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Quinolone resistance: much more than predicted
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Since quinolones are synthetic antibiotics, it was predicted that mutations in target genes would 
be the only mechanism through which resistance could be acquired, because there will not be 
quinolone-resistance genes in nature. Contrary to this prediction, a variety of elements ranging 
from efflux pumps, target-protecting proteins, and even quinolone-modifying enzymes have 
been shown to contribute to quinolone resistance. The finding of some of these elements in 
plasmids indicates that quinolone resistance can be transferable. As a result, there has been a 
developing interest on the reservoirs for quinolone-resistance genes and on the potential risks 
associated with the use of these antibiotics in non-clinical environments. As a matter of fact, 
plasmid-encoded, quinolone-resistance qnr genes originated in the chromosome of aquatic 
bacteria. Thus the use of quinolones in fish-farming might constitute a risk for the emergence 
of resistance. Failure to predict the development of quinolone resistance reinforces the need 
of taking into consideration the wide plasticity of biological systems for future predictions. This 
plasticity allows pathogens to deal with toxic compounds, including those with a synthetic 
origin as quinolones.
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 antimicrobials. Because of this, it has been widely accepted that 
antibiotic producers are the origin of resistance genes acquired 
through HGT by human pathogens (Benveniste and Davies, 1973; 
Webb and Davies, 1993; Davies, 1994). The identification of a large 
number of resistance determinants in soil-dwelling actinomycetes, 
which are the main family of antibiotic producers, reinforced this 
view (D’Costa et al., 2006; Wright, 2007). Based on these hypotheses 
it was proposed that environmental bacteria would not carry qui-
nolone-resistance genes because there are no quinolone producers 
and hence no microorganisms would be confronted with the selec-
tive pressure that these antimicrobials might exert. Since the origin 
of resistance genes acquired by human pathogens through HGT is 
the environmental microbiota, the predictions were that acquisition 
of quinolone-resistance genes through HGT would be unfeasible. 
The aim of this article is to review the current quinolone-resistance 
mechanisms disseminated among human pathogens in the frame 
of these former predictions. We also address the consequences that 
the discovery of HGT-acquired quinolone resistance may have on 
the utilization of these antimicrobials. Finally, we discuss the rea-
sons why these predictions failed in the aim of developing more 
accurate methodologies for predicting the emergence of resistance 
in bacterial pathogens (Martinez et al., 2007).

For a long time and in agreement with what was originally 
anticipated, the only reported quinolone-resistance mechanisms 
were mutations in target genes. Even nowadays, mutations in topoi-
somerases remain the most prevalent mechanism among bacterial 
populations for the acquisition of high-level resistance to these 
antimicrobials (Jacoby, 2005). In Gram-negative bacteria, high-
level quinolone resistance is mainly due to mutations on the genes 
encoding for the gyrase subunits, gyrA and gyrB (mainly in gyrA), 
whereas mutations in parC and parE, which encode for the subunits 

Quinolones are a group of synthetic antibiotics with great clinical 
relevance. The first quinolones were mainly used for treating Gram-
negative bacterial infections. However they were later on modified 
in order to become effective agents for treating both Gram-negative 
and Gram-positive infections. Among the quinolones derivatives, 
fluoroquinolones are a subgroup of widely used quinolones, which 
structure presents a nitrogen instead of a carbon at position 8 of 
their naphthyridine nucleus and a fluorine substitution at posi-
tion 6 (Ball, 2000). These synthetic antimicrobials interact with the 
bacterial topoisomerases DNA gyrase and topoisomerase IV (Shen 
et al., 1989; Khodursky and Cozzarelli, 1998). Both enzymes are 
composed of two pairs of subunits and participate together in DNA 
replication, transcription, recombination, and repair. Binding of 
quinolones to these targets arrests DNA replication fork progres-
sion and consequently leads to cell death.

