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Nitrous oxide (N2O) is a greenhouse gas with a global warming potential far exceeding
that of CO2. Soil N2O emissions are a product of two microbially mediated processes:
nitrification and denitrification. Understanding the effects of landscape on microbial com-
munities, and the subsequent influences of microbial abundance and composition on the
processes of nitrification and denitrification are key to predicting future N2O emissions.
The objective of this study was to examine microbial abundance and community com-
position in relation to N2O associated with nitrification and denitrification processes over
the course of a growing season in soils from cultivated and uncultivated wetlands. The
denitrifying enzyme assay and 15NO−

3 pool dilution methods were used to compare the
rates of denitrification and nitrification and their associated N2O emissions. Functional
gene composition was measured with restriction fragment length polymorphism profiles
and abundance was measured with quantitative polymerase chain reaction. The change
in denitrifier nitrous oxide reductase gene (nosZ ) abundance and community composi-
tion was a good predictor of net soil N2O emission. However, neither ammonia oxidizing
bacteria ammonia monooxygenase (bacterial amoA) gene abundance nor composition pre-
dicted nitrification-associated-N2O emissions. Alternative strategies might be necessary
if bacterial amoA are to be used as predictive in situ indicators of nitrification rate and
nitrification-associated-N2O emission.
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INTRODUCTION
Nitrous oxide (N2O) is a greenhouse gas with 300 times the global
warming potential of CO2 (Jungkunst and Fiedler, 2007) and
can be produced by nitrification (Avrahami et al., 2002; Mintie
et al., 2003) and denitrification (Cavigelli and Robertson, 2000;
Rich et al., 2003). Nitrification and denitrification are impor-
tant processes in the global nitrogen (N) cycle. Nitrification is the
oxidation of NH3 to NO−

3 via NO−
2 (Horz et al., 2004) and denitri-

fication is the respiratory reduction of NO−
3 and NO−

2 to gaseous
products, mainly N2O and N2 (Tiedje, 1994). Consequently, the
rates of these two microbially mediated processes, and the controls
on the rates of these two processes, are important determinants of
soil N2O emissions.

Available C, N, and O2 are three proximal factors that control
the rates of N2O production/consumption via nitrification and
denitrification (Svensson et al., 1991; Cavigelli and Robertson,
2000; Avrahami et al., 2002). Land-use and landform (together
referred to as landscape) are two long-term determinants of these
proximal factors. The effects of land-use mainly influence nutrient
availability (through fertilization and cropping) and soil distur-
bance (through tillage; Bruns et al., 1999; Stres et al., 2004).
Landform affects O2 availability, nutrient distribution, and biolog-
ical productivity through redistribution of water (Hayashi et al.,
1998; Yates et al., 2006). Furthermore, seasonal changes in precipi-
tation and temperature control the input of water into a landscape
and its loss via evapotranspiration (Groffman et al., 2000).

The composition and abundance of the microbial community
reflect the long-term climate, soil disturbance history, and resource
availability imposed on soils (Cavigelli and Robertson, 2000; Rich
et al., 2003) by landscape factors. Understanding the effects of
landscape on microbial communities, and the subsequent influ-
ences of microbial abundance and composition on the processes of
nitrification and denitrification are key to predicting future N2O
emissions.

Traditionally, members of a microbial community were
thought to be equivalent in function if they have a similar array
of genes and enzymes (Cavigelli and Robertson, 2000). Evidence
indicates that differences in ammonia oxidizing bacteria (AOB)
and denitrifier community composition affect rates of nitrification
and denitrification, which in turn may influence N2O emissions
(Cavigelli and Robertson, 2000; Avrahami et al., 2002; Mintie
et al., 2003; Rich et al., 2003; Webster et al., 2005). These studies
indicate that N2O emissions can be altered through whole com-
munity adaptation or a change in the relative importance of certain
members of the microbial community.

In a previous study, we determined that there was no differ-
ence in ammonia oxidizing bacterial amoA and denitrifier nosZ
community composition between landforms in cultivated and
uncultivated wetlands of a North American prairie pothole region
(Ma et al., 2008). However, available soil N (Ma et al., 2008), soil
organic carbon content (Bedard-Haughn et al., 2006a), and soil
water regime (Yates et al., 2006) are different between land-uses
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(i.e., cultivated and uncultivated) in these wetland landscapes. We
did not include AOA ammonia monooxygenase (archaeal amoA)
since the role of AOA in nitrification in agricultural soils is still
debatable (Di et al., 2009; Jia and Conrad, 2009) and AOA activity
is not linked to nitrous oxide emissions (Di et al., 2010).

