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Resistance to -lactams
-Lactams, including penicillins (e.g., ticarcillin, piperacillin), 
cephalosporins (e.g., ceftazidime, cefepime), carbapenems (e.g., 
imipenem, meropenem), and monobactams (e.g., aztreonam) are 
commonly used in the treatment of P. aeruginosa infections (Paul 
et al., 2010). Resistance to these agents is increasing (Jones et al., 
2009; Zilberberg et al., 2010) and mediated by a variety of mecha-
nisms, most commonly antibiotic cleavage by -lactamase enzymes, 
antibiotic expulsion by chromosomally encoded efflux mechanisms 
and reduced drug uptake owing to loss of outer membrane porin 
proteins (Poole, 2004b; Pfeifer et al., 2010).

-lactamases
-Lactamases, hydrolytic enzymes that disrupt the amide bond 
of the classical four-membered -lactam ring thus rendering the 
antimicrobial ineffective, are a major determinant of resistance in 
Gram-negative bacteria, including P. aeruginosa. Four molecular 
classes of these enzymes have been described (A–D) and include 
metal dependent (Zn2+-requiring; class B) and metal-independent 
(active site serine; classes A, C, and D) -lactamases (reviewed in 
Helfand and Bonomo, 2003), all of which have been reported in P. 
aeruginosa (Zhao and Hu, 2010).

Endogenous -lactamases
Pseudomonas aeruginosa typically carries chromosomal genes 
for two -lactamases, a class C cephalosporinase, AmpC (Lodge 
et al., 1990), and a class D oxacillinase, PoxB (Girlich et al., 2004; 
Kong et al., 2005). AmpC is a well-characterized -lactamase 

intRoduction
Pseudomonas aeruginosa is a common nosocomial pathogen 
(Hidron et al., 2008; Jones et al., 2009; Zhanel et al., 2010) that 
causes infections with a high mortality rate (Mutlu and Wunderink, 
2006; Kerr and Snelling, 2009; Mahar et al., 2010; Lambert et al., 
2011). This latter is, in part, attributable to the organism’s intrin-
sically high resistance to many antimicrobials (Poole, 2002) and 
the development of increased, particularly multidrug resistance 
in healthcare settings (Rossolini and Mantengoli, 2005; Ferrara, 
2006; Giamarellos-Bourboulis et al., 2006; Paterson, 2006; Kerr 
and Snelling, 2009; Shorr, 2009; Hirsch and Tam, 2010; Kallen 
et al., 2010; Keen III, et al., 2010), both of which complicate anti-
pseudomonal chemotherapy. Indeed, numerous studies point to 
a link between multidrug resistance and increased morbidity/
mortality, as well as increased length of hospital stay and increased 
hospital costs (Slama, 2008; Kerr and Snelling, 2009; Mauldin 
et al., 2010; Tumbarello et al., 2011). While acquisition of resist-
ance genes [e.g., those encoding -lactamases (Gupta, 2008; Zhao 
and Hu, 2010) and aminoglycoside-modifying enzymes (Poole, 
2005; Ramirez and Tolmasky, 2010)] via horizontal gene transfer 
can and do drive antimicrobial/multidrug resistance development 
in P. aeruginosa (Strateva and Yordanov, 2009), more commonly 
mutations of chromosomal genes (target site, efflux mutations) 
explain resistance in this organism (Lister et al., 2009; Strateva 
and Yordanov, 2009). This review provides an overview of anti-
microbial resistance in P. aeruginosa that is acquired, either via 
mutation of endogenous genes or via acquisition of exogenous 
resistance genes.
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(Jacoby, 2009) commonly linked to -lactam resistance in clinical 
isolates (Arora and Bal, 2005; Bratu et al., 2007; Reinhardt et al., 
2007; Tam et al., 2007, 2010; Drissi et al., 2008; Vettoretti et al., 
2009; Upadhyay et al., 2010; Xavier et al., 2010) while PoxB activity 
was only detected in lab mutants lacking AmpC and its clinical sig-
nificance is uncertain. AmpC, which is a common chromosomally 
encoded enzyme in many Gram-negative bacteria (Poole, 2004b; 
Jacoby, 2009), is inducible by a number of -lactam antibiotics 
(e.g., benzyl penicillin and narrow-spectrum cephalosporins) 
and thus contributes to intrinsic (i.e., natural, non-mutational) 
resistance to these (Livermore, 1991). It is not, however, induc-
ible by monobactams (aztreonam; Sakurai et al., 1990), the anti-
pseudomonal penicillin piperacillin (Livermore, 1995), and many 
of the newer cephalosporins (e.g., cefotaxime, ceftriaxone, ceftazi-
dime; Livermore and Yang, 1987; Livermore, 1995; Poole, 2004b) 
that are, nonetheless, good substrates for the enzyme and as such 
resistance is dependent upon mutational derepression of ampC. 
Indeed, mutational derepression of ampC is the most common 
mechanism of resistance to -lactams in P. aeruginosa (Arora and 
Bal, 2005; Tam et al., 2007; Drissi et al., 2008; Xavier et al., 2010), 
including expanded-spectrum cephalosporins (e.g., ceftazidime; 
Juan et al., 2005; Picao et al., 2009a; Queenan et al., 2010) and 
penicillins (e.g., ticarcillin; Cavallo et al., 2007; Dubois et al., 2008). 
Interestingly, while carbapenems (e.g., imipenem) are excellent 
inducers of ampC, their rapid bactericidal activity and stability 
to hydrolysis renders them effective against AmpC+ P. aeruginosa 
(Jones, 1998) although derepressed AmpC appears to contribute 
to carbapenem resistance in conjunction with other mechanisms 
of resistance (e.g., loss of porin protein D; see below). Recently, the 
production of AmpC variants with improved activity against oxy-
iminocephalosporins (e.g., ceftazidime), cefepime, and carbapen-
ems (including imipenem), first described in the Enterobacteriacae 
and referred to as extended-spectrum AmpC (ESAC; Nordmann 
and Mammeri, 2007), have been reported in clinical isolates of P. 
aeruginosa (Rodriguez-Martinez et al., 2009a,b). These, too, appear 
to contribute to carbapenem resistance in conjunction with loss of 
OprD (Rodriguez-Martinez et al., 2009b).

