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Multicellular tumor spheroids are largely exploited in cancer research since they are

more predictive than bi-dimensional cell cultures. Nanomedicine would benefit from the

integration of this three-dimensional in vitro model in screening protocols. In this brief

work, we discuss some of the issues that cancer nanomedicine will need to consider in

the switch from bi-dimensional to three-dimensional multicellular tumor spheroid models.
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PROLOGUE

Researchers in the drug delivery field routinely take advantage of in vitro cell culture models to
assess the performance of nanotechnology-based medicines, with the aim of optimizing them prior
to in vivo evaluations in animal models and predicting their performance in patients. This is of vital
importance during the development of nanoparticles (NPs) or any other nanotechnology-based
drug delivery system intended to target solid cancers. Today, most of the early-stage development
of cancer nanomedicine products is done using cell culturemonolayers, also termed bi-dimensional
(2D) models. 2D cell cultures have been an essential tool in early-stage drug delivery investigations
but they tend not to be useful for prediction, because they fail to replicate the tumormacrostructure,
the tumor-stroma interaction, and the heterogeneity of the tumor microenvironment (1, 2).
The three-dimensional (3D) architecture of human solid tumors provides optimal conditions for
cellular organization, proliferation, and differentiation (3).

The need for more reliable and predictive in vitro models that respect the principle of the 3Rs
(Replacing, Reducing, and Refining the use of in vivo experimentation) hasmotivated researchers to
develop advanced and more consistent in vitromodels. In this context, 3D cell cultures are rapidly
taking the place of conventional 2D models in biomedical research. However, despite a consistent
body of evidence suggesting that 2D models largely fail to predict NP performance and/or drug
efficacy and efficiency in vivo, 3Dmodels have not been fully integrated into nanomedicine research
and are not routinely employed in screening procedures.

Among the in vitro 3D cancer models under scrutiny, multicellular tumor spheroids (MCTSs)
have attracted great attention and are now broadly exploited in the cancer research field (4). Indeed,
over the past decades, MCTSs has been used as models to study tumor cell metabolism, tumor
growth and progression in a more realistic 3D context. Being relatively simple to produce and to
grow, MCTSs have been regarded as the first choice to replace 2D cell cultures in the development
of cancer nanomedicines (5).
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In this brief work, we will discuss the use of MCTSs in
drug delivery research, with a focus on cancer nanomedicine.
After an overview of MCTS general features and preparation
methodologies, we will discuss some issues to consider when
switching from 2D to this 3D model, and we give our perspective
on the potential of MCTSs in nanomedicine. Comprehensive
reviews on the subject may be found elsewhere (6–8).

MULTICELLULAR TUMOR SPHEROIDS

MCTSs are 3D aggregates of tumor cells, alone or in combination
with other cell types, generally grown in absence of exogenous
scaffolds (9). However, the use of scaffolds has been also
contemplated. MCTSs generally have a spherical geometry,
possess a 3D architecture and an extracellular matrix (ECM)
in which the cells are dispersed (10). Spheroids with diameter
larger than 400–500µm have usually a structure consisting of
an exterior layer of proliferating cells, an intermediated layer
of quiescent cells and an internal necrotic core (Figure 1A)
(5). As a result, the protein and gene expression profiles of
cancer cells in spheroids are more similar to those of tumor
cells in vivo, allowing more reliable evaluations of anticancer
drug effectiveness when administered as a solution or loaded in
nanoparticle-based carriers (11, 12). MCTSs may be maintained
in culture for 2–4 weeks, thus allowing long-term experiments
(13). In addition, to better mimic the tumor microenvironment
(cell-cell interactions), hybrid cell spheroids, also known as
mixed-cell spheroids, can be easily obtained by co-culturing
cancer cells with fibroblasts, endothelial cells, immune cells, and
other cell types relevant to the tumor environment (14–16).

Preparation Techniques
MCTSs may be produced by different protocols but the core
principle, based on the anchorage-independent methodology,
remains the same. By providing conditions in which cell-cell
adhesive forces are greater than cell-substrate adhesive forces,
cancer cells aggregate to form spheroids instead of adhering
to a substrate (17). Hanging drop and liquid overlay are
the most commonly employed methods to produce MCTSs
(Figures 1B,C), but other methods, including agitation-induced
systems, microencapsulation, and magnetic levitation, have been
proposed (Figures 1D–F).