The objective of this study was to examine microbial abun-
dance and community composition in relation to N2O associated
with nitrification and denitrification processes over the course of a
growing season in soils from cultivated and uncultivated wetlands.
The abundance and community composition of AOB ammonia
monooxygenase (bacterial amoA) and denitrifier nitrous oxide
reductase (nosZ ) genotypes were observed to (i) determine how
these communities respond to different land-use and environmen-
tal conditions over time; and (ii) understand the possible corre-
lations with N2O emissions via nitrification and denitrification
processes.

MATERIALS AND METHODS
STUDY SITE
The St. Denis National Wildlife Area (SDNWA) in central
Saskatchewan, Canada (52˚12′N, 106˚5′W), is a typical exam-
ple of the North American prairie pothole region. The wildlife
area contains 216 wetlands distributed over an area of 3.84 km2

(Hogan and Conly, 2002). Slope classes range from 10 to 15%
(Miller et al., 1985) and soils are in the Dark Brown soil zone with
loamy unsorted glacial till parent materials (Weyburn association).
Within the SDNWA, six ephemeral wetlands were selected: three
cultivated and three uncultivated. Ephemeral wetlands are those
depressions in hummocky terrains that contain standing water
in the spring, but typically dry out during the growing season
(Hayashi et al., 1998).

A detailed topographic survey of the site was completed and a
digital elevation model was produced with a 5 m × 5 m grid cell
extent (Yates et al., 2006). Locations in cultivated wetlands were
classified as convex (CX), concave (CV), or cultivated depression
(CD) center. Convex elements were topographically high positions
with a positive profile curvature. Concave elements were positions
with negative profile curvature. CD elements were level positions
that collected rain or snowmelt water.

Uncultivated wetlands were non-agricultural portions of the
site and included vegetated depressions, which were further clas-
sified as basin center (BC), riparian grass (RG), or riparian trees
(RT). BC elements were level areas covered by a variety of 99 non-
grasses. RG elements were a non-level fringe area surrounding the
BC and covered with grasses such as Bromus inermis Leyss. RT were
the outer region of these wetlands and consisted of a partial fringe
of mixed trees and shrubs, such as Salix spp., Populus balsamifera
L., and P. tremuloides Michx. (Hogan and Conly, 2002). Based on
profile curvature, BC elements are analogous to CD elements, and
RT elements are analogous to CV elements (Yates et al., 2006). RG
elements and CX elements have dissimilar profile curvatures, but
they represent the driest landforms within the respective wetland
type and were therefore considered to be analogous.

SOIL SAMPLING
Each landform element was replicated (n = 3) in space (Bedard-
Haughn et al., 2006b). A total of 18 samples (2 land-uses × 3

wetlands × 3 landform elements) were collected on each of four
sampling dates (June 1, July 13, August 16, and September 12,
2006). Each sample was a composite of five cores (0–15 cm depth;
15 cm diameter). Samples were placed on ice in coolers and trans-
ported to the laboratory where sub-samples were used immedi-
ately for denitrifying enzyme activity (DEA), gravimetric soil water
content determination, and DNA extraction. The remainder was
air dried (<24 h) to allow passage through a 2 mm sieve without
smearing and stored at −20˚C.

SOIL DENITRIFYING ENZYME ACTIVITY ASSAY
Each soil sample was assessed for DEA on the day of sampling. The
assay involved measuring the N2O formed after incubating anaer-
obic slurries for 3 h at ∼23˚C. Each DEA slurry contained 10 g soil
(field moist), 10 ml of a solution containing glucose (10 mM) and
NO−

3 (5 mM), and C2H2 (10%, v/v) in a 70 ml crimp-sealed serum
bottle (Rich and Myrold, 2004). Nitrous oxide formation (N2Of)
was also measured in anaerobic slurries that received the same
treatment as DEA but without the C2H2. The ratio of N2Of to
DEA (abbreviated as rN2O) was calculated (Cavigelli and Robert-
son, 2000). A 20 ml gas sample was withdrawn from the headspace
of the slurry using a 20 cc disposable syringe equipped with a 25

gage needle and injected into a pre-evacuated 12 ml Exetainer
®

vial (Labco Ltd., UK). Concentrations of N2O in the headspace
gas were determined using a gas chromatograph equipped with
an electron capture detector (Yates et al., 2006). All values are
expressed per gram of oven-dried soil (dried at 105˚C for 24 h).

