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Role of the Nlrp3 inflammasome in microbial infection

Paras K. Anand, R. K. Subbarao Malireddi and Thirumala-Devi Kanneganti*

Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN, USA

The intracellular Nod-like receptor Nlrp3 has emerged as the most versatile innate immune 
receptor because of its broad specificity in mediating immune response to a wide range of 
microbial or danger signals. Nlrp3 mediates assembly of the inflammasome complex in the 
presence of microbial components leading to the activation of caspase-1 and the processing 
and release of the pro-inflammatory cytokines IL-1β and IL-18. In this review, we give an update 
on the recent literature examining the role of Nlrp3 inflammasome in response to fungal, 
bacterial, and viral infections.
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Vonk et al., 2006), the inflammasome dependent processing of 
these cytokines was not addressed in those studies. One report sug-
gested that caspase-1 is constitutively active in human monocytes 
and does not require inflammasome assembly for its activation 
(van de Veerdonk et al., 2009). In contrast, other reports in mouse 
models established the inflammasome dependent caspase-1 acti-
vation and IL-1β production in response to pathogen-associated 
molecular patterns from Candida albicans, Aspergillus  fumigatus, 
and Saccharomyces cerevisiae (Gross et al., 2009; Hise et al., 
2009; Joly et al., 2009; Kumar et al., 2009; Lamkanfi et al., 2009; 
Kankkunen et al., 2010; Poeck and Ruland, 2010; Said-Sadier et al., 
2010). Intriguingly, mice deficient in Nlrp3 are hyper-susceptible 
to C. albicans in several infection models (Gross et al., 2009; Hise 
et al., 2009; Joly et al., 2009). However, the in vivo role of Asc 
and caspase-1 in C. albicans infection is not known. Interestingly, 
hyphael stages of these heteromorphic fungi are more virulent and 
are suggested to be more aggressive inducers of inflammation (Lo 
et al., 1997). Indeed, yeast forms of A. fumigatus and C. albicans 
either did not induce or showed poor Nlrp3 inflammasome acti-
vation, respectively providing evidence for the differential regula-
tion of immune responses based on the morphological forms of 
fungi (Hise et al., 2009; Joly et al., 2009; Said-Sadier et al., 2010). 
Accordingly, appearance of hyphael forms of fungi is a positive 
prognosis factor for the rapidly spreading fungal infections in 
affected tissues and organs.

The Dectin-CARD9 signaling pathway through syk kinase reg-
ulates transcriptional up-regulation of cytokines downstream of 
fungal recognition (Gross et al., 2009; Poeck and Ruland, 2010). 
Interestingly, inhibition of syk kinase, either pharmacologically or 
through shRNA-based knock down, resulted not only in the inhi-
bition of transcription but also reduced the Nlrp3 inflammasome 
activation (Gross et al., 2006; Said-Sadier et al., 2010). These obser-
vations thus suggest that the syk kinase signaling may contribute 
to the Nlrp3 inflammasome activation by providing the necessary 
signals required either for its up-regulation at the transcriptional 
level and/or for its assembly by a yet unidentified mechanism.

IntroductIon
The innate immune system depends on germline encoded pattern 
recognition receptors (PRRs) for the detection of various microbial 
components. PRRs belong to different classes of receptors such as 
toll-like receptors (TLRs) that are localized at the cell surface or in 
endosomes and the cytosolic RIG-I-like receptors (RLRs), Nod-
like receptors (NLRs), and the recently identified HIN-200 family 
members (Palsson-McDermott and O’Neill, 2007; Hornung and 
Latz, 2010; Unterholzner et al., 2010). Upon perceiving a microbial 
or danger stimuli, these receptors activate downstream signaling 
events leading to generation of the appropriate immune response 
(Creagh and O’Neill, 2006). Inflammasomes are molecular plat-
forms that assemble by hetero-oligomerization of a nucleotide-
binding oligomerization domain, LRR containing receptor (NLR), 
an adaptor protein ASC and pro-caspase-1, and triggers caspase-1 
activation and downstream maturation and secretion of the pro-
inflammatory cytokines IL-1β and IL-18 (Kanneganti et al., 2006a, 
2007; Lamkanfi and Kanneganti, 2010).

