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Striking a balance: modulation of host cell death pathways by 
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Programmed cell death is considered the ultimate solution for the host to eliminate infected 
cells, leading to the abolishment of the niche for microbial replication and the ablation of infection. 
Thus, it is not surprising that successful pathogens have evolved diverse strategies to reprogram 
the cell death pathways for their proliferation. Using effector proteins translocated by the Dot/
Icm type IV secretion system, the facultative intracellular pathogen Legionella pneumophila 
manipulates multiple host cellular processes to create a niche within host cells to support 
its replication. Investigation in the past decade has established that in mammalian cells this 
bacterium actively modulates two host cell death pathways, namely the canonical apoptotic 
pathway controlled by the mitochondrion and the pyroptotic pathway controlled by the Nod-like 
receptor Naip5 and the Ipaf inflammasome. In this review, I will discuss the recent progress in 
understanding the mechanisms the bacterium employs to interfere with these host cell death 
pathways and how such modulation contribute to the intracellular life cycle of the pathogen.
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than 200 bacterial proteins via the Dot/Icm type IV secretion system 
into host cells where they engage in distinct host pathways to facili-
tate the biogenesis of the LCV permissive for bacterial replication 
(Ensminger and Isberg, 2009). Here, I will discuss recent progress 
in the interplays between L. pneumophila and the host cell death 
pathways and how such interplays contribute to successful bacterial 
infection in mammalian cells.

Host cell deatH patHways and tHeir regulation
In mammalian cells, programmed cell death is divided into at least 
four categories: apoptosis, pyroptosis, necrosis, and necroptosis 
(Fink and Cookson, 2005; Vandenabeele et al., 2010). Apoptosis is 
the best characterized programmed cell death mode; it plays criti-
cal roles in development, maintaining tissue homeostasis, shaping 
the immune repertoire, and restricting the progress of infections 
(Danial and Korsmeyer, 2004). This cell death mode can be initiated 
by two distinct but partially overlapping pathways: the extrinsic, 
receptor-mediated pathway and the intrinsic mitochondrial path-
way (Salvesen and Riedl, 2008). In both cases, biochemical cascades 
triggered by extracellular ligands or intracellular damage led to the 
activation of caspases, which are a family of cysteine-dependent 
aspartate-specific proteases. These enzymes mediate most of the 
apoptotic program and some of them can be blocked by inhibitor 
of apoptotic proteins (IAPs; Scott et al., 2005). The mitochondrion 
is the central controlling site for the intrinsic apoptotic pathway 
because it harbors cytochrome c and second mitochondrion- 
derived activator of caspase (SMAC or DIABLO).

The release of cytochrome c into the cytosol leads to the assembly 
of a supramolecular complex known as the apoptosome, which 
initiates the caspase activation cascade (Riedl and Salvesen, 2007). 
In parallel, SMAC neutralizes the caspase-inhibitory activity of 
XIAP, thereby indirectly contributing to the maximal activation 
of the caspase cascade (Riedl and Salvesen, 2007). The release of 

introduction
For intracellular pathogens whose proliferation requires nutritional 
supplies from the host cell cytosol, the death of the cell before the 
completion of a productive infection is disastrous. Furthermore, 
cells actively executing the apoptotic processes often secrete chemical 
signals or display specific molecules on their surface so that phago-
cytes can recognize and engulf them, leading to the termination of 
infection. Even if such engulfment did not occur, pathogens released 
prior to mature infection often are not primed for the second round 
infection and can be recognized and destroyed more easily by the 
immune system. Therefore, it is not unexpected to learn that hijack-
ing host cell death pathways constitutes an important pathogenic 
strategy for almost all well adapted intracellular pathogens.