Acquired -lactamases
While the original -lactamases were plasmid-encoded restricted-
spectrum class A enzymes that only hydrolyzed penicillins and older, 
narrow-spectrum cephalosporins, more recently described acquired 
-lactamases in P. aeruginosa include the extended-spectrum 
-lactamase (ESBL) enzymes (classes A and D) able to hydrolyze 
a wider range of -lactams, including the broad-spectrum cepha-
losporins and monobactams, and the carbapenemases (classes A, B, 
and D) that hydrolyze most -lactams, including the carbapenems, 
but not aztreonam (Zhao and Hu, 2010). ESBLs and carbapenemases 
are typically encoded by plasmid- or transposon-bone genes, often 
on integrons (Poirel and Nordmann, 2002; Castanheira et al., 2004; 
Walsh et al., 2005; Naas et al., 2006; Bogaerts et al., 2007; Gupta, 2008; 
Li et al., 2008; Castanheira et al., 2009; Zhao et al., 2009; Kotsakis 
et al., 2010; Poirel et al., 2010b), genetic elements capable of captur-
ing, and subsequently mobilizing resistance genes (Cambray et al., 
2010), although some -lactamase genes are associated with novel 
mobile insertion sequences termed ISCR elements (Poirel et al., 2004; 
Picao et al., 2009a,b; Kotsakis et al., 2010).

Extended-spectrum -lactamases. More commonly reported in 
the Enterobacteriaceae, though present also in P. aeruginosa, ESBLs 
typically hydrolyze and, so, provide resistance to broad-spectrum 
cephalosporins (e.g., the third generation oxyiminocephalosporins 
cefotaxime and ceftazidime) and aztreonam, in addition to penicil-
lins and narrow-spectrum cephalosporins (reviewed in Paterson 
and Bonomo, 2005; Bush, 2008). Classical ESBLS have evolved from 
restricted-spectrum class A TEM and SHV b-lactamases although a 
variety of non-TEM, non-SHV class A ESBLS have been described 
(e.g., CTX-M, PER, VEB, GES, BEL; Poole, 2004b; Paterson and 
Bonomo, 2005) and class D ESBLs derived from narrow-spectrum 
OXA b-lactamases are also well-known (Paterson and Bonomo, 
2005; Poirel et al., 2010b).

Class A ESBLs are typically identified in P. aeruginosa isolates 
showing resistance to ceftazidime (e.g., De Champs et al., 2002; 
Girlich et al., 2002; Strateva et al., 2007; Hocquet et al., 2010]. VEB-
type ESBLs were the predominant ESBL reported in P. aeruginosa 
in a number of studies where ESBLs were commonly seen (Jiang 
et al., 2006; Strateva et al., 2007; Woodford et al., 2008; Shahcheraghi 
et al., 2009) although PER-type ESBLs were also well-represented 
(Celenza et al., 2006; Endimiani et al., 2006; Shahcheraghi et al., 
2009; Glupczynski et al., 2010). While BEL-1 (Poirel et al., 2005; 
Bogaerts et al., 2007) and CTX-M (al Naiemi et al., 2006; Picao 
et al., 2009b) ESBLs are not frequently observed in P. aeruginosa, 
they were the predominant ESBLs reported in ESBL+ P. aerugi-
nosa in a Belgium study (Glupczynski et al., 2010) and a Bolivian 
study (Celenza et al., 2006), respectively. Recently, a second BEL 
ESBL, BEL-2 with enhanced activity against expanded-spectrum 
cephalosporins was recovered in Belgium (Poirel et al., 2010a). 
Similarly, a high prevalence of an SHV ESBL was reported in one 
study (Shahcheraghi et al., 2009) although this -lactamase is sel-
dom reported in P. aeruginosa (Mansour et al., 2009; Hocquet et al., 
2010). TEM-(Dubois et al., 2005; Shahcheraghi et al., 2009) and 
GES-(Labuschagne et al., 2008; Picao et al., 2009a; Viedma et al., 
2009; Kotsakis et al., 2010) type ESBLs have also been described 
in P. aeruginosa.

Class D OXA enzymes (so named because of their preference 
for oxacillin and cloxacillin over benzylpenicillin, though not all 
class D enzymes show this property), are mostly narrow-spectrum 
-lactamases that confer resistance to amino- and carboxypeni-
cillins and narrow-spectrum cephalosporins (Poirel et al., 2010b) 
although several OXA-type enzymes are ESBLs (reviewed in Poirel 
et al., 2010b). Occurring predominantly in P. aeruginosa these con-
fer resistance to cefotaxime (Danel et al., 1999; Aubert et al., 2001; 
Fournier et al., 2010) or ceftazidime (Toleman et al., 2003; Juan 
et al., 2009; Fournier et al., 2010; Hocquet et al., 2010), with some 
OXA -lactamases also linked to resistance and/or reduced suscep-
tibility to cefepime (Aubert et al., 2001; Toleman et al., 2003; Juan 
et al., 2009; Fournier et al., 2010; Liu et al., 2010) and/or aztreonam 
(Toleman et al., 2003; Juan et al., 2009; Fournier et al., 2010).