The requirement for a particular NLR within the inflammasome 
complex depends upon the upstream trigger. The Nlrp3 inflam-
masome, for example, acts as a global sensor that responds to a 
wide array of stimuli whereas Nlrc4 and Nlrp1 inflammasomes 
are more specific; they are activated only by bacterial flagellin and 
anthrax toxin, respectively (Boyden and Dietrich, 2006; Franchi 
et al., 2006; Miao et al., 2006). Many studies have now uncovered 
the crucial role of the Nlrp3 inflammasome in different microbial 
infections. The purpose of this review is to give an update on the 
recent literature highlighting the role of Nlrp3 inflammasome dur-
ing host responses to various pathogens.

Fungal InFectIon
Most of the fungi are non-pathogenic in healthy individuals; how-
ever, they are long known to cause severe systemic and superficial 
infections in patients with AIDS, cancer or other immunocompro-
mised conditions (Romani, 2004). Although the antifungal effects 
of IL-1β and IL-18 were known previously (Mencacci et al., 2000; 
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wild-type mice (Harder et al., 2009). Vibrio spp. also induced Nlrp3 
inflammasome activation mediated by hemolysins and toxins (Toma 
et al., 2010). Staphylococcus aureus activated Nlrp3 inflammasome 
dependent on hemolysins and bacterial lipoproteins secreted in cul-
ture supernatants (Munoz-Planillo et al., 2009). Similarly, Neisseria 
gonorrhoeae induced IL-1β production via Nlrp3 inflammasome that 
was dependent upon the secreted virulence factor lipo-oligosaccharide 
(Duncan et al., 2009).

VIral InFectIon
Within mammalian hosts, viruses are recognized by TLR3 and 
TLR7 in the endosomes and by RIG-I in the cytoplasm mounting 
robust immune responses through the regulation of type-1 inter-
ferons (Ichinohe et al., 2009; Kanneganti, 2010). Initial evidence 
implicating Nlrp3 inflammasome in viral infection came from 
reports of caspase-1 activation and production of IL-1β and IL-18 
during Sendai virus and influenza virus infections (Kanneganti 
et al., 2006b). Infection with the modified vaccinia virus Ankara 
also activates the Nlrp3 inflammasome (Delaloye et al., 2009). 
Several lines of evidence indicate that the Nlrp3 inflammasome 
might detect the presence of viral RNA and DNA in intracellu-
lar compartments. For example, Nlrp3 has been implicated in the 
detection of viral DNA from adenovirus in cell culture (Muruve 
et al., 2008). Additionally, transfection of human or mouse cell lines 
with ssRNA or dsRNA analogs, such as polyinosinic–polycytidylic 
acid (poly(I:C)), is sufficient to activate Nlrp3 (Allen et al., 2009). In 
vivo administration of poly(I:C) or the purified ssRNA of influenza 
A virus to mice also led to IL-1β secretion and inflammation due 
to Nlrp3 activation (Kanneganti et al., 2006b; Allen et al., 2009; 
Thomas et al., 2009).

Several recent studies reported activation of the Nlrp3 inflam-
masome in response to influenza A virus in mouse bone marrow-
derived macrophages, dendritic cells, monocytic THP-1 cells and 
in vivo (Allen et al., 2009; Ichinohe et al., 2009; Thomas et al., 2009). 
Perhaps, the Nlrp3 inflammasome activation in response to viruses 
has been best characterized by using influenza A virus. Influenza A 
virus infection led to reduced production of cytokines and chem-
okines in mice lacking components of the Nlrp3 inflammasome 
leading to decreased recruitment of neutrophils and monocytes 
(Allen et al., 2009; Thomas et al., 2009). This was accompanied 
by epithelial necrosis and collagen deposition, an effect that was 
more severe in the bronchia of the Nlrp3 mutant mice. Despite 
these facts, Nlrp3 inflammasome had no role in either virus con-
trol or generation of adaptive immunity (Thomas et al., 2009). In 
contrast, another study reported importance of the Nlrp3 in viral 
clearance (Allen et al., 2009). The apparent discrepancy might be 
due to different doses of infection or evaluation of viral plaque-
forming units at different days after infection. Still another study 
by Ichinohe et al. (2009), however, reported a role for Nlrp3 only 
in certain cell types, but observed no role for it in the generation of 
adaptive immune responses similar to the study by Thomas et al. 
(2009). Interestingly, Ichinohe et al. (2010) proposed a role for the 
viral M2 ion channel in transporting H+ out of the trans-Golgi 
network. The authors postulated that this perturbation somehow 
activates other plasma membrane channels responsible for K+ efflux 
thus activating the Nlrp3 inflammasome (Ichinohe et al., 2010; 
Kanneganti, 2010).

