
and frozen, but also active microorganisms live in brine-channel 
systems within the ice, being subjected to strong physical and chemi-
cal constraints (e.g., temperature, salinity, light, nutrients) which 
vary both spatially and temporally (Eicken, 2003). These parameters 
reach extreme values during winter, not only within the ice but 
also in the ice-covered Arctic Ocean that, with an average depth 
of approximately 1000 m, is an environment characterized by very 
limited light and extremely low temperatures. The sea ice is typically 
2 m thick and the snow cover up to 28 cm thick (Richter-Menge 
et al., 2006). However, the information about microbial communi-
ties associated with the multi-year ice cover is very limited (Thomas 
et al., 1995; Perovich et al., 1999; Werner et al., 2007), especially 
during winter and in central areas of the Arctic Ocean, where the 
water column depths are the highest (4179 m at the North Pole; 
maximum depth 5450 m at the European basin).

During the last decade, environmental studies of eukaryotic 
diversity based on polymerase chain reaction (PCR) amplifica-
tion, cloning, and sequencing of the 18S rRNA gene have revealed 
a wide diversity of protists in a variety of poorly explored habi-
tats (López-García et al., 2001; Moon-Van Der Staay et al., 2001; 
Moreira and López-García, 2002; Richards and Bass, 2005). So far, 

INTRODUCTION
One of the most characteristic features of the Arctic Ocean is its 
permanent sea ice cover, which is a present source of concern because 
of its steady decline linked to global warming (Lemke et al., 2007). 
The logistical constraints to sample the northernmost sites on Earth 
due to harsh environmental conditions are still an obstacle to biodi-
versity and ecological studies in such high latitudes, especially dur-
ing maximum sea ice cover periods (Comiso, 2003). Despite these 
limitations, it is known that sea ice offers an exclusive habitat for a 
diverse microbial community in polar environments (see review in 
Mock and Thomas, 2005). A special attention has been paid to domi-
nant species, mostly unicellular algae and heterotrophic bacteria. A 
variety of protist species have also been reported in Arctic sea ice and 
seawater by traditional morphology-based methods (e.g., Horner, 
1985; Lizotte, 2003; Olli et al., 2007). Diatoms, which significantly 
contribute to the primary production in the Arctic Ocean (see review 
by Arrigo, 2003), are by far the best studied protist group in these 
waters (Palmisano and Garrison, 1993; Ikävalko and Thomsen, 1997; 
Melnikov, 1997). However, a wide diversity of other eukaryotes is 
also present in Arctic sea ice and underlying waters. Marine micro-
organisms may be trapped  during ice  formation and remain inactive 
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only a few molecular studies of protist diversity have been carried 
out in very high-latitude oceanic regions. Gast et al. (2004) reported 
the first molecular survey of the microbial eukaryotes from sea ice 
environments in the Antarctic Ross Sea, showing a large genetic 
diversity and a certain degree of habitat specificity. In the high 
Arctic, molecular methods were used to study protist diversity in 
nearshore fast ice and waters (Lovejoy et al., 2006; Terrado et al., 
2009; Eddie et al., 2010), fjords (Luo et al., 2009; Piquet et al., 2010), 
sediments (Stoeck et al., 2007; Tian et al., 2009) and, very recently, 
snow (Harding et al., 2011). However, the diversity and vertical 
distribution of microbial eukaryotic communities in Arctic offshore 
environments remains to be studied.

Samples collected during the Barneo-2008 expedition (March–
April 2008) offered us the opportunity to explore the highest lati-
tudes on Earth at the very end of the polar night. Here, we report 
the diversity and vertical distribution of microbial eukaryotes of 

sizes comprised between 0.2 and 200 μm in the multi-year sea ice, 
the underlying waters and the snow covering the sea ice from a sam-
pling site located at close proximity to the geographic North Pole.

MATERIALS AND METHODS
SAMPLE COLLECTION
Samples were collected during the Barneo-2008 expedition1, a 
Russian initiative organized as part of the 2007–2008 International 
Polar Year. This expedition was based on the installation of a sci-
entific camp on a large ice floe of several kilometers of diameter 
drifting in the North Pole region. Scientists occupied the camp for 
1 month (from March 15th to April 15th) while the ice floe freely 
drifted from the original location, N89°36′, E118°49′, to one more 
to the South, N88°28′, E12°47′ (Figure 1A), Because of logistic 
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Figure 1 | Origin of samples. (A) Sampling site in the Arctic Ocean, the boxed area shows the path of the Barneo-2008 expedition; (B) profile of the sampling 
depths from the upper snow layer, through the ice cover, to the bottom of the euphotic zone. Base map is the International Bathymetric Chart of the Arctic Ocean 
(Jakobsson et al., 2008).