Carbapenemases. Carbapenems (e.g., meropenem, imipenem) 
are an important class of anti-pseudomonal -lactam owing to 
their stability to most -lactamases (see El Gamal and Oh, 2010 
for a recent review of carbapenems) and are of particular use in 
treating infections associated with ESBL- and AmpC-producers. 
-lactamases capable of hydrolyzing carbapenems are known 
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(Poole, 2004b). MexAB-OprM accommodates the broadest range 
of -lactams (amongst these pumps) and is most frequently linked 
to -lactam resistance in clinical isolates (Drissi et al., 2008; Tomas 
et al., 2010). The MexXY-OprM efflux system has also been linked 
to -lactam resistance in clinical isolates of P. aeruginosa (as one 
of several contributors; Maniati et al., 2007; Vettoretti et al., 2009). 
While MexAB-OprM, MexCD-OprJ, and MexXY-OprM have all 
been shown to accommodate carbapenems (except imipenem; 
Okamoto et al., 2002) MexAB-OprM is by far the better exporter 
of these agents and the pump has been shown to contribute to 
reduced susceptibility to meropenem in clinical isolates (Pai et al., 
2001; Pournaras et al., 2005). Still, efflux appears to be a minor 
contributor to carbapenem resistance in this organism, typically 
operating in conjunction with other mechanisms (Quale et al., 
2006; Dotsch et al., 2009; Hammami et al., 2009; Wang et al., 2010). 
MexAB-OprM has also been implicated in resistance to the penicil-
lin ticarcillin (Boutoille et al., 2004; Cavallo et al., 2007; Hocquet 
et al., 2007) and its expression linked statistically to aztreonam 
resistance (Quale et al., 2006). MexXY production, too, has been 
noted in ticarcillin-resistant P. aeruginosa (Hocquet et al., 2007) 
although a contribution to resistance was not proven and this efflux 
system is more commonly associated with resistance to the fourth 
generation cephalosporin cefepime in clinical isolates (Hocquet 
et al., 2006; Pena et al., 2009). Indeed, cefepime commonly selects 
for MexXY-derepressed mutants in vitro (Queenan et al., 2010). 
MexXY-OprM was also responsible for reduced susceptibility to 
ceftobiprole in a clinical study of this the novel broad-spectrum 
cephalosporin (Baum et al., 2009) and mutants expressing mexXY 
are readily selected by this -lactam in vitro (Queenan et al., 2010). 
Although MexCD-OprJ accommodates cefepime (Masuda et al., 
2000) it has rarely been linked to resistance to this agent in clinical 
isolates (Jeannot et al., 2008).

PeRmeability
By far the most common mechanism of resistance to the carbap-
enems (including imipenem) in P. aeruginosa is loss or alteration 
of the outer membrane porin protein OprD (Rodriguez-
Martinez et al., 2009b; Wang et al., 2010), the major portal for 
entry for carbapenems (Trias and Nikaido, 1990). While not pro-
viding the high-level resistance seen in MBL-producers, loss of 
OprD function is the major determinant of non-MBL-mediated 
resistance to these agents (Gutierrez et al., 2007; Rodriguez-
Martinez et al., 2009b; Tomas et al., 2010; Wang et al., 2010), 
often seen operating in conjunction with other mechanisms 
[e.g., derepressed ampC (Gutierrez et al., 2007; Rodriguez-
Martinez et al., 2009b; Tomas et al., 2010; Wang et al., 2010) or 
MexAB-OprM (Gutierrez et al., 2007; Tomas et al., 2010; Wang 
et al., 2010)]. Indeed, carbapenem resistance resulting from loss 
of OprD requires the presence of AmpC (inducible or stably 
derepressed; Livermore, 1992).

Resistance to fluoRoquinolones
Fluoroquinolones (FQs), particularly ciprofloxacin, are commonly 
used in the treatment of P. aeruginosa infections. Resistance to 
these agents, particularly high-level resistance, is predominantly 
mediated by mutations in the DNA gyrase and topoismerase IV 
enzymes that are the targets of the FQs, though efflux is a significant 

