, liver, skin, heart, kidney, intestine as well

as a multitude of disease conditions, biological phenomena,

immunity and public health matters (4–58). Organ-Chip

platforms continue to grow in their sophistication and appeal

as useful research tools. They are being steadily incorporated

into all aspects of scientific investigations—from biomedical

research to environmental health and safety testing—in

academia, industry and governmental agencies. A checklist

summarizing the broad appeal of MPS, with reference to the

main findings of Ewart et al., is provided in Figure 1.

Ewart et al. takes advantage of the Emulate Liver-Chip

system and focuses on liver toxicity. In the first part, the

study sought to establish that the Liver-Chip system satisfies

the strict quality guidelines of the Innovation and Quality

(IQ) MPS consortium. IQ MPS is an affiliate of the

International Consortium for Innovation and Quality in Drug

Development, a collaboration of pharmaceutical and

biotechnology companies that seeks to advance the use of
Frontiers in Medical Technology 02
MPS in drug discovery (59). The guidelines set stringent

standards to determine whether a Liver-Chip model replicates

the functions of the liver, including Drug Induced Liver

Injury (DILI)—also known as drug-induced hepatoxicity,

injury to the liver that is caused by medication. In the second

part, research was conducted to demonstrate the improved

sensitivity of the human Liver-Chip for DILI prediction

compared to two other established systems used in preclinical

predictive toxicology, namely animal models and cell culture

tools known as spheroids. In the third part, data was

presented to show that the specificity of the Liver-Chip-

mediated drug test could be further improved by accounting

for relevant biological interactions, namely drug-protein

binding. Finally, the authors concluded by addressing the

economic value of incorporating the Liver-Chip as predictive

toxicity models in preclinical decision making.

Below, are some aspects of the study that we find

particularly notable. These include the focus on liver toxicity,

superior capability for predicting drug toxicity, productivity

gains and the quality control performed.
First, the focus on liver toxicity

The study focuses on hepatic predictive toxicology. In the

United States and Europe, toxicity failure is the main cause of

withdrawn and discontinued drugs. Liver toxicity in particular

is the most common toxicity type associated with drug

withdrawal (21%), followed by cardiovascular (16%),

hematological (11%), neurological (9%), carcinogenicity (8%),

and others (35%) (60–62). Therefore, understanding drug-

induced liver toxicity is a worldwide priority. Beyond drug

discovery, the work on liver toxicity has broad applications

for diagnostics and testing since DILI can be caused by a

range of agents including Anesthetics, Non-Steroidal-Anti-

Inflammatory Drugs (NSAIDS), Antimicrobial medications,

Antibiotics, Antifungal agents, Anti-viral drugs, oral

Hypoglycemics, Lipid-lowering drugs, and certain Herbal and

Traditional medicines.
Second, the marked sensitivity
demonstrated in predicting the toxicity of
drugs

Arguably, the most striking feature of the study is the

discovery that the Liver-Chip can predict with at least 80%

sensitivity the accurate toxicity status of known toxic drugs.

Specifically, the Liver-Chip was able to correctly flag as toxic

12 out of 15 drugs included in the battery of drugs tested to

evaluate the Liver-Chip performance. Of note, the study

examined 18 drugs (15 hepatotoxic) across three hepatocyte
frontiersin.org
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FIGURE 1

A dozen reasons why micro-physiological systems (MPS) like organ-chips are better at modeling human diseases. AI: Artificial Intelligence; IBD:
Inflammatory Bowel Disease; BM Injury: Bone Marrow Injury. Filled squares represent aspects directly related to Ewart et al., reviewed in this opinion
article. (continued)
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FIGURE 1

Continued.
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donors. The roster of toxic drugs is comprised of those found to

induce liver toxicity clinically after progressing to first-in-

human administration. Notably, each toxic drug tested was

historically evaluated using animal models and, in every

case, the toxic drug was deemed to have an acceptable

therapeutic window qualifying it to advance into clinical

trials. In this context, the ability of the Liver-Chip to flag

80% of the toxic drugs for their DILI risk and predict their

toxicity with such accuracy is a remarkable step forward.