As detailed in the several excellent articles of this review series, 
Legionella pneumophila is a facultative intracellular pathogen 
that uses similar strategies to replicate in phylogenetically dis-
tant eukaryotic cells, ranging from amebae to human alveolar 
macrophages. Within these evolutionarily distant host cells, the 
L.  pneumophila-containing vacuole (LCV) undertakes a unique 
maturation pathway characterized by the evasion of endocytic 
fusion and the interception of membrane trafficking vesicles origi-
nating from the endoplasmic reticulum (ER; Isberg et al., 2009; 
Hubber and Roy, 2010). As the bacterium begins to multiply, active 
acquisition of membrane materials from the ER-derived vesicles 
compensates the expansion of the LCV. The result of such remod-
eling is the formation of a compartment morphologically and cell 
biologically resembling the ER (Isberg et al., 2009). Whereas the 
interaction with the host membrane trafficking pathways is proba-
bly the best understood process during intracellular L. pneumophila 
growth, it is becoming clear that modulation of several other path-
ways, including lipid metabolism, autophagy, ubiquitination, and 
host cell death, is also critical for successful infection (Hubber and 
Roy, 2010). To accomplish this feat, L. pneumophila delivers more 
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blood monocytes, infection by L. pneumophila caused high level 
apoptosis within the first 3 h of bacterial uptake, and, in some 
cases, apoptotic cells reached 100% (Gao and Abu Kwaik, 1999b). 
However, a later study found that despite vigorous bacterial replica-
tion over a time span of 13 h, the proportion of apoptotic cells did 
not significantly increase in permissive macrophages, suggesting 
that in permissive host cells, L. pneumophila actively inhibits infected 
cells from undergoing apoptosis (Derre and Isberg, 2004). This 
notion was validated by the discovery of SdhA and SidF, two Dot/
Icm substrates involved in the inhibition of host cell death. Mouse 
bone marrow macrophages infected with a sdhA mutant became 
apoptotic, displaying increased nuclear degradation, mitochondrial 
disruption, membrane permeability, and caspase activation, indi-
cating a role for SdhA in inhibiting host cell death (Laguna et al., 
2006). Interestingly, the requirement for SdhA is cell-type specific 
because the growth defect was less severe in the ameba Dictyostelium 
discoideum or the more permissive U937 cell-derived macrophages 
(Laguna et al., 2006). SdhA appears to be multifunctional because it 
also plays a key role in the suppression of type I interferons (IFN) 
response in macrophages infected by L. pneumophila (Monroe et al., 
2009). Although less severe, cells infected by mutants lacking SidF 
also exhibited higher levels of apoptosis, which led to marginal but 
detectable defects in intracellular growth (Banga et al., 2007). SidF 
interacts and inhibits the cell death-inducing activity of BNIP3 and 
Bcl-rambo, two non-canonical pro-apoptotic members of Bcl-2 
protein family (Banga et al., 2007; Figure 1). Both mitochondrial 
proteins, BNIP3 and Bcl-rambo appears to induce apoptosis by dif-
ferent mechanisms. BNIP3 appear to play a role in cellular response 
to stress (Chinnadurai et al., 2008). On the other hand, Bcl-rambo 
induces cell apoptosis specifically blocked by the caspase inhibitors, 
IAPs (Kataoka et al., 2001). Thus, it is attempting to speculate that 
SidF plays a role in making infected cells less sensitive to stress 
caused by L. pneumophila infection. Nevertheless, the activities of 
SdhA and SidF indicate that L. pneumophila inhibits host apoptosis 
by directly targeting host proteins involved in controlling the cell 
death pathways at the mitochondrion (Figure 1).

Another layer of cell death inhibition mechanisms utilized by 
L. pneumophila is revealed by experiments designed to examine host 
gene expression profiles in response to low dose bacterial challenge 
(Abu-Zant et al., 2007; Losick et al., 2010). Several groups of genes 
known to be directly or indirectly involved in regulating host cell 
death were significantly induced, including stress response genes 
such as heat shock protein genes s and pro-survival members of 
the Bcl-2 protein family (Losick and Isberg, 2006; Abu-Zant et al., 
2007). Interestingly, the most striking induction was observed in 
a collection of anti-apoptotic genes positively regulated at a tran-
scriptional level by the regulator nuclear factor-κB (NF-κB; Losick 
and Isberg, 2006; Abu-Zant et al., 2007; Figure 1). Consistently, 
in human and permissive mouse macrophages, infection by wild 
type L. pneumophila led to nuclear translocation of NF-κB (Losick 
and Isberg, 2006; Abu-Zant et al., 2007). Thus, L. pneumophila is 
able to inhibit mammalian cell death by increasing the levels of 
anti- apoptotic proteins at transcriptional level. Two lines of evi-
dence indicate that the induction of these anti-apoptotic genes is 
important for productive L. pneumophila infection. First, bacterial 
challenge of macrophages lacking one such anti-apoptotic gene, 
the plasminogen activator inhibitor-2 (PAI-2), led to significantly 