BacterIal InFectIon
Nlrp3 inflammasome has been shown to be particularly important 
in response to several bacterial pathogens. Staphylococcus aureus 
induced IL-1β secretion, for example, requires Nlrp3 inflamma-
some activation (Mariathasan et al., 2006; Craven et al., 2009). By 
using purified α-hemolysin Craven et al. (2009) discovered a cru-
cial role for Staphylococcus aureus hemolysins in Nlrp3 inflamma-
some activation in THP-1 monocytes. However, Mariathasan et al. 
(2006) reported no role for Staphylococcus aureus hemolysins (α-, 
β-, or γ-hemolysins) in the induction of Nlrp3 inflammasome in 
bone marrow-derived macrophages by using Staphylococcus aureus 
hemolysin mutants. The differences observed between these two 
studies might be due to differences in the cell types used or to the 
fact that other redundant factors released by Staphylococcus aureus 
hemolysin mutants activate Nlrp3 as efficiently.

Salmonella typhimurium is a flagellated bacterium that has been 
shown to activate the Nlrc4 inflammasome (Franchi et al., 2006; 
Miao et al., 2006). However, Broz et al. (2010) recently reported 
activation of both the Nlrc4 and Nlrp3 inflammasomes via SPI-1 
and SPI-2 dependent mechanisms. Unlike previous studies, which 
had focused on the SPI-1-dependent mechanism of caspase-1 acti-
vation that occurs rapidly and activates Nlrc4, this study focused 
on Salmonella SPI-2 dependent mechanisms that activate the 
Nlrp3 inflammasome. During Salmonella infection, Nlrp3 inflam-
masome dependent IL-1β production was observed between 17 
and 20 h after infection. Interestingly, both Nlrp3 and Nlrc4 were 
recruited into a single ASC focus in response to Salmonella that 
correlated well with the amount of IL-1β and IL-18 released (Broz 
et al., 2010). Accordingly, mice lacking both of these NLRs were 
found more susceptible to infection than mice deficient in either 
Nlrc4 or Nlrp3 alone (Broz et al., 2010). However, the role of Nlrp3 
in Salmonella infection needs further verification. Nonetheless, 
these observations indicate redundant roles for inflammasomes 
during infection.

The redundant nature of the inflammasomes is also evident 
during Listeria infection. Listeria monocytogenes activates inflam-
masome in an Nlrp3-dependent manner (Mariathasan et al., 2006). 
However, recent studies also show the activation of Nlrc4 and Aim2 
inflammasomes upon Listeria infection (Warren et al., 2008; Wu 
et al., 2010). In particular, Nlrp3 inflammasome is activated in 
response to phagosomal membrane damage caused by expression of 
listeriolysin O (LLO) by Listeria (Wu et al., 2010). Indeed, membrane 
damage resulting in cathepsin B release has been shown previously to 
result in Nlrp3 activation (Hornung et al., 2008). Critical role for the 
Nlrp3 inflammasome has also been reported during Mycobacterium 
infection (Carlsson et al., 2010; McElvania Tekippe et al., 2010). Asc-
deficient mice were found to be more susceptible to M. tuberculosis 
infection because of defective granuloma formation in these mice 
(McElvania Tekippe et al., 2010). In contrast, another study reported 
similar M. marinum burden in WT and Asc-deficient mice (Carlsson 
et al., 2010). Notably, the two studies differ in the Mycobacterium 
spp. examined and the route of the infection.