Importantly, data provided in the study show that the

sensitivity of the Liver-Chip can be further increased from

80% to 87% through technical adjustments accounting for

drug-protein binding.
Third, the superior capability to not falsely
label safe chemicals as toxic

One of the most consequential decisions in the drug

development process is the labeling of an experimental drug

as either safe or toxic following preclinical assessments. This

is typically done using preclinical toxicology studies involving

animal models. A toxic classification almost certainly leads to
Frontiers in Medical Technology 04
the abandonment of the agent being tested. In this regard, the

Liver-Chip does not mislabel any safe drug as toxic, hence

performed with a 100% specificity in testing drugs for DILI

risk. This superior performance is a sharp contrast to existing

methodologies where this type of mislabeling is common.

Published data for 3D hepatic spheroids shows a sensitivity

rate of 42% and a specificity rate of 67%.
Fourth, the convincing economic
argument presented

A central theme of the study by Ewart et al. is the economic

argument articulated within. Liver-Chip and other Organ-Chips

could lead to billions annually in productivity gains for

Research and Development (R&D) if incorporated routinely

in the preclinical assessment and lead optimization stages of

drug development. Using an economic value model of drug

development that incorporates decision quality (63, 64), the

study demonstrates that $3 billion could be gained annually if

Liver-Chips were used to predict liver toxicity across the

discovery pipeline. If other types of organ toxicities (four key

toxicity sites modeled in the study) could be predicted by
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Organ-Chips, assuming similar performance compared to the

Liver-Chip, the technology could generate over $24 billion

annually in R&D productivity gains.
Fifth, the rigorous quality control
performed

Noted is the work performed to establish the physiological

relevance of the human Liver-Chip model related to hepatic

conditions, both structurally and functionally. Structural,

morphological, and functional analysis were performed using

a combination of advanced methodologies. Several types of

microscopy systems (light, confocal, and electron) were used

to test the Liver-Chips. This combination provides in-depth

qualitative and quantitative data to establish the presence of

three-dimensional structures and the cell-to-cell interaction

seen in actual liver tissues. In addition, known relevant

markers of functional liver cells (Albumin and Urea

production) were tested successfully for cellular functionality

of the Liver-Chip. For drug toxicity assessments, clinically

relevant markers were also used [Albumin production

inhibition and the increases in release of alanine

aminotransferase (ALT) protein, used clinically as a measure

of liver damage], alongside other morphological assessments

and established markers of cell death, such as Caspase 3/7

(65). A blinded set of 27 drugs with known hepatoxic and

nontoxic behavior were analyzed in the study. The

performance of 870 human Liver-Chips across the blinded

set that incorporated cells from three human donors for a

period of 16 weeks were tested to determine that the Liver-

Chip replicated human biological responses.
Sixth, the limitation of the study

Some challenges, both practical and conceptual, are still

limiting the use of Organ-Chips in general. These include

the inability to incorporate the host immune core

components, the limited integration of several organs

simultaneously, the absence of Common Data Elements

(CDEs), universal standards and performance criteria,

especially among different Chips by different manufacturers,

the awareness of the proper context of use of these

platforms, the access to relevant and well characterized cell

sources, access to training or MPS core facilities, the bias for

existing models due to familiarity, nonspecific binding

caused by some materials used in the fabrication of Organ-

Chips and the uncertainty of regulatory acceptance for MPS-

generated data. The latter is further examined in the

discussion section.

In the current study, a limitation of the initial data set was

the use of cells from two human donors only. Notably, when
Frontiers in Medical Technology 05
data from a third donor were incorporated in the subsequent

revision of the paper, no reduction in the marked sensitivity

of the drug test was observed, further bolstering the veracity

of these Liver-Chip platforms as credible and reproducible

tools. That said, a limitation to the Liver-Chips used is their

inability to assess at this time the toxicity of agents that

function through complex immune-mediated toxicity, a

particular form of toxicity that requires additional elements

and response time beyond the testing capacity of these Chips.