It was proposed early that mutations in genes encoding for target 
proteins (Crumplin and Odell, 1987) or for transporters (Piddock, 
1999) would be the only mechanisms through which quinolone 
resistance could be achieved. This proposal was based on available 
information concerning the origins of antibiotic resistance genes, 
which bacterial pathogens have acquired after the introduction of 
antibiotics for the treatment of infections. It has been described that 
the families of plasmids present in human pathogens before and after 
the medical use of antibiotics are the same, the only difference being 
that the latter harbor resistance genes (Datta and Hughes, 1983). 
In agreement with these findings, it was proposed that resistance 
determinants acquired by bacterial pathogens through horizontal 
gene transfer (HGT) should originate in non-pathogenic bacteria. 
Most antibiotics are produced by environmental microorganisms 
(Waksman and Woodruff, 1940), which need to harbor resist-
ance determinants in order to avoid the activity of self- produced 
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To date, efflux pumps responsible for the extrusion of quinolo-
nes have been described in Gram-positive and Gram-negative bac-
teria. It has been demonstrated that transporters belonging to four 
of the five families of multidrug resistance (MDR) systems; the 
ATP binding cassette (ABC) family, the major facilitator super-
family (MFS), the resistance-nodulation division (RND) family, 
and the multidrug and toxic compound extrusion (MATE) family, 
are capable of extruding quinolones (Poole, 2000a,b). In most cases, 
quinolones are pumped out by MDR systems with relative low sub-
strate specificity that confer low-level quinolone resistance when 
overexpressed. Only in a few cases, such as NorC in Staphylococcus 
aureus (Truong-Bolduc et al., 2006) or Rv1634 in Mycobacterium 
tuberculosis (De Rossi et al., 2002), pump specificity for quinolones 
has been demonstrated, and given the synthetic nature of these 
antimicrobials the primary role of these efflux pumps should be 
other than extrusion of fluoroquinolones. Indeed, several studies 
have shown that MDR efflux pumps might contribute to different 
aspects in bacterial physiology, including extrusion of virulence 
factors, cell-signal trafficking, and detoxification of toxic cellular 
metabolites (Piddock, 2006b; Martinez et al., 2009b).

Even after the discovery that mechanisms other than mutations 
in target genes contribute to quinolone resistance, the general 
consensus remained that resistance determinants in plasmids or 
transposons should not be expected and hence the contribution of 
HGT to quinolone resistance must be negligible. Once again, this 
prediction was based on the notion that environmental bacteria 
do not need to carry quinolone-resistance elements because of the 
synthetic origin of these drugs. In spite of these predictions, the pos-
sibility of plasmid-encoded quinolone resistance was demonstrated 
in vitro (Gomez-Gomez et al., 1997; Martinez et al., 1998). Later 
on, the first plasmid-mediated quinolone resistance, was described. 
This finding indicated that the acquisition of quinolone resistance 
by HGT is possible. The plasmid-encoded gene responsible for the 
observed resistance phenotype was called qnr (Martinez-Martinez 
et al., 1998). Qnr belongs to the pentapeptide repeat protein (PRP) 
family (Vetting et al., 2006), and protects bacterial topoisomerases 
(DNA gyrase an topoisomerase IV) from the activity of quinolo-
nes activity. At the moment of writing this article, 5 qnr families, 
qnrA, qnrB, qnrS, qnrC, and qnrD (Tran and Jacoby, 2002; Hata 
et al., 2005; Jacoby et al., 2006; Strahilevitz et al., 2007; Cavaco 
et al., 2009; Wang et al., 2009) have been described in plasmids 
disseminated among bacterial pathogens. The presence of these 
genes in the chromosomes of environmental bacteria has been 
reported as well (Arsene and Leclercq, 2007; Rodriguez-Martinez 
et al., 2008; Sanchez et al., 2008), and it has been proposed that 
these bacterial species might constitute the environmental res-
ervoir for quinolone-resistance genes. For instance, Shewanella 
algae is the origin of plasmid-encoded qnrA genes (Poirel et al., 
2005b) and different Vibrionaceae species might be the reservoir for 
other plasmid-encoded qnr genes (Poirel et al., 2005a; Cattoir et al., 
2007). While it is clear that plasmid-encoded qnr genes contribute 
to acquired resistance to quinolones, the role that these determi-
nants might play on intrinsic resistance when they are chromo-
somally encoded, has been explored in less detail. One exception 
is S. maltophilia Smqnr, which has been shown to contribute to 
intrinsic quinolone resistance in this bacterial species (Sanchez and 
Martinez, 2010). In addition to Qnr determinants other members 

of topoisomerase IV, are secondary. The reason for this finding is 
that in Gram-negatives, bacterial topoisomerase IV is less sensitive 
to quinolones than gyrase, therefore it constitutes a secondary tar-
get for this family of antibiotics (Drlica and Zhao, 1997). Indeed, 
mutations in par genes are only found in Gram-negative bacteria 
that also harbor gyrA mutations (Hopkins et al., 2005). The oppo-
site happens for Gram-positive organisms. In these bacterial spe-
cies, topoisomerase IV is usually the primary target of quinolones 
(Ferrero et al., 1994). Consequently, quinolone-resistance muta-
tions occur first in parC in Gram-positive bacteria.

