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A tale of two toxins: Helicobacter pylori CagA and VacA 
modulate host pathways that impact disease
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Helicobacter pylori is a pathogenic bacterium that colonizes more than 50% of the world’s 
population, which leads to a tremendous medical burden. H. pylori infection is associated 
with such varied diseases as gastritis, peptic ulcers, and two forms of gastric cancer: gastric 
adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. This association represents 
a novel paradigm for cancer development; H. pylori is currently the only bacterium to be 
recognized as a carcinogen. Therefore, a significant amount of research has been conducted 
to identify the bacterial factors and the deregulated host cell pathways that are responsible for 
the progression to more severe disease states. Two of the virulence factors that have been 
implicated in this process are cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A 
(VacA), which are cytotoxins that are injected and secreted by H. pylori, respectively. Both of 
these virulence factors are polymorphic and affect a multitude of host cellular pathways. These 
combined facts could easily contribute to differences in disease severity across the population 
as various CagA and VacA alleles differentially target some pathways. Herein we highlight the 
diverse types of cellular pathways and processes targeted by these important toxins.
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date, several bacterial virulence factors have been associated with 
gastric cancer. For instance, the outer membrane proteins, HomB 
(Jung et al., 2009; Oleastro et al., 2009) and BabA – in Western type 
cytotoxin-associated gene A (CagA) containing strains (Gerhard 
et al., 1999), but not in East Asian type CagA containing strains 
(Mizushima et al., 2001) have been associated with progression to 
gastric cancer, while OipA (Odenbreit et al., 2009; Ben Mansour 
et al., 2010) and DupA (Lu et al., 2005; Douraghi et al., 2008; 
Nguyen et al., 2009; Schmidt et al., 2009; Hussein, 2010) have more 
controversial roles in disease development. The effectors, CagA and 
vacuolating cytotoxin A (VacA), have also been shown to influence 
disease state, and are probably the most well studied virulence fac-
tors of H. pylori. These toxins have been shown to have multiple 
effects on host cells, as well as to modulate multiple cellular path-
ways in what appears to be a complex orchestration that ultimately 
leads to disease. To begin to shed some light on these pathways, as 
well as on the etiology of disease, this review will highlight some 
major findings regarding CagA, VacA, and their specific effects on 
host cells. Due to the large amount of literature on this subject and 
space limitations, an exhaustive review is not provided. However, 
we encourage readers to explore the excellent reviews by Cover 
and Blanke (2005), Hatakeyama and Higashi (2005), and Rieder 
et al. (2005a).

Cytotoxin-assoCiated gene a
CagA is arguably the most well studied virulence factor of H. pylori. 
It is encoded on the cag pathogenicity island, which is a horizontally 
acquired 40 kb DNA segment that encodes for a type IV secre-
tion system, and is the only known effector protein to be injected 
into host cells (Censini et al., 1996; Akopyants et al., 1998). cagA 
is the last gene on the cag pathogenicity island, and encodes for 

introduCtion
Helicobacter pylori is a rather recently discovered bacterium that 
was first isolated from a gastritis patient in 1982 (Marshall and 
Warren, 1984). H. pylori is a Gram-negative, spiral shaped, and 
fastidious microaerophile that inhabits the inhospitable environ-
ment of the human stomach. In this niche, it can persist, if left 
untreated, for the lifetime of its host (Blaser, 1990). The infection 
rates for H. pylori vary widely geographically; however, overall this 
bacterium  colonizes the gastric mucosa of over 50% of the world’s 
population (The EUROGAST Study Group, 1993; Matysiak-Budnik 
and Megraud, 1997).

The majority of people colonized with H. pylori develop subclin-
ical gastritis. However, a small percentage of colonized individuals 
progress to clinical disease, the majority of which will present with 
gastritis. In some individuals, colonization results in more severe 
disease manifestations. H. pylori is the etiological agent of peptic 
ulcer disease, 75% of gastric ulcers and 90% of duodenal ulcers are 
attributed to H. pylori infection (Ernst and Gold, 2000), as well as 
two distinct forms of gastric cancer: mucosa-associated lymphoid 
tissue (MALT) lymphoma and adenocarcinoma (Parsonnet et al., 
1991, 1994; Talley et al., 1991; Blaser, 1998). Due to this correla-
tion, H. pylori is the only bacterium currently classified as a class 
I carcinogen by the World Health Organization (“Infection with 
Helicobacter pylori,” 1994). Indeed, gastric cancer is still the second 
most common cause of worldwide cancer mortality, and this high 
rate could be reflective of the high incidence of H. pylori infection 
(Neugut et al., 1996; Yamamoto, 2001; Parkin et al., 2005; Crew 
and Neugut, 2006).

Due to H. pylori’s association with a variety of severe gastric dis-
eases, many studies have been conducted to elucidate the bacterial, 
host, and environmental factors that impact disease progression. To 
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et al., 2005, 2008; Rieder et al., 2005b). The differences in affinity 
of various EPIYA motifs for SHP-2 and subsequent differences in 
induction levels of downstream pathways has been speculated to 
impact the differences in disease rates, especially gastric cancer 
(Higashi et al., 2002a,b; Hatakeyama, 2004). In fact, increasing 
numbers of EPIYA-C motifs have been suggested to be associated 
with cancer development (Azuma et al., 2002; Satomi et al., 2006), 
and epidemiological studies have identified a correlation between 
increasing number of -C motifs and heightened disease severity 
(Yamaoka et al., 1999; Higashi et al., 2002a; Argent et al., 2004). 
Since EPIYA-D has the strongest affinity for SHP-2 (Higashi et al., 
2002a), it is not surprising that East Asian CagA produces more 
inflammation and atrophy (Azuma et al., 2004) as well as greater 
morphological changes in infected cells (Higashi et al., 2002a). 
Moreover, the variability in CagA is important when analyzing the 
geographic areas with the highest gastric cancer rates; these areas 
not only have the highest colonization rates, but also contain the 
highest percentage of H. pylori strains that carry the cagA gene, in 
particular the EPIYA-ABD allele (Ahn et al., 1991; Yamamoto, 2001; 
Crew and Neugut, 2006; Hatakeyama, 2006). Indeed, we identified 
an association between gastric cancer development and EPIYA-
ABD CagA through a large scale molecular epidemiological study 
of strains from South Korea (Jones et al., 2009).

Caga PhosPhorylation indePendent events
PhysiCal effeCts on host Cells
Despite the importance of CagA phosphorylation, CagA has many 
effects on the host cell, and some of these effects are accomplished 
in a phosphorylation independent manner. One of the most notice-
able CagA dependent effects on host cells is the disruption of tight 
junctions and induction of changes in cell morphology. CagA has 
been shown to affect cellular tight junctions in a phosphoryla-
tion independent manner (Amieva et al., 2003; Bagnoli et al., 
2005; Murata-Kamiya et al., 2007; Oliveira et al., 2009), and has 
been shown to be important for the recruitment of the junctional 
adhesion molecule (JAM) and the tight junction protein, zona 
 occludens-1 (ZO-1) to points of bacterial contact (Amieva et al., 
2003; Bagnoli et al., 2005). Murata-Kamiya et al. (2007) showed 
by immunoprecipitation that E-cadherin physically interacts with 
both wild type and phosphorylation resistant variants of CagA, 
and that this interaction inhibits the association of E-cadherin 
with β-catenin, which subsequently results in the accumulation 
of nuclear and cytoplasmic β-catenin.