This could change in the future with the development of

MultiSystem/MultiOrgan-Chips that bring added

sophistication to these platforms. Another inherent limitation

is the material used in constructing this Organ-Chip

[Polydimethylsiloxane (PDMS)], that could lead to non-

specific binding. Advances in materials science would mitigate

such limitation in the future.

It is important to note that the reason why 90% of clinical

drug development fails is a complex, multifactorial process.

Indeed, the examination of clinical trial data from 2010 to

2017 reveals four main reasons attributed to such high

failure rate: lack of clinical efficacy (40%–50%),

unmanageable toxicity (30%), poor drug-like properties

(10%–15%), and lack of commercial needs and poor strategic

planning (10%) (66–68).

Here, Ewart et al. introduced a powerful tool to address a

major challenge and one of the leading causes of

unmanageable toxicity, hepatic toxicity. Succinctly, the

Liver-Chip outperforms existing models that are based on

widely used preclinical toxicology packages. In addition,

the specific feature of this Liver-Chip—not falsely labeling

safe chemicals as toxic—could very well confer the most

benefit going forward. To the best of our knowledge, such

fidelity is unprecedented. The Organ-Chip approach will

help prevent the abandonment of potentially useful and

safe drugs early in the process. In this context, it is hard to

assess the extent of lost opportunities produced from

erroneously discarding drug candidates too early. But

examining old data obtained prior to the requirement from

regulatory agencies to use animal models for preclinical

assessment is very telling in this regard. Many beneficial

and life-saving drugs like penicillin (fatal to guinea pigs),

aspirin (embryo toxicity in rats and rhesus monkeys), and

paracetamol (toxic in cats and dogs) would have failed

standard preclinical toxicity testing in animals and

therefore could never have reached the market. Finally,

even if a fraction of the monetary value derived from the

productivity gains of incorporating Organ-Chips in

predictive toxicology is realized, this would still translate

into safer, cheaper, faster, and more effective medications.

All in all, the findings of the study support, at a minimum,

the incorporation of Liver-Chip platforms in the initial

stages of drug screening—a step that shall inform better

decision-making in pharmaceutical medicine.
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Discussion

This study is one of the most critical developments in the

field of Organ-Chip technology. It shows the primacy and

utility of the Liver-Chip platforms in predictive toxicology. It

also demonstrates the immediate readiness of such technology

to transform critical phases of the drug development process,

in particular lead optimization and preclinical assessment,

making the entire process safer, cheaper, faster, and more

effective. It is important to avoid extrapolation of these results

to unsuitable contexts. At this juncture, one must highlight

the practical application of the Liver-Chip within defined

points of integration in the lead optimization stages, a notion

underscored by the authors in a representative schematic

(Ewart et al. Figure 5).

In addition to its scientific merit, Ewart et al. must be

examined in the context of the value it adds to advancing the

public good. A stupefying 90%–95% of experimental drugs fail

in humans mainly due to efficacy (40%–50%) or safety (30%)

concerns. That is despite these drugs having good efficacy and

safety profiles in animal models granting them regulatory

clearance to proceed into clinical trials. In addition, scores of

potentially life-saving drugs are prematurely discarded due to

the ill-advised jettison based on animal data or traditional in

vitro toxicity packages. This leads to significant productivity

loss, delays in producing vital pharmaceuticals and exorbitant

cost that is ultimately passed onto consumers. This work

represents the most compelling interdisciplinary (scientific

and economic) argument that Organ-Chip platforms for

predictive toxicology can far outperform traditional methods,

including in vivo animal models.