(reviewed in Queenan and Bush, 2007; Walsh, 2010) and include 
class A and class D carbapenemases (the latter also referred to as 
carbapenem-hydrolyzing class D -lactamases, CHDLs; Poirel 
et al., 2010b) and class B metallo--lactamases (MBLs; reviewed in 
Walsh et al., 2005), though there are no hitherto reports of CHDLs 
in P. aeruginosa.
Class A -lactamases with activity against carbapenems are uncom-
mon and can be divided into five groups (GES, IMI, KPC, NMC-A, 
and SME; reviewed in Walther-Rasmussen and Hoiby, 2007) of 
which only GES and KPC enzymes have been described to date in 
P. aeruginosa (Zhao and Hu, 2010). KPC enzymes show activity 
against most -lactams including oxyiminocephalosporins, mono-
bactams, and carbapenems and while they occur as yet rarely in 
P. aeruginosa (only KPC-2 and KPC-5 have been reported in this 
organism) the number of reports of KPC-producing P. aerugi-
nosa is increasing (Villegas et al., 2007; Akpaka et al., 2009; Wolter 
et al., 2009a; Poirel et al., 2010c). Interestingly, KPC-2 is more active 
against carbapenems than is KPC-5 while the latter shows better 
activity against ceftazidime (Wolter et al., 2009b). Of note, too, the 
presence of KPC enzymes in carbapenem-resistant isolates is often 
coupled with loss of the OprD outer membrane porin (Villegas 
et al., 2007; Wolter et al., 2009a) that is the primary route of entry 
of these agents into P. aeruginosa (Trias and Nikaido, 1990). While 
all GES enzymes are ESBLs three of these also show reasonable 
activity against carbapenems (GES-2, -4, and -5), with GES-2 and 
-5 having been reported in P. aeruginosa (Walther-Rasmussen and 
Hoiby, 2007; Viedma et al., 2009; Wang et al., 2010).

Class B MBLs are by far the major determinants of -lactamase-
mediated resistance to carbapenems and the major cause of high-
level resistance to these agents. Acquired MBLs include the VIM and 
IMP enzymes, of which there are numerous variants of the original 
VIM-1 and IMP-1 MBLs, as well as the SPM-1, GIM-1, NDM-
1, AIM-1, and SIM-1 enzymes (Gupta, 2008; Walsh, 2010). The 
VIM and IMP enzymes are by far the most common MBLs found 
in carbapenem-resistant bacteria (Walsh et al., 2005), including 
 carbapenem-resistant P. aeruginosa (Gupta, 2008). The predomi-
nance of VIM vs. IMP in P. aeruginosa appears to be geographical, 
with IMP-type MBLs predominating in Asia where it was first dis-
covered and VIM-type enzymes predominating in Europe though 
both enzymes are now disseminated globally, with VIM-2 in par-
ticular well established on five continents (Gupta, 2008; Walsh, 
2010; Zhao and Hu, 2010). There are single reports, only, of the 
GIM-1 (found in five isolates from Germany; Castanheira et al., 
2004) and the AIM-1 (Gupta, 2008) MBLs in P. aeruginosa. SPM-1 
is the predominant MBL in Brazil (Sader et al., 2005; Picao et al., 
2009a) and while previously found only in Brazilian clinical isolates 
it has now been reported in Europe (Salabi et al., 2010).

efflux
Five families of efflux systems that export and provide resistance 
to antimicrobials in bacteria have been described (Li and Nikaido, 
2009) although members of the Resistance Nodulation Division 
(RND) family appear to be the most significant contributors to 
antimicrobial resistance in P. aeruginosa (Poole, 2004a, 2007). 
There are 12 RND-type efflux systems present in P. aeruginosa of 
which three, MexAB-OprM, MexCD-OprJ, and MexXY-OprM have 
been shown to accommodate and provide resistance to -lactams 
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Hyperexpression of this efflux system (and reduction in OprD 
production) is also seen in lab isolates disrupted in the mexS gene 
encoding a putative oxidoreductase (a.k.a qrh; Köhler et al., 1999) 
of unknown function (Sobel et al., 2005). Expression of mexXY is 
controlled by a single known regulator, the MexZ repressor (Matsuo 
et al., 2004), and mexZ mutations have been reported in lab-selected 
FQ-resistant isolates hyperexpressing mexXY (Hocquet et al., 2008). 
mexXY-hyperexpressing FQ-resistant isolates lacking mutations in 
mexZ have also been described although the mutation(s) respon-
sible were not identified (Hocquet et al., 2008). Despite its ability 
to accommodate FQs, however, MexXY-OprM has seldom been 
linked to FQ resistance in clinical isolates (Wolter et al., 2004).

Resistance to aminoglycosides
A number of aminoglycosides are commonly used in the treatment 
of P. aeruginosa infections (e.g., tobramycin, gentamicin, amikacin; 
Gilbert et al., 2003; Bartlett, 2004), particularly pulmonary infec-
tions in patients with cystic fibrosis (CF) where amikacin and, in 
particular, tobramycin are routinely employed (Canton et al., 2005; 
Taccetti et al., 2008). Their use is, however, linked to resistance 
development, with acquired aminoglycoside-modifying enzymes 
(AMEs) and rRNA methylases, and endogenous efflux mechanisms 
typically responsible (Poole, 2005).

aminoglycoside-modifying enzymes
Aminoglycoside modification leading to antibiotic inactivation 
typically involves their phosphorylation (by aminoglycoside 
phosphoryltransferases, APHs), acetylation (by aminoglycoside 
acetyltransferases, AACs), or adenylation (by aminoglycoside 
nucleotidyltransferases, ANTs; aka. aminoglycoside adenylyltrans-
ferase, AAD; see Ramirez and Tolmasky, 2010 for a recent review 
of these modifying enzymes). AMEs are common determinants 
of aminoglycoside resistance in P. aeruginosa (reviewed in detail 
in Poole, 2005) except in CF isolates where these mechanisms 
are almost unknown (Shawar et al., 1999; Henrichfreise et al., 
2007; Islam et al., 2009). Genes for AMEs are typically found on 
integrons with other resistance genes (Poole, 2005; Ramirez and 
Tolmasky, 2010) and, as such, AME-haboring isolates are often 
multidrug-resistant.