Hanging Drop
A drop of cell suspension is deposited on a dish lid and, upon
inversion, cells are forced by gravity to accumulate at the free
liquid–air interface and to form a single MCTS within the
droplet (Figure 1B). This is the simplest and cheapest method to
obtain MCTSs and co-cultures (mixed spheroids) since the use
of dedicated materials, such as coated plates, might be avoided,
but it requires MCTS transfer for further investigation. This
method is very useful for generating uniform spheroids with
a designated size and shape, even though long-term culture
and media replacement remain a challenge (18). To overcome
these limitations, companies have developed and commercialized
different plates, such as AkuraTM PLUS and Perfecta3D R©, that
simplify the culture procedures (19, 20).

Liquid Overlay
MCTSs can be easily generated by the liquid overlay, reducing
interaction between the cells and the culture surface and forcing
cell aggregation (Figure 1C). Culture plates treated for low
attachment or suspension culture are now widely available on
the market. Otherwise, standard plates can be easily coated with
non-adhesive substrates such as poly-hydroxyhethylmethacrylate
(Poly-HEMA) (21), agar (22), or agarose (23). The major limit of
this technique is the formation of MCTSs with a high variability
in sizes and shapes. To overcome this limit, it is possible to
apply U-bottom 96-wells plate where a single spheroid per well
is obtained. Alternatively, researchers can use ad hoc developed
plates with multiple microcavities that allow the formation of one
aggregate per cavity, allowing the production of a considerable
number of consistent size spheroids [examples are AggreWellTM

Microwell Plates (24, 25), Corning R© Elplasia R© Plates (26) and
Sphericalplate 5D (27)].

Agitation-Induced Systems
Non-adherent conditions can be obtained in rotating systems,
including gyratory shakers, perfusion bioreactors and spinner
flasks [e.g., NASA bioreactor (28)] (Figure 1D). In these systems,
the cell suspension is maintained in motion, preventing cell
interaction with the bioreactor surface. While agitation-induced
systems enabled production of large pools of MCTSs, the
obtained spheroids are heterogeneous in size, shape and number
of cell populations. For this reason, spheroid selection is
required if the spheroid size needs to be controlled (29). Even
though spheroid generation via bioreactors requires expensive
instruments and high quantity of culture medium, bioreactors
still provide greater advantages, mainly at the industrial level due
to their scalability (29).

Microencapsulation
Taking advantage of the knowledge gained in pancreatic
islet encapsulation (30, 31), cancer cell microencapsulation in
alginate-poly-l-lysine-alginate beads has been proposed as a
method to produce MCTSs (Figure 1E) (32). This method has
the advantage to be scalable and to allow a precise control of
the spheroid size and shape. However, microcapsules with a
core-shell structure, seem to be more suitable for cell growing
and MCTS production. Indeed, this structure makes it possible
to use different materials with diverse chemical and physical
characteristics for the core and the shell. For instance, Sakai
et al. developed core-shell microcapsules by first embedding the
tumor cells in gelatine beads and then surrounding them by
calcium alginate membranes. The gelatine core liquefies upon
incubation at 37◦C allowing the formation of MCTSs that can
be freed from the calcium alginate membranes by incubation
with sodium citrate or alginate lyase (33, 34). The core-shell
particles make it possible to study cancer cell lines unable to form
MCTS by the techniques described above. However, the alginate
membrane generally reduces oxygen and nutrient supply, the
contact between cells, and may introduce a bias. To address these
issues, Alessandri et al. developed a simplemicrofluidics platform
to produce permeable and elastic hollow microspheres. The
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FIGURE 1 | Schematic representations of the general structure of a multicellular tumor spheroid and of their common preparation methods. (A) The spheroid

structure, with proliferating (outside layer), quiescent (intermediate layer) and necrotic (center) cells. The cellular density is lower in the outside layer. (B) Hanging drop

method, where the cells come together at the bottom of a hanging drop. (C) Liquid overlay method, where the surface of plates or wells is coated with a non-adhesive

material. (D) Spinner flasks (stirred or rotating vessel), where the cells are kept in suspension. (E) Microencapsulation and (F) magnetic levitation, where the cells,

engulfed with magnetic particles, are brought together through magnetic forces.

permeability of the gel allows easy diffusion of nutrients into the
capsule and cell proliferation in a scaffold free environment (35).