Additionally, it has been demonstrated that CagA binds to 
and prevents the kinase activity of the partitioning-defective 1/
microtubule affinity-regulating kinase (Par1b/MARK2), thereby 
escalating the loss of tight junctions and polarity (Saadat et al., 
2007; Zeaiter et al., 2008). CagA binds to Par1b, as well as other 
members of this kinase family, through the multimerization 
sequence (Saadat et al., 2007; Lu et al., 2008), specifically 14 of 
the 16 amino acids of the multimerization motif are required 
(FPLKRHDKVDDLSK; Nesic et al., 2010). This interaction has 
been suggested to contribute to host cell elongation (Saadat et al., 
2007; Umeda et al., 2009). East Asian CagA binds Par1b with a 
stronger affinity than CagA from Western strains, and the effi-
ciency and strength of binding to Par1b among Western strains 
appears proportional to the number of Western multimerization 

the 120–145 kDa immunodominant CagA protein (Covacci et al., 
1993; Tummuru et al., 1993). Since its discovery, CagA has been 
shown to impact disease, especially more severe disease states like 
gastric cancer (Blaser et al., 1995; Kuipers et al., 1995; Xiang et al., 
1995; Parsonnet et al., 1997; Huang et al., 2003). cagA is present 
in ∼70% of strains worldwide, but this rate varies geographically 
from between 90–95% in East Asian countries (South Korea, China, 
Japan) and only about 40% in Western countries (Australia, United 
States of America, England; Hatakeyama, 2006).

Once injected into host cells, CagA can act directly in an unphos-
phorylated state to influence cellular tight junction (Amieva et al., 
2003; Bagnoli et al., 2005; Murata-Kamiya et al., 2007; Oliveira et al., 
2009), cellular polarity (Saadat et al., 2007; Zeaiter et al., 2008), cell 
proliferation and differentiation (Mimuro et al., 2002; Chang et al., 
2006; Murata-Kamiya et al., 2007; Lee et al., 2010), cell scattering 
(Mimuro et al., 2002), induction of the inflammatory response 
(Brandt et al., 2005), and perhaps cellular elongation (Figure 1; 
Saadat et al., 2007; Umeda et al., 2009). Moreover, upon entering 
the eukaryotic cell, CagA localizes to the plasma membrane where 
it can be phosphorylated by either Abl kinase or Src family kinases 
(Stein et al., 2000, 2002; Selbach et al., 2002; Poppe et al., 2007; 
Tammer et al., 2007). These kinases phosphorylate tyrosine residues 
found in a five amino acid repeat, Glu-Pro-Ile-Tyr-Ala (EPIYA), 
within the carboxy-terminus of CagA (Higashi et al., 2002a,b). 
These repeats can be categorized based on the amino acid sequences 
found within the regions flanking the EPIYA sequence to yield 
four distinct EPIYA motifs, which are known as EPIYA-A, -B, -C, 
and -D. Two combinations of these motifs predominate: Western 
CagA, which contains EPIYA-A, -B, and -C motifs (strains have been 
genotyped that contain up to five -C motifs) and East Asian CagA, 
which contains EPIYA-A, -B, and -D motifs (Figure 1; Covacci et al., 
1993; Higashi et al., 2002a,b; Stein et al., 2002; Naito et al., 2006; 
Argent et al., 2008a; Nguyen et al., 2008). Additionally, there is a 
multimerization motif that consists of a 16 amino acid sequence 
present within the EPIYA repeat region (Ren et al., 2006). Once 
phosphorylated, CagA can form a complex with the CT10 regulator 
of kinase (Crk) adaptor protein (Suzuki et al., 2005; Brandt et al., 
2007), Abl kinase and a splice variant of Crk, CrkII (Tammer et al., 
2007), or the Src homology 2 phosphatase (SHP-2; Higashi et al., 
2002b). Each of these interactions influences cellular shape and 
motility (Higashi et al., 2002b; Suzuki et al., 2005; Brandt et al., 
2007; Tammer et al., 2007). CagA that is phosphorylated at the 
primary phosphorylation sites (EPIYA-C and -D) shows varying 
affinities for SHP-2 based on the particular EPIYA variant as well 
as subsequent differential effects on the pathways influenced by the 
phosphorylated CagA/SHP-2 complex (Higashi et al., 2002a,b).

Caga and disease
The mere presence of CagA is associated with more severe disease 
forms (Crabtree et al., 1991; Covacci et al., 1993; Blaser et al., 1995; 
Gwack et al., 2006). In fact, cancer patients are at least twice as likely 
to be infected with an H. pylori strain that is cagA positive than one 
that is cagA negative (Blaser et al., 1995; Gwack et al., 2006). It has 
additionally been demonstrated in vivo that cagA plays an impor-
tant role in disease progression in a Mongolian gerbil model where 
gastric cancer develops within 12 weeks (Watanabe et al., 1998; 
Wirth et al., 1998; Ogura et al., 2000; Peek Jr. et al., 2000; Franco 
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invade and survive inside host cells (Amieva et al., 2002; Semino-
Mora et al., 2003; Oh et al., 2005). Upon infection with cagA posi-
tive H. pylori strains, a multiprotein complex is formed through 
the association of CagA, c-Met, E-cadherin, and p120-catenin, and 
this complex influences whether the bacteria can become intracel-
lular (Oliveira et al., 2009). When this complex is present in a cell 
line that H. pylori can normally invade, it suppresses the ability of  
H. pylori to be internalized (Oliveira et al., 2009).

sequences (Lu et al., 2008). In addition to affects on cell elonga-
tion and disruption of cellular junctions, interaction of CagA and 
Par1b also causes spindle dysfunction, which delays progression 
from prophase to metaphase and is hypothesized to result in DNA 
instability (Lu et al., 2009).

Moreover, recent evidence has shown that CagA has an effect on 
how invasive H. pylori can be. Though considered an extracellular 
pathogen, numerous studies have shown that H. pylori is able to 

Figure 1 | CagA and known host cell targets. (A) A schematic representation 
of CagA with the polymorphic region containing different EPIYA motif (A, B, C, 
and D) combinations is shown and is adapted from Hatakeyama and Higashi 
(2005). (B) A graphic depiction of the gastric mucosa and known host pathways 

impacted by phosphorylated and non-phosphorylated CagA is shown. Pathways 
targeted in epithelial cells and B cells are indicated. The actin binding proteins 
(ABP) affected by CagA include vinculin, cortactin, and ezrin. This figure was 
adapted from an earlier version by Rieder et al. (2005a).
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(Elk1; Hirata et al., 2002). Evidence of the role of CagA in SRE/SRF 
activation can be found through CagA mediated increases in levels 
of the anti-apoptotic protein myeloid cell leukemia sequence-1 
(MCL1), which acts as a pro-survival factor (Mimuro et al., 2007). 
Furthermore, the tendency of CagA to affect transcription factor 
activity seems to be a common theme since the signal transducer 
and activator of transcription 3 (STAT3) pathway, which induces 
cellular proliferation (Klampfer, 2006), has been shown to be 
induced in vitro and in vivo in a CagA dependent but phosphoryla-
tion independent manner (Bronte-Tinkew et al., 2009). Moreover, 
it was recently confirmed that non-phosphorylated CagA preferen-
tially activates STAT3 (Lee et al., 2010). The activation of so many 
transcription factors by CagA is evidence of the broad influence 
of CagA on a wide variety of cellular functions.