these two apoptosis-initiating molecules is caused by perturbation 
of the integrity of the outer mitochondrial membrane (OMM), 
which is delicately regulated by members of the Bcl-2 protein 
family. Based on their roles in controlling apoptosis, Bcl-2 family 
proteins can be divided into two subsets: pro- and anti-apoptotic 
molecules. Members of this protein family can form homo- as well 
as heterodimers (Chipuk et al., 2010). Indeed, the formation of 
heterodimers between pro- and anti-apoptotic members, a process 
that alters the cellular ratios between these two subsets of proteins, 
determines at least in part the susceptibility of cells to a death signal 
(Cory and Adams, 2002). Members of the Bcl-2 family share two 
common features. First, they possess up to four conserved Bcl-2 
homology (BH) domains, designated BH1, BH2, BH3, and BH4 
(Chipuk et al., 2010); However, a number of pro-apoptotic Bcl-2 
family proteins, such as Bid, Bim, Bad, and BNIP3 contain only 
the BH3 domain and are classified as the “BH3-only” subfamily 
(Chipuk et al., 2010). Second, most members of this protein family 
contain a carboxy-terminal hydrophobic domain, which in many 
cases is critical for their biological activities by membrane inser-
tion and membrane remodeling (Lomonosova and Chinnadurai, 
2008). Upon sensing cell stress caused by various insults such as 
DNA damage, cytokine deprivation, or infection, these BH3-only 
proteins trigger the insertion of the two pro-apoptotic, pore-
forming proteins BAX and/or BAK, into the OMM (Chinnadurai 
et al., 2008), causing the release of the cytochrome c and SMAC. 
Members of the pro-survival proteins, including Bcl-2, BCL-XL

, and 
MCL1, inhibit apoptosis by directly sequestering BAK, BAX, and 
BH3-only proteins to prevent permeabilization of OMM (Chipuk 
et al., 2010).

regulation of Host cell deatH patHways by 
L. pneumophiLa
Apoptosis plays an important role in the defense against pathogens 
on the level of both the reaction of an individual host cell to an 
invading microorganism and the reacting immune system (Creagh 
et al., 2003). Accordingly, successful pathogens have evolved differ-
ent but often equally effective mechanisms to manipulate host cell 
death pathways to benefit their proliferation. Such manipulation 
can be achieved by targeting the activity of one or more host pro-
teins critical in each step of the apoptotic pathways. For example, 
many viruses code for proteins that specifically inhibit apoptosis 
of infected cells by directly interacting with pro-apoptotic mem-
bers of the BH3-only proteins (Roulston et al., 1999; Everett and 
McFadden, 2002). Similarly, some obligate intracellular bacterial 
pathogens such as Chlamydia trachomatis and Rickettsia rickettsii 
actively inhibit apoptosis (Clifton et al., 1998; Fan et al., 1998). Of 
particular interest is that C. trachomatis prevents infected cells from 
undergoing apoptosis by specifically degrading members of the 
pro-death BH3-only proteins (Dong et al., 2005), probably by the 
Chlamydia protease-like factor (CPAF; Pirbhai et al., 2006).