15N STABLE ISOTOPE INCUBATION
Soil cores were prepared by packing the processed field soils into
a 10 ml volume in 55 ml glass culture tubes (22 mm inner diam-
eter) to yield bulk densities similar to those observed in the field
(Ma et al., 2008). Gravimetric soil water content was determined
using standard procedures with an assumed particle density of
2.65 g cm−3 (Topp and Ferré, 2002). After packing, tubes were
capped with parafilm and pre-incubated in the dark at room tem-
perature (∼23˚C) for 5 days. After this pre-incubation period,
deionized water (0.5 ml) was added to moisten cores and the
tubes were recapped with parafilm and stored for an additional
2 days prior to introduction of the 15N-labeled NO−

3 . The soils
were labeled by adding 1.0 ml of a solution containing 2 mg 98%-
enriched 15N−NO−

3 L−1 (0.2 μg N−NO−
3 g−1 soil) to each tube.

The soils were then brought to 70% water-filled pore space (WFPS)
with deionized water. At time = 0 (i.e., immediately after WFPS
adjustment), half the repacked cores were destructively sampled
for ammonium and nitrate using a 2 M KCl extraction (Maynard
et al., 2007). The remaining tubes (plus three blank tubes) were
capped with rubber septa and incubated for 24 h at ∼23˚C. At
t = 24 h, a 20 ml gas sample from each tube was collected with a
syringe and injected into pre-evacuated (flushed with He prior to

evacuation), 12 ml Exetainer
®

vials (Labco Ltd., UK). The cores
were then destructively sampled for ammonium and nitrate by
using 2 M KCl extraction.

Gas and 2 M KCl extractable N samples were analyzed at the
University of California at Davis Stable Isotope Facility using gas
chromatography coupled with isotope ratio mass spectrometry
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(Europa Hydra 20/20; SerCon Ltd., Crewe, UK). Total N2O pro-
duced in 24 h, together with the 15N2O produced, was used to
estimate the relative contribution of nitrification and denitrifica-
tion to N2O emissions (Stevens et al., 1997). The emitted N2O
was attributed to either denitrification d′

D of the 15N-enriched
NO−

3 pool or nitrification d′
N of the natural abundance NH4

+

pool (Arah, 1997; Laughlin and Stevens, 2002). 15N2O denitrifi-
cation rates are not reported. The diffusion disk technique (Stark
and Hart, 1996) as modified by Bedard-Haughn et al. (2004) was
used to collect soil ammonium and nitrate from KCl extracts. Total
NH4

+/NO3
- and 15NH4

+/15NO3
- was used to determine nitrifi-

cation rates by the pool dilution method and to check whether
cycling of labeled N into the ammonium pool (i.e., dissimilatory
nitrate reduction to ammonia) had occurred (Bedard-Haughn
et al., 2006b).

DNA EXTRACTION FROM SOILS TREATED WITH ETHIDIUM MONOAZIDE
BROMIDE (EMA)
Prior to DNA extraction, soil samples were treated with EMA
to differentiate between DNA from viable versus non-viable
microorganisms (Nogva et al., 2003; Cenciarini-Borde et al., 2009;
Delgado-Viscogliosi et al., 2009). Ethidium monoazide bromide
can intercalate double-stranded DNA, but because EMA cannot
enter intact cells, it can only bind to extracellular DNA or DNA
in cells with compromised membranes. Therefore, EMA can pre-
vent the replication of DNA from non-viable organisms during
polymerase chain reaction (PCR). The EMA treatment of soils
followed Pisz et al. (2007). Soil DNA was extracted using the
method described by Griffiths et al. (2000), except that soil mass
was 1.0 g (field moist), centrifugation was at 14,000 × g and DNA
were precipitated in PEG overnight at 20˚C.

QUANTITATIVE PCR
Quantitative PCR (QPCR) was performed on all samples to deter-
mine the abundance of bacterial amoA and denitrifier nosZ, using
the procedures and conditions reported by Ma et al. (2008).
The primer sets amoA-1F/amoA-2R (Rotthauwe et al., 1997) and
nosZ -F/nosZ -R (Rich et al., 2003) were used to amplify amoA
and nosZ, respectively. Prior to QPCR, all DNA extracts were
diluted to the same concentration. Amplification was carried out
using the QuantiTect™SYBR®Green PCR Master Mix real-time
PCR kit (Qiagen). Thermal cycling and quantification was carried
out using an ABI 7500 real-time PCR machine (Applied Biosys-
tems). For nosZ, the standard curve was generated with DNA
from Pseudomonas stutzeri (ATCC 14405). The standard for amoA
was the amoA-1F/amoA-2R amplified PCR product from one of
the soil extracts. All standards derived from soil were cloned and
sequenced to confirm primer specificity. QPCR were performed
in duplicate and amplification efficiencies were between 95 and
99%. Melting curve analysis was performed on each well and only
those samples demonstrating melting curves similar to the con-
trol samples were used. QPCR results were expressed as number
of gene copies per gram oven-dried soil (dried at 105˚C for 24 h).

