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Although morphological transitions (such as hyphae and pseudohyphae formation) are
a common feature among fungi, the encapsulated pathogenic yeast Cryptococcus
neoformans is found during infection as blastoconidia. However, this fungus exhibits strik-
ing variations in cellular structure and size, which have important consequences during
infection. This review will summarize the main aspects related with phenotypic and mor-
phological variations in C. neoformans, which can be divided in three classes.Two of them
are related to changes in the capsule, while the third one involves changes in the whole
cell. The three morphological and phenotypic variations in C. neoformans can be classified
as: (1) changes in capsule structure, (2) changes in capsule size, and (3) changes in the total
size of the cell, which can be achieved by the formation of cryptococcal giant/titan cells
or microforms. These changes have profound consequences on the interaction with the
host, involving survival, phagocytosis escape and immune evasion and dissemination.This
article will summarize the main features of these changes, and highlight their importance
during the interaction with the host and how they contribute to the development of the
disease.
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INTRODUCTION
Adaptation of pathogenic fungi to the host environment is key
to understanding the diseases caused by these microorganisms.
During infection, adaptive responses are triggered to evade the
immune response and survive in the host. Most of these responses
are regulated by signaling pathways, which induce adaptation to
the host nutritional environment, pH and osmotic pressure, and
also provide resistance to free radicals and antimicrobial mole-
cules. In addition, pathogenic fungi frequently change their cellu-
lar morphology. For example, it is well known how different yeasts
induce pseudohyphae and hyphae during infection. These cellular
forms have been well characterized in Candida albicans, and are
produced by other Candida sp (Kurtzman and Fell, 1997; White-
way and Bachewich, 2007). Filamentous fungi, such as Aspergillus
spp also induce the formation of filaments after the germination of
the spores during infection. Other fungi exhibit dimorphism regu-
lated by the temperature, as happens with Histoplasma capsulatum
and Blastomyces dermatitidis (Kane, 1984; Maresca and Kobayashi,
1989). These changes are important for the course of infection, and
provide the fungus a mechanism to reach new nutritional environ-
ments, evade the host immune response, and disseminate through
the organism.

The pathogenic fungus Cryptococcus neoformans represents a
unique example of eukaryotic virulence. Its incidence increased

†I dedicate this article to my two sons, Javier and David, for filling up my days with
joy and happiness.

significantly at the end of the twentieth century associated with
the AIDS pandemic (Casadevall and Perfect, 1998). Recent stud-
ies identified that C. neoformans also accounts for 10% of fun-
gal infections in transplant recipients (Singh and Forrest, 2009;
Hosseini-Moghaddam and Husain, 2010). Although its inci-
dence in countries where the highly active antiretroviral therapy
(HAART) is available has decreased, its associated mortality is still
high (Dromer et al., 2007). The incidence in developing coun-
tries remains unacceptable, since it has been estimated that C.
neoformans causes more than 650,000 deaths per year in these
countries (Park et al., 2009).

Cryptococcus neoformans possesses a complex polysaccharide
capsule that surrounds the cell body. The capsule is the main
virulence factor of the yeast because it exerts a large number
of deleterious effects on the host (see review in Zaragoza et al.,
2009). Among others, it confers resistance to stress conditions,
such as dehydration, free radicals, and antimicrobial compounds
(Aksenov et al., 1973; Zaragoza et al., 2008). The capsule can
interfere with the host immune response at multiple levels. For
example, it has antiphagocytic properties, inhibits Ab production,
depletes complement, inhibits leukocyte migration, and induces
apoptosis in macrophages and T cells (Murphy and Cozad, 1972;
Kozel et al., 1977; Macher et al., 1978; Lipovsky et al., 2000; Vec-
chiarelli, 2000; Ellerbroek et al., 2002; Monari et al., 2006). In
addition, C. neoformans expresses other virulence factors during
infection, such as cell wall melanin, proteases, and phospholi-
pases (see reviews in Casadevall and Perfect, 1998; Nosanchuk
and Casadevall, 2003; Heitman et al., 2011).
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Cryptococcus neoformans has traditionally been considered a
yeast that does not exhibit filamentous growth or dimorphism,
except during the mating process (for reviews, see Heitman et al.,
2011; Kozubowski and Heitman, 2011). Although some pseudo-
hyphal forms have occasionally been described during infection
(Neilson et al., 1978; Williamson et al., 1996; Gazzoni et al., 2010),
this is a rare phenomenon, and it is believed that C. neoformans
does not undergo morphological changes in the host. While this
concept is true, many articles demonstrate that C. neoformans
displays a complex morphogenetic program which results in the
appearance of multiple phenotypic forms. In fact, the final result
of these variations is the production of multiple types of yeast cells
that may differ in their recognition by the immune system.