Aminoglycoside acetyltransferases
Acetylation of aminoglycosides can occur at 1-, 3-, 6′-, and 
2′-amino groups and involve virtually all medically useful com-
pounds (e.g., gentamicin, tobramycin, and amikacin; Ramirez and 
Tolmasky, 2010). Enzymes that modify the 3 [3-N-aminoglycoside 
acetyltransferases, AAC(3)] (Biddlecome et al., 1976) and 6′ 
[6′-N-aminoglycoside acetyltransferases, AAC(6′)] (Haas et al., 
1976) positions are the most common acetyltransferases (Ramirez 
and Tolmasky, 2010) and, with ANT(2”) (see below) the most 
common enzymes providing for aminoglycoside resistance in this 
organism (Poole, 2005; Shahid and Malik, 2005; Dubois et al., 2008). 
The AAC(3) family, of which five subfamilies have been described 
in P. aeruginosa (I, II, II, IV, and VI; Kim et al., 2008; Zhao et al., 
2009; Ramirez and Tolmasky, 2010), is a common determinant of 
gentamicin resistance in this organism, less commonly contribut-
ing to tobramycin resistance (subfamilies II, III, and VI; Poole, 
2005). The AAC(6′) family, of which two major subfamilies have 

 contributing actor (Jacoby, 2005; Drlica et al., 2009) often in combi-
nation with target site mutations (Higgins et al., 2003; Henrichfreise 
et al., 2007; Rejiba et al., 2008; Tam et al., 2010).

taRget site mutations
The FQ class of antimicrobial acts on bacterial topoisomerases 
[topoisomerase II (a.k.a. gyrase) and topoisoemrase IV] that are 
responsible for the introduction and/or removal of supercoils 
in, as well as catenation/decatenation of DNA and, thus, play an 
essential role in DNA replication, transcription, recombination, 
and repair (Drlica and Zhao, 1997). In Gram-negative bacteria, 
gyrase is the preferred target of FQs, and resistance mutations thus 
tend to occur in this enzyme first with additional mutations in 
topoisomerase IV seen in some highly resistant isolates (Jacoby, 
2005). DNA gyrase (GyrA and GyrB) and topoisomerase (ParC 
and ParE) are each comprised of two subunits, with FQ resistance 
mutations typically occurring in the so-called “quinolone resistance 
determining region” (QRDR) of GyrA and/or ParC (Jacoby, 2005; 
Drlica et al., 2009). Such mutations are common in FQ-resistant 
P. aeruginosa (Higgins et al., 2003; Lee et al., 2005; Muramatsu 
et al., 2005; Henrichfreise et al., 2007; Rejiba et al., 2008) with 
highly resistant isolates carrying multiple mutations in gyrA and/
or parC (Nakano et al., 1997; Higgins et al., 2003; Lee et al., 2005; 
Muramatsu et al., 2005), with mutations in gyrB (Lee et al., 2005; 
Muramatsu et al., 2005; Schwartz et al., 2006) and parE (Lee et al., 
2005; Rejiba et al., 2008) less common.

efflux
Four members of the RND family of multidrug efflux systems, 
MexAB-OprM, MexCD-OprJ, MexEF-oprN, and MexXY-OprM 
are known to accommodate FQs (Poole, 2000) and these efflux 
systems have been implicated in FQ resistance in clinical isolates 
(Poole, 2000; Wolter et al., 2004; Zhanel et al., 2004; Reinhardt 
et al., 2007). Expression of mexAB-oprM is controlled directly or 
indirectly by three repressors, MexR (Srikumar et al., 2000), NalD 
(Morita et al., 2006) and NalC (Cao et al., 2004), and mutations in 
mexR (Henrichfreise et al., 2007), nalC (Henrichfreise et al., 2007) 
and nalD (Tomas et al., 2010) have been reported in FQ-resistant 
clinical isolates. mexCD-oprJ expression is controlled by a single 
known regulator, the NfxB repressor (Poole et al., 1996), and lab 
(Poole et al., 1996) and clinical (Jalal et al., 2000; Higgins et al., 
2003; Henrichfreise et al., 2007) isolates expressing this efflux 
system and resistant to FQs invariably contain mutations in nfxB 
(Jalal et al., 2000; Higgins et al., 2003; Henrichfreise et al., 2007). 
Still, mexCD-oprJ-expressing mutants appear to be rare in a clinical 
setting (Jeannot et al., 2008; Kiser et al., 2010). Unlike the other 
FQ-exporting RND-type efflux systems, expression of mexEF-oprN 
is regulated by a transcriptional activator, MexT (Köhler et al., 1999; 
Ochs et al., 1999). Unusually, many wild type stains carry inacti-
vating mutations in mexT (Maseda et al., 2000), with mexEF-oprN 
expression and resistance resulting from reversion of these muta-
tions (Maseda et al., 2000). These so-called nfxC mutants (Köhler 
et al., 1997), which have been described in the clinic (Fukuda et al., 
1995; Jalal et al., 2000), also show resistance to carbapenems such as 
imipenem, though not because MexEF-orpN accommodates these 
agents but because of a coordinate, MexT-dependent reduction 
of OprD in such mutants (Köhler et al., 1999; Ochs et al., 1999). 
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 associated with reduced aminoglycoside accumulation (Bryan et al., 
1976) such resistance, particularly common in CF isolates (reviewed 
in Poole, 2005), was attributed to reduced uptake owing to reduced 
permeability and, as such, was typically referred to as imperme-
ability resistance. It is now known, however, that this resistance 
was likely due to efflux mediated by the MexXY-OprM multidrug 
efflux system. Indeed, this efflux system has been implicated in 
aminoglycoside resistance in clinical isolates, particularly CF iso-
lates, in a number of studies (Sobel et al., 2003; Hocquet et al., 2006; 
Henrichfreise et al., 2007; Islam et al., 2009).