CLONING AND RFLP ANALYSIS OF PCR PRODUCTS
At our study site there is no landform difference in bacterial amoA
and nosZ community composition (Ma et al., 2008). Therefore,

we only evaluated community composition in water-accumulating
landforms (i.e., the CD and BC elements). Community composi-
tion analysis was also limited to samples from the start (June 1)
and end (September 12) of the sampling season, because the great-
est difference in gene abundance and measured activity occurred
between these two dates.

Fragments of amoA and nosZ were amplified, cloned, and
analyzed for restriction fragment length polymorphism (RFLP).
Procedures and conditions for amplifying amoA and nosZ frag-
ments follow Ma et al., 2008. PCR products of the expected size
(490 bp for bacterial amoA and 700 bp for nosZ ) were excised

after agarose gel electrophoresis, purified using QIAquick
®

Gel

Extraction Kit (Qiagen), and cloned using TOPO
®

TA Cloning Kit
(Invitrogen). Forty-eight clones were selected for each sample and
gene combination. Clones were screened for the proper inserted
fragment by PCR product size. The PCR product for each clone
was then used in three separate reactions with the endonucle-
ases AluI, HhaI, and RsaI (Invitrogen) and visualized by agarose
gel electrophoresis (3% w/v gel; 80 V for 90 min). Clones were
classified into operational taxonomic units (OTUs) based on the
combination of the three separate RFLP patterns.

Based on indicator species analysis (McCune and Mefford,
2002), five clones from each indicator OTU – clones that dif-
fered significantly between land-use and time for each gene – were
sequenced at the National Research Council Plant Biotechnology
Institute (Saskatoon, SK, Canada) using the amoA-1F or nosZ -F
primer. A consensus sequence for each OTU was generated by
alignment in ClustalX (v1.81) and edited with GeneDoc (v2.6).
Phylogenetic trees using the cloned sequences were created using
the programs DNADIST (Jukes–Cantor model), NEIGHBOR
(neighbor-joining method; out-group = Nitrosomonas europaea
accession L08050 for amoA and Ralstonia eutropha accession
X65278 for nosZ ), and SEQBOOT available in the PHYLIP (v3.5c)
computer package (Felsenstein, 1997).

STATISTICAL ANALYSES
Data were imported into SPSS 14.0 and log transformed to meet
ANOVA assumptions (using the Anderson–Darling test for nor-
mality and Bartlett’s and Levene’s tests for homogeneity of vari-
ance). Pearson correlations were used to examine the potential
temporal relationships between amoA and nosZ abundance with
the corresponding N2O emitting functions.

Land-use and temporal differences in the community compo-
sition based on the presence/absence of OTUs were graphically
examined by non-metric multidimensional scaling (NMS) using
the autopilot program with the slow and thorough analysis option
and the default settings in PC-ORD v4.0 (McCune and Mef-
ford, 1999). NMS is a non-parametric ordination method suited
to community data because it avoids the assumptions about the
underlying structure of the data made by other ordination meth-
ods (Kenkel and Orlóci, 1986; Clarke, 1993). Functional variables
(e.g., nitrification rate for amoA and DEA for nosZ ) were corre-
lated to NMS axes to evaluate the relationship between community
composition and measured functions. Coefficients of determina-
tion (r2) between functional variables and NMS axes were dis-
played as vectors radiating from the centroid of the NMS plot. The
vector is the hypotenuse of a right triangle whose sides represent
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the r2 of the function to the individual NMS axes (McCune and
Mefford, 2002). A multi-response permutation procedure (MRPP;
Zimmerman et al., 1985) with Sørensen’s distance was used to
test the hypothesis of no difference in community composition
between land-use and time. The MRPP T -statistic describes the
separation between groups (the more negative the T -value, the
stronger the separation); the A-statistic describes within-group
relatedness relative to that expected by chance alone (if A = 1, all
items in a group are homogeneous; if A = 0, there is no similarity
between items in a group; McCune and Mefford, 2002). Indica-
tor species analysis was used to identify OTUs that differentiated
communities by land-use and time (Rich et al., 2003; Rich and

Myrold, 2004). The significance (α = 0.1) of the indicator values
were tested using a Monte Carlo simulation of 1000 runs, where
samples were randomly reassigned to groups and indicator values
recalculated.