1http://barneo.ru/2008e.htm
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et al., 1997) in GenBank4, were aligned using MAFFT (Katoh et al., 
2002). The multiple sequence alignment was then manually edited 
using the program ED from the MUST package (Philippe, 1993). A 
 neighbor-joining (NJ) tree was constructed for all the taxa in order 
to choose representative subsets of sequences for further phyloge-
netic analyses. The first three datasets corresponded to a variety of 
ciliate, Marine Alveolate Group I (MAG I) and II (Syndiniales) and 
dinoflagellate sequences, which were found to be the most abundant 
and diverse. The two other datasets corresponded to metazoan, fun-
gal, amoebozoan, green plant, rhizarian, and heterokont sequences, 
spanning the rest of the eukaryotic diversity found. These datasets 
were analyzed by maximum likelihood (ML) using TREEFINDER 
(Jobb et al., 2004) applying a general time reversible (GTR) model of 
sequence evolution with a 4-rate categories Gamma law and invariant 
sites to accommodate for among-site rate variation. ML bootstrap 
proportions were inferred using 1000 replicates. Bayesian inference 
was also conducted using MrBayes (Huelsenbeck and Ronquist, 
2001), starting with a random tree, ran for one million generations 
in four chains and excluding the first 3500 generations as “burn in.” 
The ML and Bayesian analyses produced congruent topologies.

RESULTS
MICROBIAL EUKARYOTIC DIVERSITY NEAR THE NORTH POLE
Our clone libraries were clearly dominated by Alveolata, especially 
by the core dinoflagellates (Dinokaryota) and their close relatives 
Marine Alveolate Groups I (MAG I) and II (Syndiniales; Figure 2). 
Sequences affiliating to core dinoflagellates were the most abundant 
in all libraries from the water column, especially in our deepest 
seawater sample (W170, 170 m depth), where they represented up 
to 80% of clones. They were also dominant in sea ice, except for the 
sample SI60 where MAG I and II sequences were equally abundant 
and represented almost 40% of clones in this sample. In fact, MAG 
I and II were after dinoflagellates the most represented lineages 
in almost all the seawater and sea ice samples, though with vary-
ing proportions (Figure 2). Ciliate, heterokonts (stramenopiles), 
green algal, rhizarian, and fungal clones were detected in weak 
proportions in seawater and sea ice samples (from 1 to 7%). We 
noticed the presence of sequences affiliated to animals in seawater 
and snow, reaching remarkable proportions in the surface seawater 
sample SW0 (29% of clones of this library). A few sequences were 
identified as Amoebozoa in the deep seawater sample SW170 and 
as Telonemia in the deepest sea ice sample SI120. The composition 
of high-rank taxa in the snow sample was radically different from 
other samples with a large majority of fungal (72%) and green 
plant (20%) clones, strongly suggesting contamination (see below). 
The clone library from the deepest sea ice sample was the richest in 
terms of high-rank phylogenetic taxa diversity, whereas that from 
the snow sample was the poorest.

Using the criterion of >98% sequence identity for the definition 
of OTUs, we observed a specific richness of, collectively, 98 OTUs 
in the water column, 62 OTUs in the sea ice, and only 4 OTUs in 
the snow. More precisely, the observed specific richness was similar 
between the pelagic samples and the bottom sea ice sample and 
slightly lower in the upper and middle sea ice layers (Table 1). In 
addition to these diversity estimations, we carried out a  statistical 

reasons and to wait until the very end of the polar night, samples 
were taken at an intermediate location (N88°35′, E015°59) between 
April 4th and 11th. These samples corresponded to different depths 
along a vertical profile (Figure 1B), from the snow cover (1 sample 
of 4 l), through the 1.5-m thick multi-year sea ice (three samples 
of 4 l each, at depths 0–30, 60–90, and 120–150 cm) to the epipe-
lagic zone of the underlying water column (four samples at 0, 30, 
70, and 170 m depth). Snow was collected with a sterile bucket, 
sea ice with a sterile ice driller (11 cm of diameter), and seawater 
with a 5-l Niskin bottle. Seawater was collected directly under the 
sea ice trough the hole opened during the sea ice sampling. Snow 
and ice were melted at 4° C under sterile conditions. After passing 
water samples through a 200-μm mesh, samples of approximately 
4 (snow and ice) and 1 l (seawater) were filtered through a GTTP 
Millipore 0.22 μm-pore-diameter filter. Filters containing the cells 
were fixed in absolute ethanol and conserved at −20°C following a 
protocol already tested for plankton samples (López-García et al., 
2003, 2007). DNA was purified from filters cut in small pieces using 
the Ultraclean MoBio Soil DNA kit (MoBio, Solana Beach, CA, 
USA). Nucleic acids were resuspended in 10 mM Tris–HCl, pH 8.