Accumulating evidence indicates that L. pneumophila is able to 
manipulate host cell death pathways by targeting regulatory mol-
ecules with diverse mechanisms at different points of the signaling 
cascade. Earlier studies suggest that L. pneumophila actively induces 
apoptosis of infected cells via the activation of the executioner 
caspase, caspase-3 (Gao and Abu Kwaik, 1999a,b; Molmeret et al., 
2004). In permissive cell lines such as U937 or human peripheral 
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activation. Consistently, such mutants did not exhibit defects in 
intracellular bacterial growth (Ge et al., 2009; Losick et al., 2010). 
Several reasons can account for the lack of growth defect pheno-
types of these mutants. First, proteins such as SdhA and SidF that 
target host cell death proteins can provide the protection in these 
mutants. Second, other yet unidentified effectors may contribute to 
the activation of NF-κB during the infection by these mutants. This 
is very likely because functional redundancy has been observed in 
effectors targeting other cellular pathways important for L. pneu-
mophila intracellular growth (Isberg et al., 2009). Third, as docu-
mented in a recent report, NF-κB activated by a non-canonical 
mechanism may also contribute to the induction of anti-apoptotic 
genes. In the study, Fontana et al. (2011) found that in conjunc-
tion with classic pathogen associated molecular pattern (PAMP) 
molecules, inhibition of host protein synthesis by several Dot/Icm 
substrates led to prolonged activation of NF-κB, thus strong induc-
tion of a set of inflammatory cytokines such as interleukin (IL)-23 
and granulocyte–macrophage colony stimulating factor. Such acti-
vation was achieved by the failure to resynthesize IκB, the short-
lived inhibitor of the NF-κB transcription factor in the presence 
of these protein synthesis inhibitors (Fontana et al., 2011). Finally, 
some substrates of the Dot/Icm transporter also potently activate 
the MAP kinase pathway, which could also lead to induction of the 
anti-apoptotic genes such as pai-2 (Shin et al., 2008). Given the 

higher levels of apoptosis and reduction in bacterial replication 
(Losick and Isberg, 2006). Second, inhibition of nuclear transloca-
tion of NF-κB by genetic or pharmaceutical agents caused extensive 
cell death upon low dose bacterial challenge (Losick and Isberg, 
2006). These anti-apoptotic proteins arrest host cell death by vari-
ous mechanisms. Proteins like Bcl-2 can interact and inhibit the 
activity of several pro-death BH3-only proteins (Chipuk et al., 
2010). On the other hand, IAPs such as XIAP can directly neutral-
ize the activity of caspase-3 and -7 (Scott et al., 2005).

Interestingly, the observed NF-κB activation is involved in a 
signaling pathway independent of the Toll-like receptor (TLR) 
adaptor MyD88 and the cytoplasmic sensor Nod1, but is abso-
lutely dependent upon the Dot/Icm secretion system (Losick and 
Isberg, 2006). These observations suggest the existence of Dot/Icm 
substrates capable of activating NF-κB. Consistent with this notion, 
LegK1 and LnaB, two Dot/Icm substrates with such activity have 
been identified in screenings using NF-κB responsive reporters and 
constructs that direct the expression of individual bacterial genes 
(Ge et al., 2009; Losick et al., 2010; Figure 1). Whereas the biochemi-
cal mechanisms of LnaB is unknown, LegK1, appears to directly 
target IκBα and other IκB family of inhibitors including p100 in 
the non-canonical NF-κB pathway by phosphorylation (Ge et al., 
2009). Similar to most characterized Dot/Icm substrates, deletion 
of legK1 or lnaB resulted in little or only partial reduction in NF-κB 

FIgure 1 | Host cell death pathways targeted by L. pneumophila. 
Internalized L. pneumophila translocates a large number of effectors into host 
cytosol via the Dot/Icm type IV secretion system. A yet unidentified set of 
effectors trigger an imbalance between the pro-death and pro-survival members 
of the Bcl-2 protein family, leading to the insertion of Bax/Bak into the 
mitochondrial out membrane, thus the release of cytochrome c and subsequent 
activation of the caspases 3 and 7. Another set of effectors, including LegK1 and 
LnaB, activate NF-κB, most likely by initiating the kinase cascade that ultimately 
causes phosphorylation and subsequent degradation of IκB, the inhibitor of 
NF-κB, leading to nucleus translocation of NF-κB and the induction of anti-
apoptotic genes such as Xiap and Pai-2, whose product inhibits cell death by 