RESULTS
AMMONIA OXIDIZING BACTERIA AND DENITRIFIER ABUNDANCE AND
ACTIVITY
Regardless of land-use or landform, AOB abundance increased
up to 10-fold during the course of the sampling sea-
son (Figures 1A,D). Nitrification rates (Figures 1B,E)
and nitrification-associated-N2O emissions (Figures 1C,F), in

FIGURE 1 | Abundance of nitrifier amoA copies (A,D), nitrification rate

(B,E), and N2O emission attributable to nitrification (C,F) for cultivated

(A–C) and uncultivated (D–F) wetland soils. Locations in cultivated
wetlands (CW) were classified as either convex (CX), concave (CV), or
cultivated depression (CD) center. Uncultivated wetlands were divided into
three landform elements, basin center (BC), surrounded by a non-level fringe

area covered with grasses (RG) and an outer region consisting of trees of
shrubs (RT). Based on profile curvature, BC elements are analogous to CD
elements, and RT elements are analogous to CV elements. Riparian grass
(RG) elements and CX elements represent the driest landforms within the
respective wetland type. Reported values are means (n = 3) with
SE bars.
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contrast, declined up to three-fold during the same period.
Negative correlations between AOB abundance and nitrification
rate (r = −0.466) and nitrification-associated-N2O (r = −0.267)
were significant (Table 1). Nitrification rate and nitrification-
associated-N2O emission were positively correlated (r = 0.344).

Contrary to bacterial amoA abundance, denitrifier nosZ
abundance declined during the sampling season in all soils
(Figures 2A,E). The gross potential N2O production activity as
described by the DEA results did not change during the season
(Figures 2B,F). However, the rN2O ratio increased over time
(Figures 2C,G) and was negatively correlated to nosZ abundance
(Table 1). Denitrifier abundance and DEA were positively corre-
lated to percent WFPS at the time of soil sampling, while rN2O
was negatively correlated to WFPS (Figures 2D,H; Table 1).

AMMONIA OXIDIZING BACTERIA AND DENITRIFIER COMMUNITY
COMPOSITION AND ACTIVITY
The amoA NMS produced a two-dimensional solution, with
r2 = 0.42 and 0.54 for Axis 1 (time) and 2 (land-use), respec-
tively (Figure 3).Therefore, nearly all (96%) of the true variance
structuring the difference in amoA community composition was
a function of time and land-use as represented in this ordina-
tion space. The correlation coefficients (r) for nitrification rate
and nitrification-associated-N2O emission were −0.86 and 0.10,
respectively. Therefore, 75% of the variation (r2) in nitrification
rate, but only 1% of the variation in N2O associated with nitrifica-
tion, can be related to the temporal difference in amoA community
composition. WFPS at the time of soil sampling in the field also
had a negative correlation to change in amoA community com-
position over time. In comparison, land-use related difference in
amoA community composition can account for 11 and 20% of
the variability in nitrification rate and N2O from nitrification,
respectively.

Five amoA OTUs were identified as indicator species. Four of
the five OTUs grouped within Cluster 3 of AOB (Figure 4). These
four OTUs increased in proportional abundance over time in one
or both land-uses (Figure 5). Only amoA OTU 17 grouped within
Cluster 2, and its proportional abundance declined.

The NMS identified a two-dimensional solution for the differ-
ences in denitrifier community composition, with r2 = 0.40 and
0.29 for Axis 1 (land-use) and 2 (time), respectively (Figure 6).
Therefore, 69% of the true variance structuring the differences
in denitrifier community composition was a function of land-use
and time as represented in this ordination solution. The MRPP
confirmed that communities differed as the result of land-use and

time (Table 2). The joint plot of nosZ abundance, DEA, rN2O,
and WFPS indicated these parameters correlated strongly with the
time gradient (54, 57, 65, and 43% respectively; Figure 6). The
difference in denitrifier community composition over time was
correlated to difference in denitrifier abundance and activity and
soil moisture at the time of sampling.