PCR AMPLIFICATION, CLONING, AND SEQUENCING
Near full-length 18S rDNA fragments were amplified by PCR using 
the eukaryotic-specific primers 82F (GAA ACT GCG AAT GGC TC) 
and 1498R (CAC CTA CGG AAA CCT TGT TA; López-García et al., 
2003). PCR was carried out under the following conditions: 35 cycles 
(denaturation at 94°C for 15 s, annealing at 50°C for 30 s, extension 
at 72°C for 2 min) preceded by 3 min denaturation at 94°C, and 
followed by 10 min extension at 72°C. 18S rDNA clone libraries were 
constructed using the Topo TA cloning system (Invitrogen) follow-
ing the instructions provided by the manufacturer. Positive inserts 
of expected size were selected from each library and sequenced with 
the reverse primer. We obtained a total of 1000 high-quality partial 
sequences (>700 bp) which served for a preliminary phylogenetic 
analysis and identification of operational taxonomic units (OTUs). 
For each library, we completely sequenced at least one clone per 
OTU (defined here as clusters of sequences having >98% identity) 
to obtain complete sequences representative of the whole taxonomic 
diversity found. 175 complete sequences were thus retained after 
exclusion of 14 chimeras detected with KeyDNATools2 (Guillou 
et al., 2008). Sequences were submitted to GenBank (accession 
numbers HQ438100-HQ438190 and JF826314-JF826397)

OTU IDENTIFICATION AND BIODIVERSITY ESTIMATES
High-quality partial 18S rDNA sequences were aligned using MAFFT 
(Katoh et al., 2002) and a distance matrix was generated in Phylip 
format. The resulting matrix was used as input for MOTHUR3 
(Schloss et al., 2009) in order to group sequences in OTUs at dif-
ferent identity levels and to compare communities using heatmaps.

PHYLOGENETIC ANALYSES
The 175 representative clones that were completely sequenced, 
together with their most similar sequences (both known spe-
cies and/or environmental clones) identified by BLAST (Altschul 

2http://www.keydnatools.com/
3http://www.mothur.org/ 4http://www.ncbi.nlm.nih.gov/
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DIVERSITY OF ALVEOLATA
As mentioned above, the alveolates were by far the most abun-
dant and diverse group in both plankton and sea ice 18S rDNA 
libraries. A few phylotypes related to marine ciliates were found 
at the interface of sea ice and marine waters (Figure 4) but, as has 
been observed in many other marine plankton samples, alveolate 
phylotypes belonging to dinoflagellates and the parasitic MAG I 
and Syndiniales (MAG II) were dominant in libraries, represent-
ing more than 78% of the 1000 partially sequenced clones. Seven 
seawater OTUs grouped with Syndiniales representatives, some of 
which had already been detected in other marine locations (López-
García et al., 2007; Not et al., 2007; Guillou et al., 2008), and two 
clones (SI120-63 and SW30-39) branched within a well-supported 
cluster grouping Amoebophrya species (Figure 5). The Syndiniales 
are a dinoflagellate order composed of small marine parasites that 
appear to be highly diverse and abundant in environmental stud-
ies (López-García et al., 2001; Moon-Van Der Staay et al., 2001; 
Moreira and López-García, 2003). They can infect a variety of 
hosts, from marine animals to protists, though many of them are 
specific parasites of other dinoflagellates (e.g., Amoebophrya spp., 
Chambouvet et al., 2008). The presence of a large diversity of core 
dinoflagellates in our samples (see below) could explain, at least 
partially, the abundance and diversity of Syndiniales observed in the 
same samples. The MAG I, which have also been retrieved abun-
dantly in various marine environments (see López-García et al., 
2001; Moon-Van Der Staay et al., 2001; Massana et al., 2004; Romari 
and Vaulot, 2004; Dolven et al., 2007; Harada et al., 2007; Not et al., 
2007), encompassed a larger genetic diversity than Syndiniales in 
our samples, being identified in all samples from 170 m depth to 
top of sea ice (Figure 5). We detected two large MAG I clades, one 
encompassing Duboscquella and Ichthyodinium sequences, and the 
other without any described species so far, but only environmental 
sequences coming from both coastal and oceanic ecosystems (Lin 
et al., 2006; Not et al., 2007; Behnke et al., 2010).