The characterization of multidrug (MDR) efflux pumps, which 
are encoded in the core genomes of all bacterial species (Nikaido, 
1998; Saier et al., 1998; Alonso et al., 1999; Piddock, 2006a), opened 
new avenues for understanding the mechanisms involved in qui-
nolone resistance. Notably, despite a synthetic origin, quinolones 
are among the most common substrates of these pumps (Hooper, 
1999). In agreement with this information, it was shown that MDR 
pumps indeed contribute to the resistance to quinolones (Cohen et 
al., 1989). These results showed that, opposite to early predictions, 
more elements besides target mutations might be involved in the 
development of quinolone resistance. Chromosomally encoded 
MDR efflux pumps are usually expressed at very low level as the 
consequence of the activity of specific transcriptional regulators 
(usually repressors; Grkovic et al., 2002). This low-level expression 
is enough to allow MDR pumps to contribute to intrinsic resist-
ance to quinolones (Li et al., 1994; Vila and Martinez, 2008). In 
addition, mutants presenting de-repressed high-level expression of 
MDR efflux pumps are selected in clinical settings by antimicrobial 
therapy. As a results of the overexpression of MDR pumps, these 
mutants are less susceptible to quinolones than wild-type strains 
(acquired resistance; Cohen et al., 1989; Ziha-Zarifi et al., 1999; 
Jalal et al., 2000; Alonso and Martinez, 2001).

Overexpression of MDR efflux pumps does not account for 
high-level resistance to quinolones and usually results in a small 
increase in minimal inhibitory concentrations (MICs). There are 
some exceptions however, such as SmeDEF from Stenotrophomonas 
maltophilia (Alonso and Martinez, 1997, 2000). In this organism, 
high-level resistance can be achieved by mutants that overexpress 
this efflux pump. In addition, the combined overexpression of 
different efflux pumps in the same microorganism, can further 
increase the level of quinolone resistance (Yang et al., 2003). Finally, 
different studies have shown that the highest level of resistance to 
quinolones is achieved when both mechanisms, mutations in the 
target genes and efflux through MDR systems, take place at the 
same time (Llanes et al., 2006). Altogether these results indicate 
that the contribution of mechanisms that reduce the quinolones 
intracellular concentrations for developing high-level resistance 
to quinolones should not be underestimated. One relevant aspect 
of MDR efflux pumps is their wide range of substrates (Paulsen, 
2003), in such a way that their overexpression results in a phe-
notype of cross-resistance to several antibiotics. This means that 
quinolone resistance can be achieved upon selective pressure with 
a non-quinolone antibiotic (second order selection) when both 
drugs are substrates of the same MDR efflux pump (Cohen et al., 
1989). This is a new concept, useful for understanding the selective 
forces and the mechanisms involved in the acquisition of quinolone 
resistance by bacterial pathogens.
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In the last years additional elements conferring resistance to 
quinolones have been described indicating that we are still far away 
from getting a comprehensive understanding of the mechanisms 
leading to this phenotype. Among these new mechanisms, two 
plasmid-encoded quinolones efflux pumps, named QepA (Yamane 
et al., 2007) and OqxAB (Hansen et al., 2004, 2007) have been 
described. QepA was the first described plasmid-encoded qui-
nolone efflux transporter. Because of its similarities to the MFS 
family of MDR pumps of actinomycetes it has been proposed that 
the protein originated in these Gram-positive bacteria (Yamane 
et al., 2007) and was transferred afterward to Enterobacteriaceae 
plasmids, where now it can disseminate. In addition to quinolones, 
this determinant can efflux a narrow range of substrates, including 
erythromycin, ethidium bromide, and acriflavine. Other antibiot-
ics that are common substrates of other MDR efflux pumps are 
not extruded by this pump. In the case of OqxAB, the acquisition 
of a plasmid encoding oqxAB entails, in addition to an increase in 
resistance to quinolones, an increase in the bacterial resistance to 
a wider range of antibiotics such as tetracycline or chorampheni-
col and also an increased resistance to biocides like benzalkonium 
chloride or triclosan, since all these compounds are substrates of 
the pump (Hansen et al., 2007).