CagA appears to influence the development of MALT lym-
phoma in a phosphorylation independent manner; CagA can 
inhibit apoptosis of B cells through inhibition of the accumula-
tion of p53 due to decreased p53 transcription (Umehara et al., 
2003). Interestingly, B cell survival is also likely due in part to 
an increase in phosphorylated ERK1/2 (Zhu et al., 2007), which 
when moderately increased can inhibit apoptosis and promote 
proliferation (Park et al., 2004). However, it should be noted that 
transfection with CagA also leads to phosphorylation of the pro-
apoptotic protein, Bad (Zhu et al., 2007). Conversely, transloca-
tion of CagA by H. pylori results in upregulation of both the ERK 
and p38 pathways, which lead to upregulation of the pro-survival 
proteins, Bcl-2 and Bcl-X

L
 (Lin et al., 2010). Clearly, CagA has 

an effect on cell survival, and most of the literature suggests that 
CagA can inhibit apoptosis of B cells, which likely promotes the 
development of MALT lymphoma.

Conversely, ectopically expressed CagA can also suppress cellular 
proliferation in IL-3-dependent B-lymphoid cells through sup-
pression of JAK-STAT signaling (Umehara et al., 2003). Moreover, 
transfection of AGS cells with CagA results in increased expres-
sion of the pro-apoptotic factor p21WAF1/Cip1 due to CagA mediated 
nuclear translocation of the nuclear factor of activated T cells family 
transcription factor (NFATc3; Yokoyama et al., 2005). Interestingly, 
p21WAF1 expression can also occur as a direct result of excessive 
ERK1/2 activation (Bhat and Zhang, 1999; Park et al., 2005; Yun 
et al., 2005). Finally, CagA induced deregulation of β-catenin, 
increases the expression of Cyclin D1 (Udhayakumar et al., 2007), 
which influences progression of cells from G1 to S phase; thereby 
promoting cell survival in a CagA phosphorylation-independent 
manner (Chang et al., 2006; Murata-Kamiya et al., 2007). CagA 
obviously affects cell survival, proliferation, and differentiation, all 
of which can affect the progression of disease, including develop-
ment of gastric cancer.

Cell sCattering
In order for cancer cells to spread or metastasize, they must detach 
and scatter to a new area. CagA increases cell scattering by target-
ing the hepatocyte growth factor receptor (c-Met), which acts as 
an adaptor molecule for proteins like Grb2, phospholipase Cγ 
(PLCγ), and STAT3 (Mimuro et al., 2002; Churin et al., 2003). 
CagA/Grb2/SoS → Ras-GTP complex → Raf → MEK → ERK 
signaling leads not only to an increase in transcription factors 
that promote cellular proliferation, but also to an increase in cell 

Cellular differentiation
Since there is a causal link between gastric cancer, H. pylori infec-
tion, and the presence of cagA, there is no doubt that effects on 
host cell differentiation and proliferation are important for ulti-
mate disease progression. In keeping with this, cagA positive strains 
of H. pylori influence a factor with known oncogenic potential, 
β-catenin (El-Etr et al., 2004; Franco et al., 2005). β-catenin has two 
distinct functions, it links cadherins with the actin cytoskeleton and 
is part of the WNT signaling pathway (Tolwinski and Wieschaus, 
2004). When unphosphorylated CagA binds E-cadherin, it prevents 
the formation of the E-cadherin/β-catenin complex, which ulti-
mately leads to accumulation of β-catenin in both the nucleus and 
cytoplasm (Murata-Kamiya et al., 2007). Kurashima et al. (2008) 
showed that while phosphorylation of the EPIYA motifs was not 
necessary for deregulation of β-catenin, the CagA multimerization 
sequence was necessary. However, this process is likely multifactorial 
and complex since some evidence indicates that E-cadherin disso-
ciation is independent of CagA and that the E-cadherin/β-catenin/
p120ctn complex is not affected to the same degree in all studies 
(Weydig et al., 2007). When the E-cadherin/β-catenin complex is 
disrupted, cytoplasmic β-catenin is dephosphorylated and then 
translocates to the nucleus, where it forms heteromers with other 
transcription factors and transcribes a number of genes with onco-
genic potential (Lickert et al., 2000; Murata-Kamiya et al., 2007). 
In fact CagA was found to upregulate the β-catenin-dependent 
cdx1 gene (Lickert et al., 2000; Murata-Kamiya et al., 2007), which 
encodes a transcription factor important for transdifferentiation 
of intestinal cells (Mizoshita et al., 2004), as well as to affect the 
expression of goblet-cell mucin MUC2, an intestinal-differentiation 
marker (Murata-Kamiya et al., 2007); both are indicators of gastric 
intestinal metaplasia.

Cell CyCle, survival, and Proliferation
Increased cellular proliferation is one indicator of cancer that 
has been demonstrated to result from infection with cagA posi-
tive strains of H. pylori (Peek Jr. et al., 1997, 1999). This increased 
proliferation can happen through CagA mediated activation of the 
ERK/MAPK pathway. CagA activates ERK through interaction with 
growth factor receptor bound 2 (Grb2), and appears to interact with 
both phosphorylated and non-phosphorylated CagA (Mimuro 
et al., 2002; Selbach et al., 2009). However, it should be noted that 
the phosphorylation sequences themselves are essential for Grb2 
binding to non-phosphorylated CagA (Mimuro et al., 2002), which 
similar to the strategy for binding of CagA to SHP-2 (Li et al., 1993), 
likely occurs through CagA binding to the Grb2 SH2 domains. In 
a normal cell, upon receiving an extracellular signal, Grb2 binds 
son of sevenless (SoS), which increases the formation of the Ras-
GTP complex and activates the Raf → MEK → ERK pathway. This 
pathway increases activation of transcription factors involved in 
cell proliferation (Gale et al., 1993). In CagA intoxicated cells, CagA 
can bind Grb2, and then the CagA/Grb2/SoS complex activates the 
Ras → ERK pathway as described above (Mimuro et al., 2002).

Activity of the serum response factor and serum response ele-
ment (SRF and SRE, respectively) transcription factors are also 
increased in CagA transfected cells in a CagA phosphorylation inde-
pendent manner (Hirata et al., 2002). Activation of SRE appears to 
be mediated by increased DNA-binding by the E-26 like protein-1 
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Caga PhosPhorylation dePendent events
targeting of shP-2
The most striking H. pylori induced morphological change to host 
cells is the induction of the “hummingbird phenotype,” which 
occurs as a direct result of phosphorylated CagA complexing with 
SHP-2 and subsequent increased ERK1/2 activation. Normally, 
SHP-2 functions to increase cellular proliferation and motility and 
is activated by interacting with a phosphorylated Gab protein (Neel 
et al., 2003). CagA has been shown to be able to mimic the function 
of the eukaryotic Gab protein (Hatakeyama, 2003; Botham et al., 
2008). Both in vitro and in vivo (Yamazaki et al., 2003), CagA forms 
a complex with SHP-2 after phosphorylation of an EPIYA-C or -D 
motif (Higashi et al., 2002a). The formation of this complex, as 
well as the subsequent deregulation of SHP-2 as a means of CagA 
mediated effects on gastric cancer, is of relevance since mutations 
within the gene encoding for SHP-2 (PTPN11) have been identified 
in multiple forms of cancer (Tartaglia et al., 2003; Bentires-Alj et al., 
2004). Additionally, there is an increase in the risk of gastric cancer 
development in H. pylori infected patients with certain PTPN11 
polymorphisms (Goto et al., 2006). Again, this demonstrates the 
potential of CagA to impact disease progression.