Indicator species analysis was used to identify nosZ OTUs
that differentiated denitrifier communities based on land-use and
time. Five nosZ OTUs were identified that significantly differenti-
ated denitrifier communities (P < 0.1). There was no discernable
pattern in proportional abundance for these OTUs (Figure 5).
However, OTU 7 was the only nosZ genotype exclusive to culti-
vated wetland soils, and OTU 24 was the only genotype exclusive to
the September 12 sampling date for both land-uses. The majority
of these OTUs clustered with Rhizobiaceae of the α-Proteobacteria
(Figure 7). Only OTU 24 had greater than 80% sequence similar-
ity to a nosZ sequence from a previously cultured and identified
bacteria (100% coverage and 86% identity with Bradyrhizobium
japonicum, accession AJ002531).

DISCUSSION
We found abundance and community composition of bacterial
amoA and denitrifier nosZ to be structured by both time and
land-use. While temporal abundance of denitrifier nosZ appears
to be related to potential soil N2O emissions, temporal abundance
of bacterial amoA abundance was negatively correlated with nitri-
fication and nitrification-associated-N2O. Environmental condi-
tions, seasonal shifts in community composition and nitrification
activity, as well as, methodological limitations may account for
this trend in amoA abundance. While differences in community
composition between land-use were observed for both bacter-
ial amoA and denitrifier nosZ, these differences were not clearly
linked to N2O emitting activity. However, differences in denitri-
fier nosZ community composition over time were correlated with
differences in denitrifier abundance, denitrifier activity and soil
moisture at the time of sampling.

The temporal abundance of denitrifier nosZ is related to poten-
tial soil N2O emission because nosZ abundance directly affects
nitrous oxide reductase activity (NOS). Accordingly, we found
NOS activity declined (rN2O increased) as abundance of nosZ
declined. The abundance of active denitrifiers based on nosZ abun-
dance reported here is similar to that observed using qPCR-based
reports (Baudoin et al., 2009) but approximately 10 to 100 times
lower than that reported for cultivation-based enumeration from
other soils (McCarty et al., 2007).

Table 1 | Correlations between amoA and nosZ abundance with 15N-N2O produced from nitrification and denitrification enzyme assay and

water-filled pore space, respectively.

amoA Nit. N2O NH4
+ nosZ DEA rN2O WFPS

amoA 1 −0.466** −0.267** −0.282** nosZ 1 0.317** −0.234* 0.387**

Nit. 1 0.344** 0.378** DEA 1 −0.113 0.575**

N2O 1 −0.231* rN2O 1 −0.361**

**Correlation significant at the 0.01 level (two-tailed).

*Correlation significant at the 0.05 level (two-tailed).
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FIGURE 2 | Abundance of denitrifier nosZ copies (A,E), N2O emitted from

denitrification enzyme assay [DEA; (B,F)], rN2O [N2Of/DEA; (C,G)], and

percentage water-filled pore space [WFPS; (D,H)] for cultivated (A–D) and

uncultivated (E–H) wetland soils. Locations in cultivated wetlands (CW)
were classified as either convex (CX), concave (CV), or cultivated depression
(CD) center. Uncultivated wetlands were divided into three landform

elements, basin center (BC), surrounded by a non-level fringe area covered
with grasses (RG) and an outer region consisting of trees or shrubs (RT).
Based on profile curvature, BC elements are analogous to CD elements, and
RT elements are analogous to CV elements. Riparian grass (RG) elements and
CX elements represent the driest landforms within the respective wetland
type. Reported values are means (n = 3) with SE bars.

A negative correlation between bacterial amoA abundance and
nitrification activity is counter-intuitive. Varying environmental
conditions, community composition and nitrification activity,

as well as, methodological limitations may account for this dis-
crepancy. Changes in environmental conditions (i.e., available
water, N, and O2) could cause an increase in abundance of
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FIGURE 3 | Non-metric multidimensional scaling ordination of

nitrifying communities based on presence/absence of operational

taxonomic units (OTUs) defined by amoA RFLP patterns. � = Jun 01;
cultivated wetlands. � = Sep 12; cultivated wetlands. ◦= Jun 01;
uncultivated wetlands. •= Sep 12; uncultivated wetlands. Vectors show
the direction and magnitudes of the correlation coefficient (r 2) between
NMS ordination axes and functional variables. The r 2 for the correlation
between functional variable and axis 1 and axis 2 are in parentheses (in the
order r 2 to axis 1, r 2 to axis 2).

certain populations, which may alter AOB community compo-
sition (Table 3). For example, Webster et al. (2005) demonstrated
members of Nitrosospira cluster 3a were present in soils at low
levels until ammonia concentrations were reduced. Therefore,
community composition and abundance of specific AOBs must be
considered in combination to assess the rates of different processes,
such as nitrification. Within the context of our observations, the
resultant AOB communities might shift from a community with
populations that are highly active to a community with popu-
lations that are less active, over the course of a growing season.
Thus, in the latter part of the growing season nitrifier abundance
is not directly proportional to activity,because early season growth,
results in nitrifier biomass that is no longer active late in the sea-
son. Alternatively, another microbial population may be oxidizing
ammonia to nitrate, but this nitrification activity is erroneously
assigned to AOB due to our inability to separate their independent
contributions.