The last frontier to be explored on the mechanisms of quinolone 
resistance was the possibility that quinolone-inactivating enzymes 
might be present in bacterial populations. At a first sight, the deg-
radation of quinolones would be problematic since bacterial popu-
lations did not evolved in ecosystems containing these substrates 
and consequently they should not harbor degradation pathways 
for these compounds. This is particularly relevant for fluoroqui-
nolones, given that halogenated compounds are among the most 
biodegradation-resilient molecules. On the other hand there is a 
general consensus that several antibiotic-modifying enzymes (not 
degradative ones) evolved mainly in producers either as antibiotic-
detoxifying elements, or as enzymes involved in the antibiotics bio-
synthetic pathways (Benveniste and Davies, 1973; Webb and Davies, 
1993; Davies, 1994, 1997). As rightly stated by Courvalin (1990), the 
producing organism of quinolone is Homo sapiens, and it does not 
require to harbor in its genome a gene encoding for a quinolone-
inactivating enzyme. Other antibiotic-modifying enzymes have a 
primary function in the bacterial metabolism and their capabil-
ity for modifying the antibiotic is a consequence of the structural 
similarities between the antimicrobial and the original substrate of 
the enzyme. This is the case of some aminoglycosides or β-lactams, 
which resemble some of the intermediates of peptidoglycan bricks 
(Payie et al., 1995; Macinga and Rather, 1999). Given the synthetic 
origin of quinolones and the lack of structural analogs of these 
antibiotics among bacterial metabolic intermediates, the finding of 
a quinolone-inactivating enzyme came as a surprise. This enzyme, 
encoded by the aac(6′)-Ib-cr gene, appeared as a modification of 
an original aminoglycoside acetyltransferase, which has acquired 
the ability to inactivate quinolones (ciprofloxacin and norfloxacin) 
by N-acetylation the amino nitrogen on its piperazinyl group. This 
novel activity of the enzyme is the consequence of two amino acids 
changes (Trp102Arg and Asp179Tyr; Robicsek et al., 2006). The fact 
that these modifications somehow compromise the enzymatic activ-
ity against aminoglycosides (Robicsek et al., 2006) indicates that 
the evolved enzyme has been likely selected by  quinolones  during 

of the PRP  family, might be relevant for quinolone resistance. This 
is the case of MfpA that contributes to the intrinsic resistance of 
Mycobacterium to these antimicrobials (Montero et al., 2001). In 
spite of their contribution to intrinsic resistance, it is unlikely that 
this is the natural function of these genes given the synthetic origin 
of quinolones. Some hypotheses about their putative functional 
role have been proposed. Since qnr binds DNA gyrase (Tran and 
Jacoby, 2002; Tran et al., 2005; Jacoby et al., 2006), which controls 
the DNA supercoiling and therefore global bacterial transcription, 
Qnr might modulate the expression of several genes through its 
interaction with DNA gyrase, in response to environment changes. 
It has been also proposed that Qnr proteins might protect DNA 
gyrase against some toxins, in a similar way as that described for 
another member of the PRP family, McbG, which protects bacteria 
from the activity of microcin B17 (Heddle et al., 2001).

An important particularity of plasmid-encoded qnr genes is 
that, although they have been found in a large variety of plasmids 
(Strahilevitz et al., 2009), the DNA sequences (genetic environ-
ment) surrounding qnr genes are rather similar. The conserved 
synteny found around plasmid-encoded qnr genes suggests that 
there have been a limited number of acquisition events of such 
genes from their original bacterial host. Indeed, the analysis of the 
genetic environments surrounding qnrA or qnrB genes shows that 
both are usually integrated in complex sul1-type integrons and 
associated with ISCR1 (Nordmann and Poirel, 2005; Garnier et 
al., 2006). In addition to qnr, these integrons usually harbor other 
antibiotic resistance genes, such as β-lactamases or aminoglyco-
side inactivating enzymes (Wang et al., 2003). The qnrS genes are 
not harbored by integrons, however they are frequently associated 
with Tn3 transposon, which contains a TEM-1 β-lactamase gene 
(Hata et al., 2005; Strahilevitz et al., 2009). Finally, the plasmids 
themselves might contain other resistance determinants, being 
particularly relevant the association of qnr genes with genes cod-
ing for extended spectrum β-lactamases and AmpC β-lactamases 
(Strahilevitz et al., 2009). These associations with other resistance 
determinants have likely favored the dissemination and mainte-
nance of qnr genes even under situations in which quinolones 
are not used for therapy, since the additional resistance genes will 
allow for co-selection of qnr.