The MexXY-OprM system is encoded by the mexXY operon 
that is under the control of the MexZ repressor (Matsuo et al., 
2004) and the oprM gene of the mexAB-oprM multidrug efflux 
operon. Mutations in mexZ are common in pan-aminoglycoside-
resistant CF isolates of P. aeruginosa expressing mexXY (Poole, 
2005; Hocquet et al., 2006; Henrichfreise et al., 2007; Islam et al., 
2009; Feliziani et al., 2010) with mexZ, in fact, identified as the 
most commonly mutated gene in CF isolates (Smith et al., 2006; 
Feliziani et al., 2010). A number of studies highlight, however, the 
absence of mutations in mexZ or the mexXY promoter region in 
mexXY-expressing aminoglycoside-resistant CF isolates (Sobel 
et al., 2003; Hocquet et al., 2006; Islam et al., 2009), indicating 
that additional genes/mutations are linked to expression of this 
efflux locus in P. aeruginosa. A recent report of an in vitro-selected 
mexXY-expressing aminoglycoside-resistant mutant lacking a 
mexZ mutation identified a novel gene, parR, as the site of muta-
tion (Muller et al., 2010). parR forms part of a two-gene operon, 
parRS, encoding a two-component regulatory systems that impacts 
expression of several antimicrobial resistance determinants in P. 
aeruginosa (e.g., oprD), including mexXY. Significantly, mutations 
in parR are present in some clinical isolates that express mexXY but 
lack mutations in mexZ (Muller et al., 2010).

16s rRna methylases
A more recently discovered aminoglycoside resistance mechanism 
involves methylation of the 16S rRNA of the A site of the 30S ribos-
omal subunit, which interferes with aminoglycoside binding and 
so promotes high-level resistance to clinically relevant aminoglyco-
sides like gentamicin, tobramycin, and amikacin (reviewed in Doi 
and Arakawa, 2007). A number of different pan-aminoglycoside 
resistance-promoting 16S rRNA methylases have been described in 
P. aeruginosa, including RmtA (Yamane et al., 2004; Jin et al., 2009), 
RmtB (Zhou et al., 2010), RmtD (Doi et al., 2007; Lincopan et al., 
2010), and ArmA (Gurung et al., 2010; Zhou et al., 2010). RmtD is 
frequently co-produced with the SPM-1 MLB that predominates 
in Brazil (Doi et al., 2007; Lincopan et al., 2010) and co-carriage of 
ArmA and the IMP-1 MBL has also been reported in P. aeruginosa 
isolates from Korea (Gurung et al., 2010).

Resistance to Polycationic antimicRobials
Owing to the increased prevalence of multidrug-resistant P. aeru-
ginosa, “older” antimicrobials like the polymyxins (polymyxin B 
and colistin) are back in favor, with earlier issues surrounding 
nephrotoxicity largely dealt with (Zavascki et al., 2007; Molina 
et al., 2009). While these agents, and colistin in particular, are quite 
efficacious in the treatment of multidrug-resistant P. aeruginosa 
infections (Montero et al., 2009; Falagas et al., 2010) there are 

been described in P. aeruginosa (I and II; and many variants of 
the I subfamily; Ramirez and Tolmasky, 2010), is the major AAC 
family contributing to aminoglycoside resistance in P. aeruginosa, 
with subfamily II predominating (Poole, 2005). AAC(6′) enzymes 
are major determinants of resistance to tobramycin and amikacin 
(subfamily I) and tobramycin and gentamicin (subfamily II; Poole, 
2005), although some subfamily I variants lack activity against ami-
kacin (e.g., Ib, Ib′; Galimand et al., 1993; MacLeod et al., 2000). 
Owing to irregularities in AAC(6′) nomenclature, several of these 
enzymes that have been reported in P. aeruginosa lack a roman 
numeral subclass designation (e.g., AAC(6′)-29a, -29b, -30, -32, 
-33; Ramirez and Tolmasky, 2010) and of these AAC(6′)-29a and 
-29b provide resistance to amikacin and tobramycin (Poirel et al., 
2001) while AAC(6′)-30 exists as part of a bifunctional AAC(6′)-30/
AAC(6′)-Ib′ enzyme that promotes resistance to tobramycin and 
only reduced susceptibility to amikacin and gentamicin (Mendes 
et al., 2004). A novel aminoglycoside acetyltransferase that exhibits 
FQ-acetylating activity, AAC(6′)-Ib-cr, has also been described in 
P. aeruginosa (Libisch et al., 2008).

Aminoglycoside nucleotidyltransferases
The most prevalent nucleotidyltransferase in P. aeruginosa is the 
ANT(2′)-I enzyme which inactivates gentamicin and tobramy-
cin but not amikacin and is, thus, found in gentamicin- and 
 tobramycin-resistant clinical isolates (Poole, 2005). A less com-
mon nucleotidyltransferases associated with aminoglycoside resist-
ance in P. aeruginosa is ANT(4′)-II which provides resistance to 
tobramycin and amikacin (Poole, 2005; Ramirez and Tolmasky, 
2010). Two variants of this enzyme, ANT(4′)-IIa (Shaw et al., 1993) 
and -IIb (Sabtcheva et al., 2003) have been described in amikacin-
resistant clinical isolates and there is a report of an ant(4′)-I gene 
in P. aeruginosa although its contribution to resistance was not 
established (Jin et al., 2009). While there are a number of reports 
of the ANT(3′) nucleotidyltransferase in P. aeruginosa (Ramirez 
and Tolmasky, 2010) this enzyme is active against streptomycin 
and none of the clinically used anti-pseudomonal aminoglycosides.