Gene copy numbers alone cannot account for the myriad of
transcriptional responses a dynamic AOB community might have
in response to changes in environmental conditions. Freitag and
Prosser (2009) observed an incongruity between methyl coenzyme
M reductase sub-unit A gene (mcrA) abundance for methanogens
and methanogenesis. However, they found a significant predic-
tive relationship between the ratio of mcrA transcripts to gene
copies and the rate of methanogenesis. This ratio might be an
improved indicator of process rates because it normalizes the
response of each population to environmental condition (i.e.,
transcripts) and to their relative abundance (i.e., gene abundance).
A similar approach might be necessary to better understand the

FIGURE 4 | Phylogenetic tree of cloned amoA operational taxonomic

units that significantly delineated land-use as determined by indicator

species analysis. Broken ovals highlight cloned sequences from this study.
The label of the sequence used in the analysis is followed by their respective

GenBank accession. Branch nodes with bootstrap values greater than 60 are
labeled. Cluster labels based on Horz et al. (2004). OTU17 could not
exclusively be included with Cluster 1 or 4, but it has common lineage with
both clusters. Scale bar indicates 5 changes per 100 nucleotide positions.
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FIGURE 5 | nosZ and amoA operational taxonomic units (as defined by RFLP) that differed significantly between land-use and time based on

indicator species analysis (P < 0.1). Results are means with SE (n = 3). Proportional abundance is the percentage of recovered clones with the defined RFLP.

relationship between bacterial amoA abundance, nitrification rate,
and nitrification-associated-N2O emissions.

In addition, our 15N isotope labeling methodology has limi-
tations. By using only 15N-labeled ammonium and nitrate, cross

FIGURE 6 | Non-metric multidimensional scaling (NMS) ordination of

denitrifying communities based on presence/absence of operational

taxonomic units (OTUs) defined by nosZ RFLP patterns. � = Jun 01;
cultivated wetlands (CW). � = Sep 12; cultivated wetlands (BC). ◦= Jun
01; uncultivated wetlands. •= Sep 12; uncultivated wetlands. Vectors
show the direction and magnitudes of the correlation coefficient (r 2)
between NMS ordination axes and functional variables. The r 2 for the
correlation between functional variable and axis 1 and axis 2 are in
parentheses (in the order r 2 to axis 1, r 2 to axis 2). Note: only functions
with r 2 ≥ 40% to either NMS axes are shown in joint plots.

feeding of nitrifier produced NO−
2 and NO−

3 to denitrification is
masked. Wrage et al., 2005 present a dual labeling approach that
employs an 18O–15N-enrichment method allowing for distinction
between nitrous oxide (N2O) from nitrification, nitrifier denitri-
fication and denitrification. Use of a dual labeling approach may
have improved our ability to discriminate between the contribu-
tions of nitrifier and conventional denitrification to total N2O
production.

In our study, amoA abundance is only about 10% of that
reported by other investigators (Jia and Conrad, 2009; Offre
et al., 2009). Higher amoA abundance reported in other studies,
likely reflects measurement of whole community DNA, including
non-viable copies of amoA. We measured only the viable organ-
isms because we had pre-treated the soil samples with EMA to
isolate these organisms. We previously evaluated EMA efficiency

Table 2 | Results of the multi-response permutation procedure (MRPP)

testing of the null hypothesis of no significant difference in denitrifier

nosZ community composition between land-use and time (Date).

Land-use Date Average

distance

N MRPP statistics

Cultivated

wetlands

Jun 01 0.9560 3 Observed delta = 0.1367

Sep 12 0.1740 3 Expected delta = 0.7009

Uncultivated

wetlands

Jun 01 0.1884 3 T = −7.2334, A = 0.8050

Sep 12 0.8877 3

Average distance is the mean Euclidean distance between each pair-wise com-

bination of land-use and sampling date: N is the number of replicate wetlands

sampled.The observed delta is calculated from the data while the expected delta

is derived from a null distribution:T is the MRPP test statistic, and A is the chance

corrected within-group agreement. The MRPP was significant (P ( 0.01).
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FIGURE 7 | Phylogenetic tree of cloned nosZ operational taxonomic units that significantly delineated land-use and time as determined by indicator

species analysis. Broken ovals highlight cloned sequences from this study. The label of the sequence used in the analysis is followed by their respective
GenBank accession. Branch nodes with bootstrap values greater than 60 are labeled. Scale bar indicates 5 changes per 100 nucleotide positions.