aCtivation of erK
The ERK MAP kinases are activated in a CagA phosphorylation 
dependent manner upon infection with H. pylori cagA positive 
strains, leading to a SHP-2 dependent change in cell motility and 
morphology (Neel et al., 2003). Indeed, inhibition of the phos-
phorylation of CagA, knockdown of SHP-2 expression, or the 
disruption of the CagA/SHP-2 complex abrogates cell elongation; 
thus, indicating that the “hummingbird phenotype” is a product of 
the SHP-2/CagA complex (Segal et al., 1999; Higashi et al., 2002b, 
2004; Higuchi et al., 2004). In fact, this complex activates the ERK 
pathway by activating Rap1 → B-Raf → ERK and has been proven 
to activate ERK in both a Ras independent and dependent manner 
(Higashi et al., 2004). In addition, CagA promotes cell proliferation 
through activation of ERK, which subsequently promotes progres-
sion through the cell cycle (Roovers and Assoian, 2000; Tsutsumi 
et al., 2003).

Recent data indicates that the phosphorylation status of CagA 
may act as a signaling switch between the JAK/STAT3 and SHP-2/
ERK pathways. This process is mediated through gp130 (Lee et al., 
2010). Unphosphorylated Cag activates STAT3, while phosphor-
ylated CagA preferentially activates ERK1/2 phosphorylation (Lee 
et al., 2010). This differential activation based on phosphorylation 
status illustrates the complexity of the effects that CagA has on 
the host cell.

non-erK Mediated CytosKeletal rearrangeMent and 
sCattering
Important steps in the creation of elongated cells include the decrease 
in cellular adhesions and the deregulation of the actin-binding 
proteins that maintain proper cellular shape (Moese et al., 2004; 
Bourzac et al., 2007). Phosphorylated CagA binding and activation 
of SHP-2 leads to increased tyrosine dephosphorylation of the focal 
adhesion kinase (FAK; Tsutsumi et al., 2006), which is important 
for cellular elongation of host cells; when dominant-negative FAK 
is expressed, host cells change morphology, while constitutively 

scattering (Mimuro et al., 2002). In support of this, cell scattering 
due to H. pylori infection is suppressed by blocking PLCγ activity 
(Churin et al., 2003). Though once again, the role of CagA in this 
process is complex; some work suggests no association between 
enzymatic activity of PLCγ and the cagA status of H. pylori strains 
(Bode et al., 2001). However, it is clear that non-phosphorylated 
CagA interacts with c-Met through interaction with the mul-
timerization domain (Suzuki et al., 2009). The consequence of this 
interaction is activation of phosphatidylinositol 3-kinase (PI3K) 
signaling through Akt, which subsequently activates NF-κB and 
β-catenin (Suzuki et al., 2009). It has been suggested that CagA 
binds to c-Met and then recruits TNF receptor associated factor 
6 (TRAF6; Sun et al., 2004) and poly-ubiquitinated transforming 
growth factor-β-activating kinase 1 (TAK1; Lamb et al., 2009; Lamb 
and Chen, 2010). TRAF6 then activates Akt (Yang et al., 2009), 
which potentially activates NF-κB and RelA through activation 
of the IκB kinase (IKK) complex (Suzuki et al., 2009; Takeshima 
et al., 2009). CagA modulates multiple pathways that impact cell 
scattering, and these pathways that are activated appear to have 
multiple downstream targets that can affect numerous cellular 
processes in addition to cell scattering.

inflaMMation
A hallmark of H. pylori infection is increased and chronic inflam-
mation. This appears to occur due to activation of NF-κB and 
persistent induction of IL-8. While it remains controversial 
(Crabtree et al., 1995; Lamb et al., 2009; Schweitzer et al., 2010), 
this IL-8 induction has been shown to be CagA dependent through 
studies that ectopically expressed CagA or various CagA EPIYA 
motifs (Brandt et al., 2005; Kim et al., 2006), through IL-8 pro-
moter reporter assays (Sharma et al., 1998), and through analy-
sis of inflammation and NF-κB activation in Mongolian gerbils 
infected with cagA positive and cagA negative H. pylori strains 
(Shibata et al., 2006). Moreover, Keates et al. (1999) showed that 
IL-8 secretion is affected by the activation of MAPKs by cagA 
positive H. pylori strains. It has been demonstrated that activa-
tion of NF-κB and induction of IL-8 occurs through the activa-
tion of the Ras → Raf → Mek → ERK → NF-κB pathway and 
is independent of SHP-2 or c-Met (Brandt et al., 2005). Indeed, 
Brandt et al. (2005) demonstrated that IL-8 induction was CagA 
phosphorylation independent. Kim et al. (2006) confirmed that 
NF-κB activation and subsequent induction of IL-8 were due to 
activation of the MAPK pathways and also analyzed the role of 
the different EPIYA motifs by analysis of transfected cells with 
CagA constructs that differed only in the EPIYA region. Analysis 
of Western CagA-specific sequences and East Asian CagA-specific 
sequences revealed that the levels of IL-8 induction are not signifi-
cantly different between the CagA variants. However, it should be 
noted that Argent et al. (2008a) demonstrated that CagA related 
differences in IL-8 induction were dependent on the EPIYA motifs 
and that strains containing East Asian CagA induce the great-
est levels of IL-8. However, they did not investigate the influence 
of phosphorylation status on these differences. Since persistent 
inflammation is a hallmark of H. pylori infection and is linked 
to more severe diseases, and since CagA affects the inflammatory 
process, it is easy to understand what an important role CagA plays 
in persistent infection and disease development.
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transcription factor activation, cell scattering (Mimuro et al., 2002), 
and activation of Akt and PI3K signaling. These activation events 
subsequently stimulate both the β-catenin and NF-κB pathways 
(Suzuki et al., 2009). So the interaction of some of these proteins 
with phosphorylated CagA may represent redundant mechanisms 
of action.