targeting caspases 3 and 7. Activation of the MAP kinase pathway by another set 
of unknown effectors can lead to similar effects. A third set of proteins such as 
SidF and SdhA, which inhibit host cell death by targeting pro-apoptotic proteins 
BNIP3 and Bcl-rambo or by unknown mechanisms. In non-permissive mouse 
macrophages, flagellin reached the cytosol probably via the Dot/Icm transporter 
is sensed by the NLR receptor Naip5, which together with Ipaf and the 
inflammasome activates caspase-1, leading to pyroptotic cell death. CREB, 
cAMP response element-binding protein; LCV, Legionella containing vacuole; 
MAPK, mitogen-activated protein kinases; Mito, mitochondrion; N, nucleus; 
Naip5, NLR family, apoptosis inhibitory protein 5; PAI-2, plasminogen activator 
inhibitor-2; XIAP, X-linked inhibitor of apoptosis protein.
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activation process. Either the activities of one or more Dot/Icm 
substrates or the “stress” caused by the collective impact of multiple 
effectors, or a combination of both can be the mechanism used 
by the bacterium for such activation. Interestingly, macrophages 
lacking Bak and Bax or overexpressing Bcl-2 still undergo extensive 
apoptosis upon being challenged by the sdhA mutant (Nogueira 
et al., 2009), suggesting that L. pneumophila is able to activate a cell 
death pathway independent of several critical components of the 
mitochondrial apoptotic pathway.

Besides the mitochondrial apoptotic pathway, L. pneumophila 
also induces pyroptosis, a form of inflammatory cell death in mac-
rophages from mice harboring a functional Naip5 allele (Fortier 
et al., 2005). Naip5 is a member of the Nod-like receptor (NLR) 
family, and an important component of the cytosolic protein 
complexes called inflammasomes, which induce autoactivation 
of caspase-1 (Figure 1). The NLRs are considered function-
ally equivalent to the TLRs localized on the surface or within 
endosomes of immune cell (Davis et al., 2011), which recognize 
components of the pathogen called PAMPs such as bacterial 
flagellin, peptidoglycan, and nucleic acid variants (West et al., 
2006). Caspase-1 induced pyroptosis, which is accompanied by 
the release of mature IL-1β and IL-18 and other cytokines, and 
is inherently proinflammatory (Fink and Cookson, 2006). The 
observation that flagellin deficient L. pneumophila mutants gained 
the ability to grow productively in macrophages expressing func-
tional Naip5 without activating caspase-1-dependent cell death 
indicates that flagellin activates Naip5 in the cytoplasm (Molofsky 
et al., 2006; Ren et al., 2006). A subsequent study using a retroviral 
transduction to express flagellin directly in macrophages clearly 
showed that flagellin is necessary and sufficient for the pyroptosis 
induction via a pathway controlled by the Ipaf inflammasome 
(Lightfield et al., 2008). Consistently, macrophages from Naip5-
deficient mice completely failed to activate caspase-1 and were 
able to support robust growth of wild type L. pneumophila, further 
indicating that flagellin-mediated pyroptosis induction absolutely 
requires a functional Naip5 (Lightfield et al., 2008). Thus, the 
induction of pyroptosis in immune cells from restrictive mice 
by L. pneumophila flagellin is “accidental,” but has provided an 
excellent model to dissect the host immune surveillance mecha-
nisms (Vance, 2010).