Aminoglycoside phosphoryltransferases
Aminoglycoside phosphoryltransferases found in P. aeruginosa are 
almost invariably 3′ enzymes that act on the 3-OH of target aminogly-
cosides and generally provide resistance to aminoglycosides not typi-
cally used to treat P. aeruginosa infections (kanamycin, neomycin, 
and streptomycin; Poole, 2005). APH(3′)-II predominates in clinical 
isolates resistant to kanamycin (and neomycin; Miller et al., 1994; 
Poole, 2005) and, indeed, a chromosomal aphA-encoded APH(3′)-II 
type enzyme, APH(3′)-IIb (Hachler et al., 1996) is likely responsible 
for the general insensitivity of P. aeruginosa to kanamycin. APH 
enzymes that provide resistance to other aminoglycosides have also 
been described in P. aeruginosa and include APH(3′)-VI (amikacin; 
Kettner et al., 1995; Kim et al., 2008; Jin et al., 2009), APH(3′)-IIb-like 
(amikacin, weakly; Riccio et al., 2001), and APH(2”) (gentamicin 
and tobramycin; Kettner et al., 1995).

efflux
Aminoglycoside resistance independent of inactivating enzymes 
has been known for some time in P. aeruginosa (Bryan et al., 
1976). Characterized by resistance to all aminoglycosides and often 
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P. aeruginosa infections in CF (Mulcahy et al., 2010). The idea of 
a sub-population of biofilm cells displaying different patterns of 
antimicrobial susceptibility is supported by a recent study show-
ing that only the mobile cells responsible for forming the “cap” 
component of the typical P. aeruginosa biofilm mushroom struc-
tures exhibited tolerance to colistin, as a result of colistin triggering 
PmrAB-dependent expression of the arn LPS modification locus 
(Haagensen et al., 2007; Pamp et al., 2008). While the details of 
persister formation and the mechanism(s) responsible for persister 
resistance remain unknown, a preliminary screen of a transposon 
insertion mutant library for mutants showed altered persister for-
mation identified several genes whose disruption either increased 
or decreased persister formation (De Groote et al., 2009).

Aminoglycosides have been shown to induce biofilm formation 
by P. aeruginosa, in a process that requires a gene, arr (aminogly-
coside response regulator; Hoffman et al., 2005). arr encodes a 
phosphodiesterase that impacts the levels of bis-(3′,5′)-cyclic- di-
guanidine monophosphate (c-di-GMP; Hoffman et al., 2005), a 
second messenger known to influence biofilm formation (Harmsen 
et al., 2010) and lack of arr compromises biofilm resistance to 
aminoglycosides (Hoffman et al., 2005). Given that c-di-GMP pro-
duction is generally correlated with biofilm formation (Harmsen 
et al., 2010) it is unclear how Arr-promoted turnover of this sec-
ond messenger would promote biofilm formation. A second gene 
linked to biofilm-specific resistance to aminoglycosides in some 
strains only, ndvB, is involved in the synthesis of periplasmic (and 
intracellular) glucans that bind aminoglycosides (tobramycin), sug-
gestive of a mechanism of resistance whereby aminoglycosides are 
sequestered and prevented from reaching their targets in the cytosol 
(Mah et al., 2003). These glucans, which have recently been puri-
fied and identified as highly glycerol-phosphorylated -(1 → 3) 
glucans, actually form part of the biofilm matrix where they do, 
indeed, bind aminoglycosides (Sadovskaya et al., 2010). A tripartite 
ABC-family efflux system that is preferentially expressed in biofilm 
vs. planktonic cells, PA1875-PA1876-PA1877, has also been linked 
to biofilm-specific aminoglycoside résistance (Zhang and Mah, 
2008). Efflux (mediated by MexCD-OprJ) has also been linked to 
biofilm-specific resistance to azithromycin in P. aeruginosa (Gillis 
et al., 2005; Mulet et al., 2009).

hyPeRmutation and Resistance
Hypermutable (or mutator) P. aeruginosa exhibiting increased 
mutation rates are common in chronic infections such as those 
that occur in the lungs of CF patients (see Oliver, 2010; Oliver and 
Mena, 2010; for reviews of hypermutation in CF isolates). The 
hypermutation phenotype of mutator stains results from defects in 
DNA repair, predominantly in the mismatch repair (MMR) system 
(Oliver, 2010), with mutations in mutS (Oliver et al., 2002; Macia 
et al., 2005; Feliziani et al., 2010), mutL (Oliver et al., 2002; Feliziani 
et al., 2010), and uvrD (a.k.a mutU; Oliver et al., 2002) typically 
responsible. Significantly from an antimicrobial resistance stand-
point, mutator strains show higher rates of antimicrobial resistance 
development than non-mutator strains (Oliver et al., 2000; Ferroni 
et al., 2009), with the mutator phenotype of CF isolates often cor-
relating with antimicrobial, including multidrug, resistance (Macia 
et al., 2005; Waine et al., 2008; Ferroni et al., 2009; Feliziani et al., 
2010; Tam et al., 2010; reviewed in Oliver, 2010).