Caga indePendent/redundanCy
Inflammation appears important for H. pylori growth in vivo. For 
instance, H. pylori induced inflammation results in a decrease in the 
inhibitor of gastrin; gastrin has been proven to be a H. pylori growth 
factor (Levi et al., 1989; Moss et al., 1992; Chowers et al., 2002; 
Blaser and Atherton, 2004). Given the importance of inflamma-
tion for H. pylori colonization and persistence, there are redundant 
mechanisms by which H. pylori induces inflammation. For instance, 
in addition to CagA effects, NF-κB activation can also be achieved 
through TLR4 recognition of LPS (Ohmae et al., 2005; Lamb and 
Chen, 2010) or through type IV secretion system (T4SS) delivered 
peptidoglycan (PG) binding to nucleotide-binding oligomerization 
domain 1 (NOD1; Figure 2; Viala et al., 2004; Kaparakis et al., 2010). 
The inflammatory response caused by the interaction of peptidog-
lycan-NOD1 may be a result of the activation of AP-1 (Allison et al., 
2009), which functions as a transcription factor for cytokines and 
chemokines such as IL-8 (Faisst and Meyer, 1992; Jain et al., 1992; 
Chauhan et al., 1994; Rao, 1994). Recently, it has also been dem-
onstrated that the binding of NOD1 to its ligand, in this case PG, 
activates RICK, which allows RICK to interact directly with TRAF3 
followed by TRAF3 interaction with TBK1 (Watanabe et al., 2010). 
TBK1, as well as IKKε, leads to the production of cytokines, such as 
the type 1 interferons (IFN) like IFN-β. The production of IFN-β 
is responsible for NOD1’s ability to increase the level of the chem-
okine IP-10 as well as the induction of and nuclear translocation of 
the transcription factor interferon-stimulated gene factor 3 (ISGF3; 
Watanabe et al., 2010). The presence of the cag pathogenicity island 
has also been shown to lead to increased inflammation (Censini 
et al., 1996); 14 of the 27 genes within the island are essential for 
IL-8 induction (Fischer et al., 2001). With multiple bacterial factors 
that induce NF-κB, this begs the question of why the bacterium 
needs mechanisms for such redundancy. Lamb and Chen (2010) 
postulate that since CagA and PG target different cellular signaling 
molecules, they may synergistically activate NF-κB, and that this 
synergy may be important. Alternately, in strains where CagA is 
not present or is not a potent inducer of IL-8 and NF-κB, PG may 
serve as the major inducer of the inflammatory response. Both of 
these hypotheses highlight the importance of the induction of an 
inflammatory response for H. pylori, probably due to the require-
ment for gastrin or other nutrients.

vaCuolating Cytotoxin a
VacA is another important factor that has been indicated to have 
effects on H. pylori virulence and to target numerous host cell path-
ways (Figure 2). Activity of this protein was found when H. pylori 
filtrates were shown to induce large host cell vacuoles (Leunk et al., 
1988). The VacA cytotoxin appears to be produced and secreted 
by most, if not all, H. pylori strains, but possesses no similarity to 
any other known bacterial or eukaryotic protein (Atherton et al., 
1999; Cover and Blanke, 2005). Once produced, VacA can remain 

active FAK abrogates the formation of this morphological change 
(Tsutsumi et al., 2006). Additionally, studies have identified multi-
ple actin-binding proteins that, when tyrosine-dephosphorylated, 
promote CagA phosphorylation dependent cell elongation. These 
include vinculin (Moese et al., 2007), cortactin (Selbach et al., 2003; 
Selbach and Backert, 2005), and ezrin (Selbach et al., 2004). Since 
the SHP-2 phosphatase is not required for the dephosphorylation of 
cortactin, the dephosphorylation of these actin-binding proteins is 
likely a result of blocked activity of a kinase, and therefore a product 
of the phosphorylated CagA negative feedback loop that inhibits 
the Src kinase (Selbach et al., 2003). In fact, this is the case for ezrin 
as inhibition of Src family kinases increases dephosphorylation of 
ezrin (Selbach et al., 2004), and host elongation is achieved sim-
ply through inactivation of Src, which results in dephosphoryla-
tion of all Src substrates, including vinculin, ezrin, and cortactin 
(Backert et al., 2010). This inhibition of Src could occur either 
directly or through the recruitment of C-terminal Src kinase (Csk), 
as described in the next section (Selbach et al., 2003; Tsutsumi 
et al., 2003; Backert et al., 2010). Finally, phosphorylated CagA can 
bind Crk adaptor proteins (Crk-I, Crk-II, and Crk-L; Suzuki et al., 
2005). This interaction is important for cell scattering, disruption 
of E-cadherin/catenin, and activation of Raf (Suzuki et al., 2005). 
Furthermore, it was recently shown that CagA phosphorylation 
could occur via Abl instead of Src, thereby activating downstream 
effects, specifically cell scattering and motility (Poppe et al., 2007; 
Tammer et al., 2007). Moreover, Abl could also form a complex 
with CrkII and CagA (Tammer et al., 2007). Taken together, these 
findings show that phosphorylation of CagA is very important for 
host cell shape and adhesion. This fact implicates the degree of 
phosphorylation as a consequence of the cagA allele carried by a 
strain as being important for development of gastric carcinomas.

Caga feedbaCK looP, src vs. Csk
As mentioned above, CagA participates in a negative feedback loop 
that allows for regulation of the amount of phosphorylated CagA. 
CagA can bind Csk via direct interaction with the EPIYA-A and 
-B motifs (Tsutsumi et al., 2003, 2006). Formation of this complex 
leads to the inhibition of the Src family kinases (SFKs) through Csk 
tyrosine phosphorylation of an inhibitory C-terminal residue on 
Src (Tsutsumi et al., 2003, 2006; Hatakeyama, 2004). CagA can also 
directly inhibit SFK activity (Selbach et al., 2003). While the purpose 
of this negative feedback system is not completely clear, it appears 
that in its absence, CagA is excessively toxic to cells (Tsutsumi et al., 
2003; Hatakeyama, 2004, 2006). Thus, this loop has been hypoth-
esized to promote long-term colonization of cagA positive H. pylori 
strains (Hatakeyama, 2006).

interaCtions with unKnown funCtion
Recent proteomic screens identified a number of proteins that 
appear to interact with phosphorylated CagA (Selbach et al., 2009). 
These include PI3K, Grb2, Ras-GAP, Grb7, and Shp1. The conse-
quences of these interactions with phosphorylated CagA is still 
unknown (Selbach et al., 2009). However, it is clear that both Grb2 
and PI3K are actively involved in H. pylori pathogenesis when CagA 
is not phosphorylated (Mimuro et al., 2002; Suzuki et al., 2009). 
Indeed, unphosphorylated CagA is known to bind to Grb2, which 
activates ERK signaling, and leads to increased  cellular proliferation, 
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upon exposure to a non-neutral environment. In fact, exposure to 
alkaline or acidic conditions actually amplifies the activity of VacA 
(de Bernard et al., 1995; Cover et al., 1997; Molinari et al., 1998a; 
Yahiro et al., 1999). Once secreted, VacA undergoes proteolytic 

on the bacterial surface (Ilver et al., 2004) or be secreted as an 
approximately 88 kDa toxin (Cover and Blaser, 1992). Secreted 
VacA monomers oligomerize (Lupetti et al., 1996; Cover et al., 
1997; Lanzavecchia et al., 1998; Adrian et al., 2002) but dissociate 

Figure 2 | VacA and known host cell targets. (A) A schematic 
representation of VacA with the three major regions of polymorphisms (s, i, 
and m) is shown. Additionally, schematics of the known alleles of each region 
are shown. The i region contains two important polymorphic regions known 
as Cluster B and Cluster C, which are designated by a B and C, respectively 
on the diagram. The activity attributed to each of the regions of the toxin 
(vacuolating activity or cellular tropism) are indicated, and the impact of each 
allele on these effects is shown. The highest level of activity or the broadest 

tropism is defined as ++, intermediate tropism is indicated by a +, low activity 
is indicated as a +/−, no activity is designated by a −, and incomplete 
information is indicated by a ?. (B) A depiction of the gastric mucosa and 
known host pathways targeted by VacA is shown. One of the receptors, 
sphingomyelin is designated by SM. Pathways targeted in epithelial cells and 
B and T cells are indicated. Additionally, activation of several pathways by 
peptidoglycan (PG) and LPS are shown. This figure was adapted from an 
earlier version by Rieder et al. (2005a).
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RPTPβ knock out mice, which becomes resistant to VacA  mediated 
ulceration (Fujikawa et al., 2003). Additionally, sphingomyelin was 
recently identified as a receptor that is important for VacA binding 
and vacuolating activity of the toxin (Gupta et al., 2008, 2010). 
Finally, VacA can also bind to T cells using the lymphocyte function-
associated antigen-1 (LFA-1; Sewald et al., 2008b). The fact that 
VacA can use different receptors based on the cell type targeted may 
help explain this toxin’s diverse functions. While much is known 
about the various functions of the toxin, relatively little is currently 
known about the exact host signaling pathways affected by the 
toxin. Thus, herein we discuss what is currently known about the 
major cellular processes affected by VacA.