comparison of the overall eukaryotic diversity among samples using 
two different levels of sequence identity: 98% identity as a proxy 
for species boundaries and at 95% identity as a proxy for genera. 
At 98% sequence identity, the seawater samples SW30 and W170 as 
well as the sea ice samples SI0 and SI60 were the closest among them, 
differing significantly from the rest (Figure 3). At 95% sequence 
identity the differences between seawater samples and the deepest 
sea ice sample (SI120) were negligible (Figure 3), suggesting that dif-
ferences in protist community composition between these samples 
concentrate at the species, but not genus, level. Likewise, the upper 
and middle sea ice samples (SI0 and SI60) appeared to be similar. 
Therefore, our analysis supports the partition of our samples into 
three groups in terms of their diversity of protist species and genera: 
(i) snow, (ii) the upper and middle sea ice layer, and (iii) the deepest 
sea ice layer and all the seawater samples (with the deepest sea ice 
layer being intermediate between the seawater and the upper ice 
layers, as expected).

Table 1 | Number of OTus and clones in the North Pole clone libraries.

 OTus 98% OTus 95% Number of clones

Snow  4  4  38

SI0 19 14 130

SI60 25 21 155

SI120 33 24 146

Sea ice* 62 45 431

SW0 34 24 133

SW30 44 31 154

SW70 30 17 118

SW170 29 19 125

Seawater* 98 60 530

*Total values for all sea ice and water samples combined.
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The core dinoflagellate phylotypes showed a very remarkable 
diversity (Figure 6), in agreement with several studies based on 
traditional methods showing the dominance of small flagellates, 
especially dinoflagellates, in the central Arctic Ocean during 
summer (Booth and Horner, 1997; Gradinger, 1999; Olli et al., 
2007). Therefore, it seems that dinoflagellates are also diverse and 
abundant at the end of the polar night, in both the sea ice and 
seawater. Several of our dinoflagellate phylotypes grouped with 
cultured species usually observed in cold water environments, 
such as Protoperidinium sp. (phylotypes detected in the seawater 
samples), Scrippsiella hangoei, Polarella glacialis and Gymnodinium 
spp. (phylotypes detected in both the seawater and sea ice sam-
ples), and Woloszynskia halophila (phylotypes detected in the SI120 
sea ice sample). Other phylotypes, such as SW30-129, SW70-41, 
SW30-6, SI120-47, SW70-35, or SW0-135 had other environmen-
tal sequences as very close relatives, some of which came from cold 
waters, e.g., SIF 1E11 and W159F8, coming from a Norwegian 
fjord and the Ross Sea, respectively (Gast et al., 2006; Behnke et al., 
2010). Interestingly, an OTU (represented by SI0-102) detected 
in seawater and sea ice formed a divergent environmental clade 
with no close relatives in GenBank. A similar case was shown by 
several seawater sequences (represented by SW170-19) 99% identi-
cal to the Sargasso Sea environmental sequence SCM27C4, which 
formed a fast evolving cluster characterized by a very long basal 
branch. Intriguingly, five phylotypes (SW30-106, SI60-101, SI60-
19, SI60-129, and SW0-75) formed a group well nested within 
dinokaryotic dinoflagellates without any closely related cultured 
species or environmental sequence. In fact, our results indicated 
that a large part of the core dinoflagellate phylotypes found in all 
the water and sea ice samples was related to undescribed species. 
Nevertheless, the two most abundant phylotypes, SW70-6 and 

SW70-12, were closely related to the well known heterotrophic spe-
cies Gyrodinium spirale and G. rubrum, respectively. Both phylo-
types were frequent at all depths in the water column, specially the 
G. rubrum-like SW70-12, with a total of 88 occurrences (Figure 6), 
namely ∼9% of all our sequences, which was a remarkable value 
for a single species.