The role of Nlrp3 inflammasome in other bacterial infections has 
also been studied. Streptococcus pyogenes activates the Nlrp3 inflam-
masome in a streptolysin O (SLO) dependent manner (Harder et al., 
2009). Nlrp3 was essential for IL-1β production but the mutant 
mice were equally susceptible to Streptococcus pyogenes infection as 
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Although studied extensively, the mechanism of Nlrp3 inflam-
masome activation has not been established so far. Efflux of K+ has 
long been considered to be the mechanism for activation of this 
inflammasome (Petrilli et al., 2007). Activation of P2X7R results 
in rapid efflux of K+. However, P2X7R activation also influences 
the levels of other ions such as Na+ and Ca2+ (Dietl and Volkl, 
1994; Schilling et al., 1999; North, 2002). Another mechanism 
proposed suggests activation of Nlrp3 by cathepsin B released 
from ruptured lysosomes following phagocytosis of monosodium 
urate and alum (Dostert et al., 2008; Hornung et al., 2008). This 
was demonstrated by using cathepsin B inhibitors in cell culture. 
However, cathepsin B-deficient macrophages showed IL-1β levels 
comparable to wild-type macrophages in response to monoso-
dium urate and alum (Dostert et al., 2009). Recently, reactive 
oxygen species (ROS) have also been proposed to be an upstream 
inducer of the Nlrp3 inflammasome complex (Zhou et al., 2010). 
However, the role of ROS is again controversial given the fact 
that cells from patients with chronic granulomatous disease or 
macrophages from gp91phox – deficient mice (that are defective 
in ROS generation) produced similar levels of inflammasome 
activation as their normal counterparts (Meissner et al., 2010; 
van de Veerdonk et al., 2010).

concludIng remarks
Nlrp3 inflammasome is activated by a variety of microbial 
stimuli (Table 1). This variety obscures efforts to determine 
the upstream mechanism of Nlrp3 inflammasome activation. 
Although multiple mechanisms have been proposed for Nlrp3 

mechanIsms oF InFlammasome actIVatIon
The Nlrp3 inflammasome is generally believed to require a two-
signal mechanism. Stimulation with LPS leads to TLR activation 
resulting in synthesis of precursor forms of the cytokines IL-1β 
and IL-18. Further stimulation of these cells with ATP activates 
P2X7R, allowing K+ efflux through membrane pores that results 
in Nlrp3 inflammasome activation. Recent reports have proposed 
that besides transcriptional up-regulation of IL-1β and IL-18, 
LPS also leads to up-regulation of Nlrp3 expression in an NF-κB 
dependent manner (Bauernfeind et al., 2009; Franchi et al., 2009). 
However, a recent study reported that infection with V. cholerae 
did not up-regulate Nlrp3 expression suggesting that it is not 
indispensable for caspase-1 activation, at least in Vibrio infection 
(Toma et al., 2010).

Many pathogens bypass the necessary second signal (i.e., P2X7R 
activation) required for inflammasome activation through the for-
mation of membrane pores. Streptococcus pyogenes, for example, 
activates Nlrp3 inflammasome in a P2X7R-independent manner 
(Harder et al., 2009). Streptococcus pyogenes synthesizes the pore-
forming toxin SLO which may therefore provide the necessary 
functions of ATP and, as has been proposed before allows the deliv-
ery of microbial molecules (Nakagawa et al., 2004) to the cytosol 
thereby triggering Nlrp3 activation. Similarly, Staphylococcus 
aureus hemolysins (α and β) trigger caspase-1 activation in con-
junction with released lipoproteins independently of P2X7R 
(Munoz-Planillo et al., 2009) again suggesting a role for bacterial 
toxins and hemolysins in fulfilling the second signal necessary for  
inflammasome activation.

Table 1 | Microbes and microbial components that induce Nlrp3 inflammasome activation.

