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Acquisition of genetic elements such as 
virulence plasmids or pathogenicity islands 
(PI) by horizontal gene transfer can endow 
pathogenic bacteria with an arsenal of viru-
lence factors that promote bacterial survival 
and replication within their hosts. Despite 
the differences in the host organisms and 
pathology caused by important pathogenic 
bacteria such as Escherichia coli, Yersinia, 
Salmonella, and Shigella, a common viru-
lence mechanism exists in the form of a nee-
dle-like structure that translocates bacterial 
proteins into host cells to hijack the host 
machinery and modulate the host immune 
response (Ghosh, 2004).

Enteropathogenic E. coli (EPEC) and 
enterohemorrhagic E. coli (EHEC) belong 
to a family of attaching and effacing (A/E) 
pathogens responsible for diarrheal dis-
eases in humans and animals. The diseases 
are characterized by the effacement of the 
intestinal microvilli, bacterial coloniza-
tion, and attachment on pedestals induced 
by localized actin polymerization upon 
contact with enterocytes and disruption 
of tight junctions (Dean and Kenny, 2009; 
Croxen and Finlay, 2010). A type III secre-
tion system (T3SS) encoded by the locus of 
enterocyte effacement (LEE) secretes pro-
teins called effectors to form A/E lesions in 
the host and subvert various host processes 
such as disruption of the host cytoskeletal 
network and modulation of the host innate 
immune signaling (Sharma et al., 2006; 
Ruchaud-Sparagano et al., 2007; Khan 
et al., 2008). Yersinia employs the plasmid-
encoded Ysc-Yop T3SS to deliver effec-
tors called Yops (Yersinia outer proteins) 
to the host cytosol to paralyze phagocytes 

OrgB that functions as a platform for sort-
ing chaperone-effector pairs prior to secre-
tion (Lara-Tejero et al., 2011). Differential 
binding of the specific  chaperones to the 
complex leads to the sequential loading of 
substrates. The translocators YopB and YopD 
are needed to complete the translocation 
of effectors across the host cell membrane 
and deletion of these translocators results 
in the extracellular secretion but not trans-
location of effectors into the host cytosol 
(Håkansson et al., 1996; Neyt and Cornelis, 
1999). In Yersinia, the first ∼15 amino acids 
at the N-terminus is sufficient for secretion 
but not for translocation of the effectors 
leading to the conclusion that the presence 
of YopB/YopD and a distinct translocation 
signal are required for proper effector trans-
location (Sory et al., 1995). In the absence 
of translocators, secretion of effectors can 
be induced by growing bacteria in media 
that mimic environmental cues for T3SS 
activation such as low calcium, phosphate 
or magnesium (Michiels et al., 1990; Yu 
et al., 2010). Hence, although secretion and 
translocation are both necessary for infec-
tion, these events have different regulatory 
and structural requirements.

YopB/D, as well as the related translo-
cators in E. coli (EspB/D), Shigella (IpaB/
C/D), and Salmonella (SipB/C/D), contain 
hydrophobic domains and are proposed to 
form a pore by inserting into the host cell 
membrane (Ghosh, 2004). However, direct 
evidence for effectors being transported 
through this pore is lacking. In the one-
step microinjection model, the effectors 
are injected directly by the T3SS into the 
host cytosol. However, one issue with this 
model lies in the structural and  functional 
relationship of the translocators and the 
injectisome. It still remains to be eluci-
dated whether the injectisome itself actu-
ally pierces the host cell membrane or the 
translocators act as the terminal connection 
of the injectisome to the target cells by creat-
ing a membrane pore (Hoiczyk and Blobel, 
2001; Cornelis, 2002).

and block bacterial uptake (Cornelis et al., 
1989; Rosqvist et al., 1990). This tactic of 
evading the host immune response ensures 
an environment conducive for the lifestyle 
of Yersinia. In contrast, Salmonella pos-
sesses two PI encoding distinct T3SS called 
SPI-1 and SPI-2. During invasion, the SPI-1 
 secretion apparatus deploys effectors to the 
host cell milieu to promote phagocytosis 
(Galán, 1999) while the SPI-2 T3SS activity 
creates a niche for replication and survival of 
Salmonella within target cells (Cirillo et al., 
1998). The components of the T3SS are 
generally conserved among Gram-negative 
bacteria and even heterologous effectors can 
be secreted in another host bacteria such 
as the case of the Yersinia effector YopE 
expressed in Salmonella enterica serovar 
Typhimurium (Rosqvist et al., 1995).

The Yersinia injectisome consists of a 
membrane-spanning basal body and a hol-
low conduit of YscF polymers through which 
effectors transit for secretion (Hoiczyk and 
Blobel, 2001). Dedicated T3SS chaperones 
bind to their cognate effectors and keep them 
in a locally unfolded, secretion-competent 
state (Ghosh, 2004). The chaperone-effector 
interaction is thought to provide specificity 
for effector docking on the secretion appa-
ratus. The N-terminal domain or the 5′ end 
of most secreted effectors contains the signal 
sequence for secretion, translocation, and 
chaperone binding (Sory et al., 1995; Miao 
and Miller, 2000). However, there is no clear 
consensus sequence for the signals due to the 
degeneracy of the sequences at the amino 
acid or RNA level (Ghosh, 2004). How these 
signals are recognized by the secretion appa-
ratus is not well understood but differen-
tial signal recognition by the chaperones or 
translocon components is thought to be the 
basis for the hierarchical secretion of effec-
tors (Lara-Tejero et al., 2011; Osborne and 
Coombes, 2011). A defined order of secre-
tion of effectors ensures that effector func-
tions are activated in a spatial and temporal 
manner. A recent study revealed a cyto-
plasmic complex made up of SpaO/OrgA/
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et al., 2005). Whether effectors from both 
T3SS are localized to the surface of the 
bacteria before invasion is not known. The 
possibility for surface-localized effectors 
in Salmonella was supported by experi-
ments showing S. Typhimurium coated 
with recombinant YopH also translocated 
the effector into host cells in a SPI-1 T3SS-
specific manner (Akopyan et al., 2011). 
Thus, the two-step model challenges our 
view of the translocation mechanism of 
the T3SS and provides a fresh look at the 
events occurring at the pathogen-host cell 
interface. Future work on the identifica-
tion and translocation of surface-localized 
effectors in E. coli, Salmonella, and other 
pathogenic Gram-negative bacteria will 
provide needed insight into the two-step 
translocation mechanism of T3SS. It will 
particularly interesting to see whether this 
mechanism of effector translocation also 
occurs in alternative host settings, particu-
larly the host-pathogen interactions leading 
to commensalism of EHEC and EPEC in 
animals.
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A recent paper by Akopyan et al. (2011) 
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that Y. pseudotuberculosis effectors local-
ized to the bacterial surface are translocated 
by the T3SS. They first observed that the 
effectors YopE and YopH and the trans-
locator YopD were evenly distributed on 
the bacterial surface prior to host cell con-
tact (Schesser et al., 1996; Akopyan et al., 
2011). Interestingly, previous studies also 
found secreted Ipa effectors on the surface 
of Shigella before injection into the host 
cell (Watarai et al., 1995). The significance 
of these findings is unclear but it was pro-
posed that the extracellular effectors serve 
a protective role for the pathogen against 
the onslaught of the host immune attack 
(Schesser et al., 1996). Mutational analysis 
of the N-terminal region of YopE showed 
that distinct domains are needed for secre-
tion, surface localization, and transloca-
tion across the host cell membrane. YopE 
disrupts the host cytoskeleton to prevent 
phagocytosis and having a distinct pool of 
surface-localized YopE could provide an 
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