OTHER EUKARYOTIC TAXA
In contrast with the large diversity of alveolates, we only retrieved 
a limited variety of other eukaryotic groups in our North Pole 
samples, including several phylotypes belonging to the Metazoa, 
the Fungi, and the Amoebozoa. Within the Fungi, Basidiomycota, 
found in the snow, all the sea ice horizons and the water column, 
were the most diverse, whereas Ascomycota were only detected 
in both sea ice and seawater (Figure 7). Most of the ascomycete 
phylotypes were very closely related to Penicillium chrysogenum, 
a common airborne fungus (Wu et al., 2003). The marine fungi 
are well known to be heterotrophs that play an essential role as 
decomposers of organic matter (Kohlmeyer and Kohlmeyer, 1979; 
Newell, 1996), and their diversity in our samples suggested a similar 
potential role in high-latitude environments. We identified three 
animal phylotypes, one copepod and one annelid in the water sam-
ples. We also detected a human sequence in the snow sample, which 
corresponded obviously to a contaminant likely introduced during 
sampling and that we kept in our analyses to illustrate the fact that 
microbial diversity in the snow was very low, and possibly entirely 
composed of inactive organisms or dispersal forms, namely exog-
enous contaminant sequences. This was clearly the case for the snow 
phylotype Sn-26, closely related to the temperate-climate terrestrial 
plant Pilea cadierei, and also for the sea ice phylotype SI60-38, very 
similar to Pinus sequences (Figure 8). These two phylotypes most 
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a predominance of heterotrophic organisms; the only apparent 
exception being the phylotype SI120-29 affiliated to the prasino-
phyte green algae, commonly detected in Arctic samples (Lovejoy 
et al., 2006, 2007). Other eukaryotes in our samples (Figure 8) 
included one amoebozoan (SW170-108) in the deepest marine 
sample (170 m depth), the sea ice phylotype SI120-102, very similar 
to the flagellate Telonema subtile, and three phylotypes belonging to 
the Rhizaria, including two radiolaria (SW30-113 and SW70-42) 
found at different depths of the water column, and a cercozoan from 
sea ice (SI60-153) related to the species Cryothecomonas aestivalis, 
which is a diatom predator isolated from the North Sea (Drebes 
et al., 1996).

DISCUSSION
The taxonomic affiliation of the eukaryotic sequences associated 
to the snowpack sample was markedly different from that of the 
underlying sea ice and seawater. Snow was characterized by a clear 
dominance of fungal, fundamentally basidiomycete, and land plant 

likely corresponded to pollen contaminants, pollen grains being 
well known to be able to traverse long distances with the help of 
wind currents (e.g., Campbell et al., 1999).

The diversity of heterokonts (or stramenopiles) was relatively 
large, with seven North Pole phylotypes (Figure 8). Only three of 
them corresponded to presumable photosynthetic species: SW70-
32 and SW0-77, which branched among diatoms very close to 
Actinocyclus curvatulus and Thalassiosira antarctica, two typical 
sea ice diatom species (Hasle and Heimdal, 1998), and SI120-23, 
which was very similar to an environmental clone from an anoxic 
Norwegian fjord, NIF-1D10, branching with the dictyochophyte 
Dictyocha speculum. The other four heterokont phylotypes were 
related to likely heterotrophic species: SI60-86 clustered within 
the environmental clade MAST-12 characterized by Kolodziej and 
Stoeck (2007), SI120-114 with Pirsonia punctigera, a parasitoid 
nanoflagellate that infects planktonic diatoms (Kühn et al., 2004), 
and SI0-36 and SI60-27 with the colorless chrysophytes Spumella sp. 
and Ochromonas sp. The rest of phylotypes showed a similar trend, 
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correspond to active organisms and, hence, our study attests to 
their cosmopolitan dispersal even to very remote regions. This was 
in agreement with a recent study of the diversity of microbes in 

sequences (Figure 2). This could be easily explained by the high 
production of easily wind-dispersive spores and pollen grains by 
these organisms. Undoubtedly, these eukaryotic sequences did not 
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Figure 6 | Maximum likelihood phylogenetic tree of core dinoflagellate 
phylotypes. The tree was rooted with perkinsozoan sequences (not shown).

High Arctic snow samples showing the significant role played by 
wind in the aerial transport of microorganisms in this environment 
(Harding et al., 2011). In contrast with snow, the diversity of micro-

bial eukaryotes in sea ice and seawater was much more similar in 
terms of relative abundances of phyla, with typical marine protist 
lineages being present in sea ice, most notably core dinoflagellates, 
MAG I and Syndiniales. This comforted the traditional idea that 
organisms in the sea ice mostly derive from the trapping of marine 
protists during ice formation (Garrison et al., 1983; Lizotte, 2003). 
Whether these organisms are active in briny ice creeks, inactive 
waiting for ice to melt or both in varying proportions, remains to 
be determined, though previous studies have shown that sea ice 
can host complex active ecological webs (Brierley and Thomas, 
2002; Lizotte, 2003).