vaca funCtions
anion Channel forMation and vaCuolation
VacA can oligomerize within the plasma membrane and can cause 
formation of anion-selective channels (Szabo et al., 1999). These 
channels may be used to increase the efflux of complex molecules, 
such as bicarbonate and urea, out of the host cell (Szabo et al., 
1999; Debellis et al., 2001; Tombola et al., 2001), which may aid 
H. pylori growth (Montecucco and Rappuoli, 2001). In addition 
to forming anion-selective channels in vitro, VacA can reduce the 
transepithelial electric resistance of polarized cells by increasing 
paracellular epithelial permeability. This allows the release of some 
cations, such as Fe3+ and Ni2+, as well as more complex molecules 
such as amino acids and sugars (Papini et al., 1998).

One of the most striking effects of VacA on host cells is the 
creation of large cytoplasmic vacuoles that contain the markers for 
late endosomes and lysosomes (Molinari et al., 1997). Once VacA is 
internalized by the host cell, it is trafficked to the early endosome by 
F-actin containing structures (Gauthier et al., 2005). Subsequently, 
the CD2 associated protein is essential for transferring VacA from 
early endosomes to late endosomes (Gauthier et al., 2005, 2007). 
The process of vacuolation is then dependent on syntaxin 7 and 
vesicle associated membrane protein 7 (VAMP7), both of which 
are integral to late endosomes and lysosomes (Suzuki et al., 2003; 
Mashima et al., 2008). Additionally, this process requires the vacu-
olar ATPase (V-ATPase) activity and dynamin, which are enzymes 
crucial for formation and stability of vesicles (Cover et al., 1993; 
Suzuki et al., 2001).

induCtion of aPoPtosis
Although the fact that VacA causes apoptosis has been known for a 
while, the exact mechanism or mechanisms by which this occurs are 
still not completely understood. Evidence shows that VacA medi-
ated apoptosis is dependent on interaction with the mitochondria 
(Kimura et al., 1999; Galmiche et al., 2000; Willhite et al., 2003; 
Willhite and Blanke, 2004; Oldani et al., 2009; Domanska et al., 
2010; Foo et al., 2010). Indeed, VacA has been proven to reduce 
the membrane potential of the mitochondria, thereby allowing the 
release of cytochrome c (Kimura et al., 1999; Galmiche et al., 2000; 
Willhite et al., 2003; Willhite and Blanke, 2004). The modulation 
of the mitochondrial membrane potential by VacA also results in 
impaired cell cycle progression and a drop in ATP concentration 
(Kimura et al., 1999). Several early studies showed that VacA that 
is deficient in its ability to form channels inhibits cytochrome c 
release (Willhite et al., 2003; Willhite and Blanke, 2004), and blocks 

cleavage to yield two smaller products, p33 and p55. However, to 
date the consequence of this cleavage is not understood (Telford 
et al., 1994; Nguyen et al., 2001; Willhite et al., 2002; Ye and Blanke, 
2002; Torres et al., 2004). The smaller p33 product and about 100 
amino acids of p55 are responsible for the vacuolating activity of 
VacA (de Bernard et al., 1997, 1998; Ye et al., 1999). The p33 domain 
is strongly hydrophobic and contains characteristic transmembrane 
dimerization motifs that are responsible for insertion into the host 
cellular membrane and vacuolating activity (Vinion-Dubiel et al., 
1999; Ye and Blanke, 2000, 2002; McClain et al., 2001a, 2003; Kim 
et al., 2004), whereas the p55 domain has a crucial role in binding 
to host cells (Garner and Cover, 1996; Pagliaccia et al., 1998; Reyrat 
et al., 1999; Wang and Wang, 2000; Wang et al., 2001).

Like CagA, VacA is polymorphic. However, unlike CagA, this 
variation begins within the amino-terminus of VacA. Three regions 
of variation have been defined and there are at least two primary 
variants in each region; the regions are designated as the signal 
(s), intermediate (i), and middle (m) regions (Figure 2; Atherton 
et al., 1995; Rhead et al., 2007; Chung et al., 2010). The s region 
of VacA is found in the p33 portion of the toxin and influences 
vacuolating activity and efficiency of anion channel formation due 
to the hydrophobic nature of the amino acid residues found near 
the proteolytic cleavage site (Pugsley, 1993; McClain et al., 2001b). 
The s2 variant undergoes cleavage at an alternate site, thereby 
providing an extension of 12 hydrophilic amino acids (Atherton 
et al., 1995). The s1 variant contains more hydrophobic amino 
acids near the cleavage site than the s2 variant; thus, the s1 sequence 
is more easily inserted into the host cell membrane (Letley and 
Atherton, 2000; McClain et al., 2001b). The m region is found in 
the p55 portion of the toxin and influences host cell tropism; the 
m1 region is toxic to a wider range of host cells (Pagliaccia et al., 
1998; Ji et al., 2000; Amieva and El-Omar, 2008). The i region is 
located between the s and m regions and is the most recent region 
to be described. The i region has been suggested to be the best 
indicator of disease severity (Rhead et al., 2007) and three primary 
variants have been identified (Chung et al., 2010). The i1 region 
is believed to be associated with stronger vacuolating activity and 
more severe disease states than the i2 region (Rhead et al., 2007). 
Furthermore, strains carrying VacA s1, i1, m1, and combinations 
of these alleles are overall associated with more severe disease 
(Letley et al., 2003; Rhead et al., 2007; Basso et al., 2008; Jang et al., 
2010). This association could be due to increased anion channel 
formation, vacuolating activity, and cell tropism from having the 
s1, i1, and m1 regions, respectively.

In recent years, a number of studies have elucidated multiple 
receptors for VacA and shown that VacA uses different receptors 
based on different host cell types (Sewald et al., 2008a). On epithelial 
cells, several different receptors have been identified. Among these 
are RPTPα, which is a receptor-like protein tyrosine phosphatase 
that appears to be used by VacA on G401 cells (a human kidney 
tumor cell line) and in AGS cells (an adenocarcinoma cell line; 
Yahiro et al., 2003; Tegtmeyer et al., 2009). Another receptor which 
needs to be glycosylated for VacA to bind to it is RPTPβ, which 
can be used by VacA on AZ-521 (gastric epithelial-derived cells; 
Yahiro et al., 1999, 2004). When RPTPβ is artificially increased in 
some cell lines, toxicity to VacA also increases (Padilla et al., 2000). 
The importance of this receptor in vivo has been demonstrated in 



www.frontiersin.org November 2010 | Volume 1 | Article 115 | 9

Jones et al. H. pylori CagA and VacA

VacA activates PI3K/p110α, which in turn activates Akt to phospho-
rylate GSK3β. This phosphorylation ultimately frees β-catenin to 
translocate to the nucleus to bind TCF/LEF and allows transcription 
of β-catenin-dependent genes such as cyclin D1 and potentially 
other oncogenic genes such as cdx1 (Lickert et al., 2000; Mizoshita 
et al., 2004; Tabassam et al., 2009). Thus this affect on the β-catenin 
pathway again lends credence to the fact that the more virulent alleles 
of VacA, which potentially could cause greater induction of this 
pathway, are associated with more severe disease manifestations.