reports of resistance to both polymyxin B (Landman et al., 2005; 
Abraham and Kwon, 2009; Barrow and Kwon, 2009) and colis-
tin (Johansen et al., 2008; Matthaiou et al., 2008; Samonis et al., 
2010) in clinical isolates. While in many cases the mechanism(s) 
of clinical polymyxin resistance are unknown, substitution of LPS 
lipid A with aminoarabinose has been shown to contribute to 
polymyxin resistance in P. aeruginosa in vitro (Moskowitz et al., 
2004) and in CF isolates (Ernst et al., 1999). This modification 
is carried out by the products of the arnBCADTEF-ugd locus 
(a.k.a. pmrHFIJKLM-ugd and PA3552–59) that is regulated both 
by PhoPQ (Macfarlane et al., 2000) and a second two- component 
regulatory system, PmrAB (McPhee et al., 2003; Moskowitz et al., 
2004), with mutations in phoQ and pmrB shown to promote 
ArnBCADTEF-dependent polymyxin B resistance in clinical iso-
lates (Abraham and Kwon, 2009; Barrow and Kwon, 2009). A third 
two-component system, ParRS, also controls arnBCADTEF-ugd 
expression (Fernandez et al., 2010), with a mutation in parR linked 
to ArnBCADTEF-mediated polymyxin resistance in a lab isolate 
(Muller et al., 2010). parR (and parS) mutations have been noted 
in clinical isolates, although there was no indication that the arn 
locus was upregulated, and the polymyxin resistance of these iso-
lates was minimal (Muller et al., 2010).

biofilm Resistance
Biofilms, surface-attached three-dimensional structures in which 
bacteria are imbedded in a matrix comprised of polysaccharide, 
protein, and DNA, are increasingly recognized as the preferred 
mode of bacterial growth in nature and infectious disease (Lopez 
et al., 2010). This is true of P. aeruginosa (Harmsen et al., 2010), 
particularly in the case of pulmonary infections in patients with 
CF (Wagner and Iglewski, 2008; Davies and Bilton, 2009). An 
important consequence of P. aeruginosa biofilm growth and one 
that is particularly relevant in a clinical context is marked resist-
ance to antimicrobial agents (Davies and Bilton, 2009; Hoiby et al., 
2010). Antimicrobial resistance of P. aeruginosa biofilms appears 
to be complex, multifactorial, and in many instances not well 
understood (Drenkard, 2003; Hoiby et al., 2010). Some studies 
indicate that P. aeruginosa within biofilms are metabolically less 
active and grow more slowly than cells at the biofilm periphery 
(owing to limited access to nutrients and oxygen; Werner et al., 
2004), which may contribute to increasing biofilm tolerance to 
antimicrobials since antimicrobials often target metabolically 
active cells (Pamp et al., 2008). Certainly, the suggestion that 
biofilm-grown P. aeruginosa from CF patients are anaerobic 
(Hassett et al., 2009) is likely to be significant in the context of 
antimicrobial resistance since many agents are inactive or less 
active under anaerobiosis (Schobert and Tielen, 2010). Oxygen 
limitation has, in fact, been shown to contribute significantly 
to the antimicrobial resistance of in vitro-grown P. aeruginosa 
biofilms (Borriello et al., 2004).

One explanation for biofilms being generally refractory to anti-
microbial chemotherapy is the presence, in biofilms, of a highly 
resistant sub-population of cells called persisters (Lewis, 2008). 
Intriguingly, “late” isolates of P. aeruginosa in CF (those recovered 
later in infection) produce increased levels of drug-tolerant per-
sister cells, which may be the primary “mechanism” for surviving 
chemotherapy and, so, may explain the general recalcitrance of 
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A second DNA repair system less commonly linked to the muta-
tor phenotype in P. aeruginosa is the DNA oxidative repair (GO) 
system charged with repairing and preventing incorporation into 
DNA of an oxidatively damaged form of guanosine (8-oxo-2′-
deoxyguanosine, 8-oxodG; Oliver and Mena, 2010). In vitro studies 
have shown that knockouts in the GO genes mutT and mutY yield 
increased mutation rates concomitant with increased oxidative 
damage of DNA (Mandsberg et al., 2009), with mutT (Mandsberg 
et al., 2009; Morero and Argarana, 2009) and mutY (Mandsberg 
et al., 2009) strains also showing higher rates of antimicrobial 
resistance. Given that the characteristically chronically inflamed 
CF lung is an environment rich in reactive oxygen species (ROS) 
that can damage DNA, the potential for ROS-promoted hypermut-
ability owing to defects in the GO system is certainly real. Although 
uncommon, mutator strains with lesions in mutT and mutY have 
been recovered from CF patients (Mandsberg et al., 2009).

concluding RemaRks
Rates of infection and resistance are increasing in P. aeruginosa 
(Talbot et al., 2006; Kerr and Snelling, 2009), and with reports of 
colistin-only sensitive P. aeruginosa and the presence of colistin-
resistance in this organism the untreatable P. aeruginosa infection 
may be imminent. Compounding the increasing lack of effec-
tive anti-pseudomonal agents is the paucity of new drugs being 
developed that are active against P. aeruginosa and, indeed, the 
absence of any late-stage agents effective against pan-resistant 
P. aeruginosa (Talbot et al., 2006; Boucher et al., 2009; Page and 
Heim, 2009). The few novel agents with anti-pseudomonad activ-
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