Magnetic Levitation
Magnetic levitation was first developed by Souza et al.
in 2010 (36). This system involves mixing the cells with
magnetic particles and exposing them to a magnetic force
during the culturing process (Figure 1F). It utilizes negative
magnetophoresis, which mimics a weightless state. The magnetic
force exerted causes the cells combined with magnetic particles
to stay levitated or floating against gravity. This condition causes
a geometry change of cell mass and stimulates cellular contact,
leading to cell aggregation. In addition, this system can also
facilitate multi-cellular co-culturing with different cell types (37–
39). However, this technique presents a few drawbacks: beads are
expensive and can be toxic to cells at a high concentration, and a
limited number of aggregates can be produced (40).

MCTSs IN NANOMEDICINE RESEARCH

Switching From 2D to 3D in vitro Models
The use of MCTSs is a great opportunity in cancer nanomedicine
research since it can provide more reliable information than
that obtained using 2D cell cultures. However, the differences
between a spheroid and a solid tumor are still enormous and
the results obtained should be interpreted with caution. In
fact, the size of a MCTS is at least one order of magnitude
smaller than the tumor mass and the effects observed in vitro
could hardly be reproduced in vivo. However, the differences
in size might be mitigated somehow by the fact that, in vivo,
NPs reach the tumor through the systemic circulation by blood
vessels/capillaries, taking advantage of the EPR effect (41). The
distance between vessels and the tumor necrotic area in vivo has
been reported to be 50–250µm, compatible with the distance

between the proliferating cell layer and the necrotic core in
MCTSs (Figure 1A) (8).

When switching from 2D to 3Dmodels, the data established in
2D models on NP penetration, drug release and anticancer effect
will be difficult to compare with that obtained in the 3D models.
For instance, the IC50 of an established anticancer drug can
increase 1 log or more when moving from 2D to 3D, enhancing
the concentrations necessary to have the effect (42). This can be
even worst in the case of drug loaded NPs where NPs do not have
to be taken up by a single cell layer, but must diffuse through
multiple cell layers and the interstitial space.

Obviously, one must consider the drug or NP diffusion
process from the medium to the spheroid. By considering a
diffusion process that obeys Fick’s laws (normal diffusion), the
different surface-to-volume ratios of the two model systems
must be taken into account. MCTSs have much lower surface-
to-volume ratios than cell culture monolayers and only the
peripheral cell layer is directly exposed to the drug/NP that
will diffuse according to the concentration gradient. NPs are
1-2 orders of magnitude larger than a small molecule and are
expected to have a lower diffusion coefficient, diffusing very
slowly from the spheroid surface to the center, with the risk of
remaining confined in the outer cell layers. Therefore, particle
shape, size and aspect ratio are features that affect the rate
of NP diffusion through MCTSs, determining the deepness of
penetration and the time needed to reach the center of the cell
aggregate (Figure 2) (43). Also, the experiment timeframe in 2D
and 3D models is generally different, as longer times are needed
in 3D model experiments to record the effect expected from the
treatment (42).

Obviously, NP penetration and distribution within MCTSs
will never be just the result of normal diffusion. It is
difficult to draw general considerations, given the different
processes/mechanisms involved, such as NP cell uptake by
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FIGURE 2 | Effect of NP size and shape on MCTS uptake and penetration. (A,B) Effect of NP size: uptake and penetration of spherical 100, 200, and 500 nm

polystyrene particles in Mitomycin C-treated HEK 293 spheroids. (A) Graph showing comparison of normalized pixel intensity associated with spheroid per slice with

different diameter polystyrene beads and (B) Normalized radial intensity distribution of polystyrene beads as a function of distance from the center of the spheroid. (C)

Effect of NP shape: normalized radial intensity distribution of shape-specific nanoparticles as a function of distance from the center of the spheroid. Only positive error

bars are shown, to allow proper visualization of data. Reproduced with permission from Agarwal et al. (43) (John Wiley and Sons License, license number

5306710208408).

endocytosis (pinocytosis and phagocytosis), NP intracellular
trafficking, NP transcytosis, NP diffusion in the ECM.

By considering the not yet completely disclosed complexity of
the two interacting systems (NP and MCTS), considerations on a
case-by-case basis might be the best option. Indeed, “canonical”
NP features, such as size, shape, surface chemistry/charge, surface
decoration, are routinely measured and somehow controlled
while others, such as the number of targeting moieties/nm2 and
the adsorption of biomolecules (biomolecular corona), are often
neglected or underestimated.

On the other hand, MCTS characteristics, such as cell line,
preparation method, mean size/size distribution, cellularity,
ECM secreted, and the eventual presence of exogenous ECM (i.e.,
hydrogels), will play a crucial role in the NP/spheroid interaction
and the effect observed (6, 7, 44). Also, MCTS comprehensive
morphological and molecular characterization will be essential in
order to give a correct interpretation of the results obtained and
to assess the model reproducibility.