Pathogens Microbial/host components involved

FuNgaL  

Candida albicans Hyphael forms are better inducers of Nlrp3. (Gross et al., 2009; Hise et al., 2009; Joly et al., 2009)

Aspergillus fumigatus Nlrp3 activation is strictly dependent on hyphael forms. (Said-Sadier et al., 2010)

Saccharomyces cerevisiae Cell wall components (zymosan, mannan, and β - glucans) activate Nlrp3. (Kumar et al., 2009; Lamkanfi 

 et al., 2009)

BacTeRIaL  

Staphylococcus aureus Nlrp3 activation is dependent on bacterial hemolysins. (Mariathasan et al., 2006; Craven et al., 2009;  

 Munoz-Planillo et al., 2009)

Salmonella typhimurium Nlrp3 and Nlrc4 are activated. Mice deficient in both Nlrp3 and Nlrc4 are more susceptible. (Broz et al., 

 2010; Franchi et al., 2006; Miao et al., 2006)

Listeria monocytogenes Nlrp3, Nlrc4 and Aim2 are activated. (Warren et al., 2008; Wu et al., 2010)

Mycobacteriuma marinum Nlrp3 activation is dependent on ESX-1 secretion system. (Carlsson et al., 2010)

Mycobacteriuma tuberculosis Asc−/− mice are more susceptible. (McElvania Tekippe et al., 2010)

Streptococcus pyogenes Nlrp3 activation is dependent on streptolysin O release. (Harder et al., 2009)

Vibrio cholerae Nlrp3 activation is dependent on bacterial hemolysins and toxins. (Toma et al., 2010)

Chlamydia pneumoniae Nlrp3 dependent IL-1β release is crucial for host defense against bacterial pneumonia. (He et al., 2010)

Neisseria gonorrhoeae Nlrp3 activation is dependent on lipo-oligosaccharide release. (Duncan et al., 2009)

VIRaL  

Sendai virus  Nlrp3 inflammasome is activated. (Kanneganti et al., 2006b)

Modified vaccinia virus Ankara (MVA) Innate immune sensing is mediated by Nlrp3 inflammasome. (Delaloye et al., 2009)

Adenovirus Nlrp3 −/− and Asc−/−  mice show poor inflammatory responses. (Muruve et al., 2008)

Influenza A virus Mice deficient in components of Nlrp3 inflammasome show reduced cytokine and chemokine production.  

 (Kanneganti et al., 2006b; Allen et al., 2009; Ichinohe et al., 2009; Thomas et al., 2009)
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inflammasome activation (Figure 1), still no clearly defined 
consensus has emerged yet. It is highly probable that the differ-
ent proposed mechanisms of Nlrp3 activation are not mutually 
exclusive and some common intersecting points exist between 
these various pathways. Future studies are likely to shed more 
light on this aspect besides deciphering the novel roles for  
Nlrp3 inflammasome.

FIguRe 1 | Signaling mechanisms proposed for Nlrp3 inflammasome 
activation. Extracellular and intracellular pathogen-associated molecular 
patterns (PAMPs) are sensed by toll-like receptors (TLRs; first signal) leading to 
NF-κB activation and transcription of cytokines. Additionally, NF-κB is also 
proposed to up-regulate Nlrp3 expression, which might be a limiting factor for 
inflammasome assembly. A wide range of pathogens trigger Nlrp3 
inflammasome activation. The physiological insults resulting from exposure to 
these PAMPs can be narrowed down to a few mechanisms that drive Nlrp3 
activation. These mechanisms include K+ efflux, lysosomal damage and reactive 

oxygen species (ROS) production (second signal). Activation of P2X7R by ATP 
results in membrane pores that allow K+ efflux and entry of extracellular factors 
into the cytoplasm resulting in Nlrp3 activation. Phagocytosis of certain 
pathogenic microbes leads to rupture of lysosomes thereby releasing cathepsin 
B into the cytoplasm and causing Nlrp3 activation. Generation of ROS 
downstream of microbial infection has also been proposed to trigger Nlrp3. 
Nlrp3 inflammasome assembly consisting of the adaptor molecule Asc and 
pro-caspase-1 leads to caspase-1 activation, which results in processing and 
secretion of cytokines IL-1β and IL-18.
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