Finally, VacA also affects the autophagy pathway; VacA induces 
the formation of autophagosomes and is associated with these 
structures (Terebiznik et al., 2009). Moreover, the stability of intra-
cellular VacA is impacted by the presence of autophagosomes, and 
VacA stability is increased when autophagy is inhibited (Terebiznik 
et al., 2009).

iMMune Modulation
VacA has many roles, but one important function that may directly 
impact H. pylori colonization and persistence is its ability to act as 
an immune modulator. This immune modulation occurs through 
several distinct mechanisms. For instance, VacA disrupts the process 
of phagosome maturation through recruitment and retention of 
coronin 1, which is also known as tryptophan-aspartate-containing 
coat protein (TACO; Zheng and Jones, 2003). However, despite 
this disruption in phagosome maturation, VacA does not seem 
to impact the intracellular survival of H. pylori within monocytes 
(Rittig et al., 2003). Next, H. pylori infected macrophages form large 
vesicular compartments called megasomes and VacA supports this 
process by increasing homotypic phagosome fusion (Allen et al., 
2000; Zheng and Jones, 2003). This allows H. pylori to persist in 
macrophages instead of being killed. VacA has also been proven to 
inhibit the invariant chain dependent pathway of antigen presenta-
tion by MHC class II molecules (Molinari et al., 1998b), and has 
been reported to interfere with the presentation of antigen in B cells 
(Molinari et al., 1998b). More recently, VacA has been reported to 
inhibit both PMA/anti-IgM and T cell induced B cell proliferation 
(Torres et al., 2007).

In addition to these pathways, T cells are also affected by VacA. 
VacA can enter activated, migrating primary T lymphocytes by 
binding to β2 integrin (CD18) and LFA-1 (Sewald et al., 2008b); 
LFA-1 is essential for this process since T cells deficient in LFA-1 are 
resistant to the effects of VacA (Sewald et al., 2008b). Intoxication 
by VacA can then inhibit the proliferation of CD8+ T cells (Torres 
et al., 2007) through down-regulation of the expression of the inter-
leukin 2 (IL-2) surface receptor-α and inhibition of the production 
of IL-2, both of which are required for T cell proliferation and 
survival. These IL-2 effects occur through the inhibition of NFAT 
(Boncristiano et al., 2003; Gebert et al., 2003; Sundrud et al., 2004). 
This disruption in normal NFAT signaling may be due to blocked 
dephosphorylation of NFAT, which could occur by blocking the 
influx of calcium that is required for dephosphorylation by the 
calcium-calmodulin-dependent phosphatase calcineurin and sub-
sequent nuclear translocation of NFAT (Boncristiano et al., 2003; 
Gebert et al., 2003). The down-regulation of IL-2 decreases cyclins 
D3 and E, which in turn decrease production of the retinoblas-
toma protein. This decrease induces cell cycle arrest in the G

1
 phase 

(Gebert et al., 2003).

the ability to modulate the mitochondrial membrane potential 
(Willhite and Blanke, 2004), suggesting that channel formation is 
essential for these events.

However, some additional work has demonstrated that most 
VacA is localized to vacuoles inside host cells (Yamasaki et al., 2006). 
This finding suggests that VacA mediated cell death might not be a 
result of direct binding of VacA to the mitochondria, but perhaps 
suggests that VacA mediated induction of the pro-apoptotic fac-
tors in the Bcl-2 family might be involved. In keeping with this, it 
has been suggested that these pro-apoptotic factors actually inter-
act with the mitochondria to release cytochrome c, and VacA has 
been shown to increase the level of pro-apoptotic Bax in a manner 
that mirrors the release of cytochrome c from the mitochondria 
(Yamasaki et al., 2006). Additionally, VacA can also induce the cleav-
age of poly (ADP-ribose) polymerase (PARP), by the activation of 
the death factor, caspase-3 in transfected cells. Furthermore, this 
cleavage can be inhibited by the overexpression of the pro-apoptotic 
factor Bcl2 (Galmiche et al., 2000; Yamasaki et al., 2006). Taken 
together, these data suggest that VacA has two potential mechanisms 
to induce apoptosis in intoxicated cells.

disruPtion of Cellular Pathways
VacA deregulates multiple cellular pathways as well as inducing 
inflammation. VacA intoxication induces production of a variety 
of inflammatory cytokines that include TNFα, IL-1β, IL-6, IL-10, 
and IL-13 (Supajatura et al., 2002). Moreover, IL-8 is produced by 
several different cell lines in response to VacA mediated activation 
of the p38 MAPK through an increase in intracellular calcium and 
the subsequent activation of ATF-2, CREB, and NF-κB (Hisatsune 
et al., 2008).

VacA increases the activity of p38, ERK, and the activating 
transcription factor 2 (ATF-2; Nakayama et al., 2004). Through 
the p38/ATF-2 cascade, COX-2 is upregulated, which leads to 
increased production of prostaglandin E

2
 (PGE

2
; Hisatsune et al., 

2007). Conversely, in mice VacA inhibits PGE
2
-stimulated duodenal 

epithelial bicarbonate (HCO3
−) secretion by inducing the release 

of mucosal histamine (Tuo et al., 2009). While the reason for this 
discrepancy in VacA mediated increase in PGE

2
 effects is unclear, 

it should be noted that decreased duodenal epithelial HCO3
− secre-

tion is associated with duodenal ulcers and may leave the mucosal 
layer less able to repair itself (Isenberg et al., 1987). This could 
account for the role of VacA in gastric damage (Isenberg et al., 
1987). Furthermore, VacA can also inhibit gastric acid secretion 
by increasing the mobilization of intracellular calcium, which in 
turn activates calpain 1 to hydrolyze the CagA targeted cytoskeletal 
protein, ezrin (Selbach et al., 2004; Wang et al., 2008). As well as 
the inflammatory pathway, VacA activates the p38 and the ERK 
pathways leading to deregulation of molecules that directly cor-
relate with gastric damage.

Like CagA, VacA has also been shown to affect the β-catenin 
signaling pathway and therefore, perhaps the oncogenic potential 
of H. pylori. As stated earlier, deregulation of this molecule affects 
many cellular pathways involved in migration, cell cycle, polar-
ity, and apoptosis, and numerous studies have demonstrated the 
effect that H. pylori has on the β-catenin pathway (Kurashima et al., 
2008; Sokolova et al., 2008; Nagy et al., 2009; Nakayama et al., 2009; 
Tabassam et al., 2009). Recently, Tabassam et al. (2009) showed that 
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ConClusion
Helicobacter pylori is a medically important bacterium that pos-
sesses a wide variety of virulence factors that allow it to thrive in 
the hostile environment of the stomach. The causal link between 
H. pylori infection and gastric cancer development has led to numer-
ous studies designed to ascertain the role of virulence factors in the 
establishment of disease (Parsonnet et al., 1991, 1994; Talley et al., 
1991; Blaser, 1998). Some virulence factors, such as HomB (Jung 
et al., 2009; Oleastro et al., 2009) and BabA (Gerhard et al., 1999; 
Mizushima et al., 2001) are just beginning to be linked via epide-
miological evidence to support a role in the development of more 
severe disease. Conversely, CagA (Blaser et al., 1995; Kuipers et al., 
1995; Xiang et al., 1995; Parsonnet et al., 1997; Huang et al., 2003) 
and VacA (Xiang et al., 1995; Letley et al., 2003; Rhead et al., 2007; 
Basso et al., 2008; Jang et al., 2010) have been studied extensively.