MCTSs and Medium/High-Throughput Screening
The success of MCTSs as a pre-clinical model in anticancer drug
development will also depend on the possibility to use them
in medium-throughput screening (MTS) or high-throughput
screening (HTS) (45, 46). This possibility will also open great
opportunities in nanomedicine research, a field pioneered by
Prof. Langer about 20 years ago (47), which has never been really
developed. MTS or HTS assays for NPs will have a tremendous
benefit for nanomedicine, especially now that nanoparticle-based
mRNA therapeutics have been well recognized in clinics (48, 49).
Thus, the use of 3D culture technologies, MCTSs in primis, in
cancer nanomedicine MTS/HTS is a compelling unmet need.

From the 3Dmodel side, three significant technical challenges
hamper the development of these technologies: liquid handling
automation, culture optimization and assay variability, and
automated imaging/visualization of the 3D structure.

The automation of liquid handling can be conducted in
suspension cultures, through the use of ultra-low-attachment
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microplates or the hanging drop technique (50). However, the
application of automated liquid handling translates poorly when
MCTSs are embedded in commercial thermogelling hydrogels.
The use of thermogelling materials requires a highly controlled
working environments and rapid processing due to their
temperature-sensitive gelation conditions (51). Additionally,
the batch-to-batch variability observed with some hydrogels
considerably impacts the assay quality and reproducibility,
crucial to ensure consistency when conducting MTS/HTS (52).
Finally, MCTSs produced by co-culturingmultiple cell types have
much greater morphological complexity than simpler spheroids
and 2D cultures, and multiparametric analysis will be required to
investigate and quantify the cell response the treatment (53).

In the case of nanomedicine, an accurate analysis of
nanoparticle uptake and/or localization would be of great
value. However, their tridimensionality also poses a difficulty
in computational image analysis and visualization: the complex
topology and the thickness of MCTSs, as for other 3D models,
make image analysis challenging, and are incompatible withmost
automated imaging systems due to low light penetration and
absorption across the multi-layered structures (52).

Despite these challenging barriers, new culture platforms
and imaging systems are being developed to overcome the
technical issues that hinder the use of MCTSs in MTS/HTS.
These developments include using synthetic hydrogels to
generate more consistent 3D cell cultures, automated high-
resolution imaging using light-sheet microscopy, and integrated
computational platforms for data analysis and visualization of 3D
structure (54–56).

However, from a nanomaterial perspective, the issue of
producing and handling NP libraries remain unsolved. In fact,
MTS/HTS can be relatively easily applicable to the material
per se (polymers, lipids) but it become a struggle in the case
of complex NPs designed and engineered for cancer drug
delivery and targeting. Nanotechnology-based medicines under
scrutiny today, given their surface functionalization with fragile
biomacromolecules and their anticancer drug cargo, are much
more difficult to handle than small molecule drugs.

CONCLUSIONS AND PERSPECTIVE

The application of MCTSs in cancer nanomedicine offers a
great opportunity, since it is the first step to narrow the gap
between pre-clinical and clinical research, making the process of
nanotechnology-based medicine development more efficient and
successful. More important, this will surely pave the way for the
routine application of more advanced in vitro 3D models, such
as organ-on-a-chip and organoids, in academia and industry.
The use of MCTS in MTS/HTS is still challenging but recent

technological advances might solve some of the issues, making
this possible in the near future.

However, the switch from 2D to 3D in vitromodels will not be
painless, since researchers will be obliged to consider the higher
complexity of the model during the design of the experiment, for
example, adapting the experiment timeframe and the treatment
concentrations as well as the assays needed to have the desired

outcome. It will be necessary to go deeper in MCTS biological
characterization (e.g., cell and molecular biology, biochemistry)
to know and, if possible, control the experimental parameters that
will affect the experimental results.

In addition, since most, if not all, in vitro data available
from the last 40 years of nanotechnology-based drug delivery
research were generated on classical 2D models, for which
comparisons with 3D models will be extremely difficult,
researchers will have to contemplate a sort of “re-evaluation” of
NP technologies discarded because of their failure on cell culture
monolayer assays.

In conclusion, MCTSs will become the standard in
vitro model to assess the nanomedicines performance in
adulthood cancers, and cell culture monolayers will be used
to obtain complementary information, such as mechanistic
understandings of NP uptake, binding affinity, and translocation
into intracellular compartments.
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