The discovery of plasmid-encoded quinolone-resistance 
genes dismantled the idea that quinolone resistance could never 
be achieved by means of HGT. This has profound implica-
tions, because mutation-acquired resistance can only dissemi-
nate through clonal expansion (Martinez and Baquero, 2000), 
whereas HGT allows dissemination of resistance genes among 
different strains and different bacterial species (Baquero et al., 
2009; Martinez et al., 2009a). The next surprise came with the 
demonstration that even mutation-acquired resistance to qui-
nolones might be transferred through HGT. It was found that 
chromosomal parC and gyrA mutations could be transferred by 
transformation along with the quinolone-resistance phenotype 
in clinical isolates of Streptococcus pneumoniae (Ferrandiz et al., 
2000). Furthermore, transfer of this mutation-acquired resistance 
from the viridans group streptococci to Streptococcus pneumo-
niae has been described (Balsalobre et al., 2003), indicating that 
commensal bacteria can be a source of target-mutation-based 
quinolone resistance.
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proteins, with an original function unrelated to antibiotic resist-
ance, might also contribute to this phenotype (Fajardo et al., 2008; 
Tamae et al., 2008; Alvarez-Ortega et al., 2010). The term “intrinsic 
resistome” (Fajardo et al., 2008) was coined from these studies in 
order to refer to the group of chromosomally encoded elements, 
not acquired by HGT, that contribute to the basal level of resistance 
to a given antibiotic that is common to all members of a bacterial 
species. This description is independent of the clinical definition 
of resistance, which is based in MICs breakpoints. In the case of 
quinolones, recent publications indicate that several determinants 
contribute to both intrinsic and acquired resistance to these drugs 
despite their synthetic origin (Breidenstein et al., 2008).

The finding that quinolone resistance is a transferable trait 
changes the focus to the elements relevant for the dissemination 
of resistance to such drugs. If just mutation-driven resistance were 
observed, the only relevant risk for human health should be the 
use of quinolones for human therapy, given that the only available 
source of resistance would be the human pathogens themselves. 
The use of these drugs for animal farming might be controversial 
because some bacterial clones might infect both humans and farm 
animals, but these risks should be minor in a scenario in which 
resistance is not transferable. In fact, quinolones have been largely 
used in fish-farming without major concerns about the associated 
risks for human health until recently (Cabello, 2006; Baquero et 
al., 2008). Once transfer of quinolone resistance was demonstrated, 
it became clear that the utilization of these drugs might be risky 
for human health even if they were used for processes other than 
treating human infections, given that the barriers for gene transfer 
among different bacterial species can be overcome if the selec-
tive pressure is strong enough (Baquero et al., 2008). The intense 
antibiotic selective pressure, not only in the clinical environment, 
but also in farming and aquaculture (Cabello, 2006; Baquero et al., 
2008; Martinez, 2008, 2009), is likely favoring the persistence of 
quinolone-resistant bacterial populations and the transmission of 
their resistance elements. For instance, it has been reported that 
the same broad host range IncU-type plasmid containing a qnrS2 
gene was found in two Aeromonas isolates from two different non-
connected geographical locations, the Seine river in France and the 
Lugano lake at Switzerland (Cattoir et al., 2008; Picao et al., 2008). 
This integration of qnr genes in plasmids of water-dwelling bacteria 
might be the first step toward their transfer to human pathogens 
(Martinez, 2008). The fact that qnr genes are originally found in 
bacteria with an aquatic habitat, further supports the relevance of 
natural ecosystems in the development of quinolone resistance, 
despite the synthetic origin of these drugs.
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antimicrobial treatment. Recently, the association of the aac(6′)-
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So far in this article, we have described several determinants 
that might contribute to the development of quinolone resistance 
in bacterial pathogens. Expression of most of these novel elements 
confers low-level antimicrobial resistance, while high-level resist-
ance requires mutations in the target genes. One exception to this 
rule is S. maltophilia (Sanchez et al., 2009), which quinolone-
 resistant mutants do not seem to present mutations in the genes 
coding for the quinolones targets (Ribera et al., 2002; Valdezate 
et al., 2005). S. maltophilia harbors in its chromosome a qnr gene 
(Sanchez et al., 2008; Shimizu et al., 2008) and the genes encoding 
for the SmeDEF efflux pump, which is very efficient at extruding 
quinolones (Alonso and Martinez, 2000). These features might 
be relevant for the development of quinolone resistance in this 
bacterial pathogen.

In spite of the low-level resistance derived from these mecha-
nisms, their role in quinolone resistance should not be underesti-
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cific resistance mechanisms (c.a. β-lactamases), a large number of 
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