CagA was the first H. pylori virulence factor to be associated with 
more severe disease (Crabtree et al., 1991; Covacci et al., 1993; Blaser 
et al., 1995; Gwack et al., 2006) and has been shown to work on cellular 
processes that include β-catenin (Murata-Kamiya et al., 2007), ERK 
(Higashi et al., 2002b, 2004; Mimuro et al., 2002; Higuchi et al., 2004), 
and the inflammatory pathways (Brandt et al., 2005; Kim et al., 2006) 
to name a few (Figure 1). This toxin works in both a phosphorylation 
dependent and independent manner, and polymorphisms located 
in the carboxyl terminus lead to differential induction of several 
cellular pathways (Higashi et al., 2002a,b; Hatakeyama, 2004). Since 
these polymorphisms affect the phosphorylation sites, one might 
assume that these variations would only affect pathways that are CagA 
phosphorylation dependent. However, even in its unphosphorylated 
state the sequence differences within this region of CagA affect the 
ability of the protein to multimerize, thereby leading to differential 
induction of CagA phosphorylation independent pathways as well 
(Kurashima et al., 2008; Lu et al., 2008). Meanwhile, a multitude of 
studies have assessed the effects of VacA on host cells (Figure 2). 
This toxin also has a vast array of functions that span induction of 
apoptosis (Kimura et al., 1999; Galmiche et al., 2000; Willhite et al., 
2003; Willhite and Blanke, 2004; Yamasaki et al., 2006) to modula-
tion of the immune system (Figure 2; Molinari et al., 1998b; Zheng 
and Jones, 2003; Torres et al., 2007). Again, there are polymorphisms 
within the VacA toxin that affect the range of cells it can intoxicate 
(Pagliaccia et al., 1998; Ji et al., 2000), as well as its ability to integrate 
into membranes and cause downstream effects (Letley and Atherton, 
2000; McClain et al., 2001b; Rhead et al., 2007).

These two distinct toxins clearly have some overlap in their func-
tions. Both are able to affect cell shape (Higashi et al., 2002b, 2004; 
Mimuro et al., 2002; Higuchi et al., 2004; Selbach et al., 2004; Wang 
et al., 2008), affect immune cells (Molinari et al., 1998b; Umehara 
et al., 2003; Zheng and Jones, 2003; Torres et al., 2007; Zhu et al., 
2007), and activate oncogenic pathways such as β-catenin (Murata-
Kamiya et al., 2007; Tabassam et al., 2009). They also clearly have 
antagonistic effects on each other, such as dampening the pheno-
typic effects on the host cell (cellular elongation induced by CagA 
vs. vacuolation caused by VacA; Argent et al., 2008b). CagA also has 
the ability to prevent VacA induced apoptosis, whereas VacA can 
prevent CagA induced nuclear translocation of NFAT (Yokoyama 
et al., 2005). It is believed that this antagonistic relationship exists to 
increase the life of the host cell (Argent et al., 2008b), and it has been 
shown that the more active form of VacA is often associated with 

With expression of over 100 genes altered in T cells upon intoxica-
tion with VacA (Gebert et al., 2003), it is perhaps not surprising that 
some redundancy exists in this process. A recent study found that 
VacA inhibition of CD4+ T cell proliferation is independent of NFAT 
induced IL-2 activation (Sundrud et al., 2004). Furthermore, VacA can 
induce the p38 MAPK pathway within T cells, neutrophils and macro-
phages (Boncristiano et al., 2003). In T cells, p38 is activated through 
activation of serine–threonine kinases (MKK3/6), which are linked to 
signaling molecules through a Rho family GTPase exchange factor, Vav 
(Bustelo, 2000; Ono and Han, 2000; Boncristiano et al., 2003). Through 
its exchange activity on Rac, Vav is linked to the reorganization of the 
cytoskeleton (Bustelo, 2000), and VacA uses Rac1 to rearrange the 
host cell cytoskeleton (Hotchin et al., 2000; Boncristiano et al., 2003). 
Taken together, all of these immune modulations by VacA probably 
allow for persistent infection with H. pylori. Additionally, perhaps the 
importance of immune modulation has led to the selective pressure 
to maintain expression of VacA in most H. pylori strains.

interaCtions between Caga and vaca
There is a growing amount of literature that suggests that the CagA 
and VacA toxins interact, and that this interaction has an effect on 
disease severity (Jang et al., 2010). Early on, Yokoyama et al. (2005) 
showed an antagonistic effect between CagA and VacA on the NFAT 
pathway; CagA activates the NFAT pathway via activation of cal-
cineurin through phospholipase Cγ, whereas VacA inhibits NFAT 
through prevention of calcineurin activation through decreased 
calcium influx due to VacA mediated pores (Yokoyama et al., 2005). 
Moreover, recent transfection assays showed that CagA blocks the 
apoptotic activity of VacA by two different mechanisms (Oldani 
et al., 2009); phosphorylated CagA blocks the ability of VacA to traf-
fic to intracellular compartments, whereas unphosphorylated CagA 
blocks apoptosis in a manner that mimics Bcl2 (an anti-apoptotic 
factor) overexpression (Oldani et al., 2009). However, Bcl2 expres-
sion was not shown to be increased by CagA (Oldani et al., 2009). In 
fact, CagA not only blocks the cytotoxicity of VacA, but also blocks 
the ability of VacA to enter host cells (Akada et al., 2010).

Additionally, VacA and CagA show antagonistic activities in 
regards to cellular morphology. In cells co-cultured with isogenic 
H. pylori mutant strains deficient in cagA or vacA, increased vac-
uolation was seen in cells infected with cagA mutants, whereas 
cells infected with vacA mutants showed greater elongation of 
cells (Argent et al., 2008b). In other words, protrusion length was 
reduced in cells displaying vacuoles, and the number of vacuoles 
was decreased in elongated cells (Argent et al., 2008b). At a mecha-
nistic level, activation of ERK1/2 by CagA is important for cell 
scattering and morphological changes (Neel et al., 2003), and VacA 
inhibits activation of ERK1/2 through inhibition of the activation 
of the epidermal growth factor receptor (EGFR) and the human 
epidermal growth factor receptor 2 (HER2/Neu; Tegtmeyer et al., 
2009). One explanation for this antagonism, which was suggested 
by Akada et al. (2010) is that CagA is injected into the cells that 
the bacteria are attached to, which then protects those cells from 
the cytotoxic activity of VacA. VacA then proceeds to attack distant 
cells, thereby freeing nutrients. Overall, these combined interactions 
may explain our observation of a link between the most active VacA 
allele (s1/i1/m1), the most pathogenic CagA allele (EPIYA-ABD), 
and more severe disease manifestations (Jang et al., 2010).
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the more active form of CagA and is thus, further linked to more 
severe gastric disease (Jang et al., 2010). As well as investigating the 
impacts of these toxins individually on host cells, more knowledge 
is needed on the interaction of these toxins and their combined 
impact on gastric disease.
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