Notably, Ewart et al. is taking place in a climate of legislative

momentum seeking to advance research methodologies that are

based on human biology. As such, the study is a driver for

policy change that prioritize human-relevant research

methods in the regulatory acceptance process. Notably, in the

United States (U.S.), the FDA Modernization Act of 2021

(H.R.2565) passed in the U.S. House of Representatives in

June 2022, and in September 2022 the very similar FDA

Modernization Act 2.0 (S.5002) passed unanimously in the

U.S. Senate (69, 70). These legislations seek to amend the

outmoded regulatory guidance at the FDA—they broaden the

options for drug developers seeking regulatory approvals to

include new technologies and human-relevant testing methods

like Organ-Chips, in lieu of animal experimentation. In

addition to Organ-Chips and MPS, alternative methods are

broadly defined. They include sophisticated computer

modeling and artificial intelligence (AI) as well as advanced

3D bioprinting techniques like those using bioinks of living

cells to replicate natural features of human tissues.

The FDA has taken some steps to explore the value of

alternative methods like MPS, including Organ-Chips, in

preclinical regulatory approvals (71). A new initiative was
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Alternative Methods Program.” In its budget proposal for fiscal

year 2023, the agency also expressly stated that, “New alternative

methods have the potential to provide both more timely and

more predictive information to accelerate product development

and enhance emergency preparedness.” In addition, the agency

co-hosted an inaugural MPS World Summit earlier in 2022.

The FDA also sustains programs like the Predictive Toxicology

Roadmap and ISTAND with somewhat similar objectives.

Recently, the FDA accepted efficacy data generated through

MPS to support the authorization of a clinical trial, setting a

precedent in authorizing Investigational New Drug (IND)

applications using, in part, alternative methods. The said trial is

investigating a repurposed antibody (TNT005) with previously

established safety profiles.

Of note, health agencies worldwide are experiencing a

growing demand for human-relevant approaches and testing

methods. For instance, U.S. lawmakers proposed in 2019

plans to reduce primate research at the National Institutes of

Health (72). That same year, the U.S. Environmental

Protection Agency (EPA) chief pledged to eliminate all

mammal testing by 2035. In a signed memo, EPA chief

asserted that “The EPA will reduce its requests for, and our

funding of, mammal studies by 30 percent by 2025 and

eliminate all mammal study requests and funding by 2035”

(73). Moreover, The Humane Research and Testing Act of

2021 (HRTA, H.R.1744) was introduced in the U.S House of

Representatives in 2021. This legislation seeks to establish the

National Center for Alternatives to Animal Research and

Testing within the National Institutes of Health with the sole

purpose of “(1) developing, promoting, and funding

alternatives to animal research and testing; and (2) developing

a plan for reducing the number of animals used in federally

funded research and testing.” That is in addition to the

introduction of The Humane and Existing Alternatives in

Research and Testing Sciences Act (HEARTs, H.R. 4101) and

The Animal Freedom from Testing, Experiments, and

Research Act of 2021 (AFTER, S.1378). Importantly, The

Humane Cosmetics Act of 2021 was also introduced in the

U.S. Senate (S.3357) and U.S. House of Representatives

(H.R.6207). It is an ambitious legislation that “generally

prohibits animal testing in the evaluation of cosmetic

products, and it prohibits the sale or transport of cosmetics

developed using animal testing, subject to civil penalties.”

A similar momentum is taking place in Europe. As an

example, a landmark resolution was approved by the

European parliament in September 2021. Such measure

provides the policy framework for the European Commission

to phase out the use of animals for all scientific purposes. In

short, the legislation sought to implement changes across a

wide range of sectors including funding, enforcement,

implementation, education, training, industry relations,

regulatory affairs, and private sector engagement. It is referred
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to as B9-0425/2021, “A Motion for a European Parliament

resolution on plans and actions to accelerate the transition to

innovation without the use of animals in research, regulatory

testing and education.”

It is against this backdrop that the progress made in the

Ewart et al. study is poised to disrupt the existing drug

development paradigm. Such progress ushers a new era where

disease modeling that is based on human relevance is an

attainable, realistic priority. Ewart et al. and similar future

work from the scientific community provide the impetus for

investigators, lawmakers, regulators, investors and industry

leaders to seriously consider the potentially significant benefits

of making adjustments to the existing regulatory process. That

is in addition to changes to the discovery pipeline

infrastructure, taking advantage of Organ-Chip platforms as

top-hole, human-relevant tools in pharmaceutical medicine.
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