potential benefits of L. pneumophiLa-induced 
apoptosis
Clearly, in permissive mammalian cells, infection by L. pneumophila 
activates the classic mitochondrial apoptotic pathway and possi-
bly other yet unrecognized cell death processes, leading to activa-
tion of several caspases, including caspases 3 and 7. Concurrently, 
the bacterium employs a combination of mechanisms to inhibit 
infected cells from fully executing the apoptotic cascade to allow 
productive bacterial replication. Whereas the benefit of inhibiting 
apoptosis by L. pneumophila is obvious, the benefit for activation 
this pathway is less clear. Activated caspases may participate in cel-
lular processes in not directly related to cell death but important for 
the biogenesis of the LCV. For example, active caspase-3 appears to 
cleave Rabaptin-5, an Rab5 effector, and cell treated with caspase-3 
inhibitor (DEVD-fmk) or the pan inhibitor of caspases (Z-VAD-
fmk) abolished intracellular bacterial growth (Molmeret et al., 

high level of conservation in the MAPK pathway in eukaryotes, it 
is not unexpected that the activation of this pathway also occurs 
in the ameba D. discoideum (Li et al., 2009). Clearly, inhibition 
of host cell apoptosis by L. pneumophila is achieved by collective 
activities of various bacterial proteins; these proteins either directly 
or indirectly, reprogram the various cell death pathways to ensure 
maximal bacterial replication.

In contrast to the many lines of evidence directly supporting 
active inhibition of host cell death by L. pneumophila, evidence 
pointing to the induction of apoptosis by this bacterium mostly 
is indirect. The apoptotic phenotypes associated with host cells 
infected with mutants lacking one or more cell death inhibiting 
Dot/Icm substrates such as SdhA and SidF suggested the exist-
ence of effectors capable of inducing cell death (Laguna et al., 
2006; Banga et al., 2007). Apoptosis induced by L. pneumophila 
is extremely apparent in specialized phagocytes such as dendritic 
cells. In these cells, infection by L. pneumophila induced a caspase-
3-dependent apoptotic pathway that aborted intracellular bacterial 
replication in the early phase of infection (Nogueira et al., 2009; 
Figure 1). Interestingly, dendritic cells from mice deficient in Bak 
and Bax (Bak−/− Bax−/−) or mice overexpressing the pro-survival 
protein Bcl-2 are able to support intracellular bacterial infection 
without undergoing apoptosis (Nogueira et al., 2009), indicat-
ing that infection by L. pneumophila activates the mitochondrial 
pathway of apoptosis by inducing an imbalance between the pro-
apoptotic and pro-survival members of Bcl-2 protein family. The 
activation of the mitochondrial apoptotic pathway also occurs in 
macrophages but at a much slower pace (Abu-Zant et al., 2005; 
Nogueira et al., 2009). The drastic differences between macrophages 
and dendritic cells in response to cell death stimuli such as those 
caused by L. pneumophila infection may be due to higher level or 
more active of the putative receptors or sensor proteins responsible 
for engaging the cell death signals from the bacterium in the latter 
cell type. It has been proposed that the sensitivity to pathogens 
exhibited by dendritic cells serves a protective role to the host by 
preventing infectious agents from using these cells as vehicles to 
reach deep tissues of the organism (Nogueira et al., 2009).

The induction of host cell death by bacterial toxins has been well 
documented. For example, Shiga toxins trigger apoptosis in many 
cell types, probably by inducing stress in the ER through inhibition 
of protein synthesis (Lee et al., 2008). Although a number of Dot/
Icm substrates toxic to both yeast and mammalian cells have been 
identified, none of them has been shown to specifically induce 
host cell death. For example, at least five L. pneumophila proteins 
capable of inhibiting host protein synthesis have been reported. 
When overexpressed, these proteins are highly toxic to host cells 
(Belyi et al., 2006, 2008; Shen et al., 2009; Fontana et al., 2011). 
However, whether these proteins play roles in the induction of host 
cell death under infection conditions is unknown. It is worth not-
ing that a mutant lacking all five genes failed to induce prolonged 
NF-κB activation, suggesting that these toxic proteins contribute to 
protect host cell death during infection (Fontana et al., 2011). Such 
outcomes clearly are opposite to the phenotypes observed by over-
expressing these proteins in host cells. Nevertheless, since the Dot/
Icm transporter but not bacterial replication is required for the acti-
vation of the apoptotic pathway (Abu-Zant et al., 2005; Nogueira 
et al., 2009), substrates of this transporter must be involved in the 
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