Table 3 | Two molar KCl extractable ammonium and nitrate concentrations in soils from each landform class in the St. Denis National Wildlife

Area collected June 1st–September 12th, 2006.

Landform Ammonium (μg N g−1 soil)† Nitrate (μg N g−1 soil)†

Jun 01 Jul 13 Aug 16 Sep 12 Jun 01 Jul 13 Aug 16 Sep 12

Convex (CX) 1.5 (0.2) 1.1 (0.2) 0.9 (0.2) 0.9 (0.2) 2.1 (0.1) 1.8 (0.3) 2.1 (0.2) 1.8 (0.2)

Concave(CV) 3.3 (0.1) 3.1 (0.2) 2.7 (0.1) 2.6 (0.2) 2.0 (0.3) 2.1 (0.2) 1.7 (0.2) 2.1 (0.1)

Cultivated depression (CD) 3.0 (0.2) 3.0 (0.2) 2.6 (0.2) 2.7 (0.3) 4.2 (0.3) 4.8 (0.4) 4.1 (0.4) 4.6 (0.1)

Riparian grass (RG) 5.1 (0.2) 4.8 (0.1) 4.4 (0.3) 4.5 (0.5) 4.7 (0.3) 4.4 (0.1) 4.2 (0.3) 4.4 (0.1)

Riparian tree (RT) 6.3 (0.3) 5.5 (0.2) 4.7 (0.4) 4.0 (0.4) 4.5 (0.2) 5.0 (0.4) 4.4 (0.2) 4.6 (0.1)

Basin center (BC) 3.6 (0.2) 3.0 (0.3) 3.0 (0.1) 2.6 (0.7) 4.6 (0.4) 4.3 (0.4) 4.8 (0.3) 4.4 (0.2)

†Results are means (n ( 3), with SE in parenthesis.

on nitrifiers and found that it worked well, however this evaluation
was limited to polar soils (Pisz et al., 2007). It is possible that the
EMA technique is under-reporting amoA abundance in these agri-
culture soils. While all inhibitors have significant drawbacks, an
alternative inhibitor, such as propidium monoazide (PMA) may
reduce the possibility of under-reporting due to EMA penetrating
intact cells and removing target DNA (Nocker et al., 2006). Intact
cell membranes are impermeable to PMA and several studies have
used PMA to differentiate naked DNA and dead cells from bacteria
with an intact cell membrane (Nocker et al., 2007; Yergeau et al.,
2010).

In soils from the water-accumulating landforms, differences
in nosZ community composition over time were linked to N2O
emitting activity. However, differences in community composi-
tion between land-use were not linked to N2O emitting activity.
The effects of nosZ are greater than what is explained by envi-
ronmental factors (e.g., soil water content) alone (Rich et al.,
2003). We found WFPS accounts for 33 and 13% of the variation
in DEA and rN2O, respectively. In contrast, less than 5% of
the variation in DEA and rN2O is correlated to the land-use

differences in the nosZ community composition (Figure 6). These
findings are in agreement with those of Ma et al. (2008), who
found no relationship between nosZ community composition and
denitrification-associated-N2O emission as a function of land-
scape. In agricultural systems others have also found no link
between nosZ community composition and N2O emission (Rich
and Myrold, 2004; Enwall et al., 2005), however, nosZ and N2O
have been linked in meadow and forest soils (Rich et al., 2003).

CONCLUSION
In our study, both amoA and nosZ changed dramatically over
the course of the season, but only nosZ was related to differences
in potential N2O emissions. Differences in community composi-
tion between land-use (i.e., cultivated and uncultivated) were not
clearly linked to the N2O emitting activity of amoA or of nosZ.
The negative correlation between bacterial amoA abundance and
nitrification and nitrification-associated-N2O may be in response
to several factors. Changing environmental conditions, seasonal
shifts in community composition and nitrification activity, as well
as, methodological limitations may act in concert to result in a
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negative correlation. Regardless, our study indicates that nosZ may
be an effective tool to monitor denitrifier contributions to N2O
emissions in a field setting. To characterize N2O emissions from
ammonia oxidation processes, however, a more refined genetic
target or approach is clearly needed.
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