The abundance of Syndiniales and, especially, MAG I phylotypes 
in North Pole sea ice and water samples is in line with numerous 
observations of these groups in different water masses and oce-
anic regions (Moreira and López-García, 2002; Harada et al., 2007; 
Guillou et al., 2008), indicating that parasitism is an important 
component also in these polar marine ecosystems. More precisely, 
the simultaneous abundance of very diverse core dinoflagellates 
species in the same samples supports the hypothesis that, at least 
partly, a number of these parasites may infect some of these dino-
flagellate species. Nevertheless, we cannot discard that a proportion 
of the parasites detected in sea ice might correspond to dormant 
forms inactive during winter in the absence of their hosts, so that 
sea ice might serve as a seed bank of parasites waiting for favorable 
environmental conditions. More surprisingly, we detected only two 
diatom phylotypes in our samples (representing only 3 sequences 
among the 1000 analyzed in this work), which was not concordant 
with previous taxonomical and molecular studies made on Arctic 
environments showing a high abundance of diverse diatom species 
(Lizotte, 2003; Gast et al., 2004; Lovejoy et al., 2006; Eddie et al., 
2010). Although it is known that methodological biases in clone 
libraries can lead to artificial low frequencies of prasinophytes and 
diatoms (Potvin and Lovejoy, 2009), this observation could be the 
result of the severe light limitation during polar winter that would 
decrease primary production and/or to possible grazing pressure 
by heterotrophs limiting algal accumulation. In fact, we obtained 
evidence supporting these two possibilities. On the one hand, we 
detected several phylotypes in closely related to typical diatom pred-
ators such as Pirsonia, Cryothecomonas and, notably, the dinoflag-
ellate Gyrodinium spirale, a voracious diatom predator (Sherr and 
Sherr, 2007) which was one of the most abundant organisms found 
in our samples (see above). On the other hand, other phototrophic 
protists typical of Arctic regions, such as the prasinophyte green 
algae (Lovejoy et al., 2007), were almost completely absent from our 
libraries, in agreement with the very low chlorophyll concentration 
measured in the water column (<0.03 μg l-1, V.I. Gagarin, personal 
communication). Likewise, among the dinoflagellate phylotypes for 
which we could infer their lifestyle based on their close proximity 
to known species, only one, SW0-44, related to the common sea 
ice species Polarella glacialis (Montresor et al., 1999), was a typi-
cal phototroph. It appeared that our samples were dominated by 
non-photosynthetic species much more extensively than commonly 
found in marine 18S rRNA gene libraries (Vaulot et al., 2002). The 
simplest explanation for this result can be that our samples were 
collected at the very end of the 6-month polar night, an extremely 
challenging period for phototrophic species that most likely decrease 
their density dramatically because of cell death and grazing pressure.
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The notable scarcity of phototrophic species in our librar-
ies was compensated by a relatively large frequency of poten-
tial mixotrophic organisms. In fact, mixotrophy, a nutritional 
mode that combines autotrophy and heterotrophy, has been 
proposed to be a much more widespread strategy in marine 
and  freshwater  ecosystems than previously thought (Sanders, 
1991; Jones, 2000), with a prominent role particularly in polar 

environments (Moorthi et al., 2009). Likely mixotrophic 
candidates in our samples were several of the dinoflagellate 
phylotypes, especially those closely related to species of the 
genera Gyrodinium, Gymnodinium, Blastodinium, Katodinium, 
Prorocentrum, and Woloszynskia (Sherr and Sherr, 2007; Yoo 
et al., 2009; Kang et al., 2011), some of them at relatively high 
frequencies (Figure 6), as well as the ciliate phylotypes closely 
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et al., 2006). These observations suggest that mixotrophy was 
probably more prevalent than strict phototrophy in our sam-
ples. As explained above, this was probably due to the particular 
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Figure 8 | Maximum likelihood phylogenetic tree of diverse heterokont, green algae and plant, telonemid and rhizarian phylotypes.

related to Myrionecta rubra and Strombidium conicum, which 
possess plasts obtained from partial digestion of algal prey 
(Gustafson et al., 2000; Johnson and Stoecker, 2005; Myung 
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