In this review, I discuss the concepts of phenotypic and mor-
phologic variations in C. neoformans with the purpose of illustrat-
ing the complexity of different forms that this pathogen exhibits
in vivo and how they contribute to the development of the disease.
These changes are of three types: changes in capsule structure,
changes in capsule size, and changes in total cell size. Some of
these different variations are illustrated in Figure 1. I describe the
main characteristics of these variations, and also highlight their
importance in infection.

CHANGES IN CAPSULE STRUCTURE
The capsule of C. neoformans is mainly composed of polysac-
charide. The major component is glucuronoxylomannan (GXM),
which comprises around 90–95% of the total mass of the capsule
(Cherniak et al., 1980). The other component has been classically
known as galactoxylomannan (GalXM; Cherniak et al., 1982),
which accounts for 5–10% of the capsular polysaccharide. Both
components have high molecular weights, around 106 Da for GXM
and 105 Da for GalXM (Cherniak et al., 1982; McFadden et al.,

FIGURE 1 | Heterogeneity of fungal population extracted from the

lungs of infected mice. The yeast cells isolated from the lungs of infected
mice were isolated and suspended in India Ink to visualize the capsule. As
shown, multiple forms of C. neoformans (regular cells, cells with enlarged
capsule, fungal giant/titan cells, and microforms) are present during
infection.

2006b). The structure of these polysaccharides has been largely
studied and revised (see reviews in Doering, 2000; Bose et al., 2003;
Janbon, 2004; Zaragoza et al., 2009; Janbon and Doering, 2011).
Briefly, GXM is composed of a chain of mannose residues, with
substitutions of xylose and glucuronic acid. GalXM was previously
believed to be composed of a chain of galactose with substitutions
of xylose and mannose. Recently, it was found that it also con-
tains residues of glucuronic acid (Heiss et al., 2009), so the name
of glucuronoxylomannangalactan (GXMGal) has been suggested
for this polysaccharide. GXM is highly 6-O-acetylated (Cherniak
et al., 1988a; Cherniak and Sundstrom, 1994; Janbon et al., 2001;
McFadden et al., 2006b). In addition to polysaccharides, the cap-
sule consists of a small proportion of mannoproteins (MPs; Levitz
and Specht, 2006). While GXM localizes throughout the whole
capsule, GXMGal and MPs seem to localize in regions close to
the cell wall (De Jesus et al., 2010). More recently, other compo-
nents have been suggested to be present in the capsule too, such
as sialic acid and chitin-like structures (Rodrigues et al., 2008;
Gahrs et al., 2009), but their role in capsule architecture remains
unknown.

The steps involved in capsule synthesis and fibers assembly
are poorly understood. A few capsular genes necessary to pro-
duce the capsule (known as CAP) have been described (Chang
and Kwon-Chung, 1994, 1998, 1999; Chang et al., 1995), but
their exact biochemical function is not fully characterized. More
recently, more genes have been identified by massive analysis of a
C. neoformans mutant library (Liu et al., 2008), but the interplay
of these, and how they regulate capsule synthesis remains to be
elucidated. Furthermore, it has been shown that secretion of vesi-
cles loaded with capsular polysaccharide is an important process
in capsule synthesis (Rodrigues et al., 2007).

Although the main components of the capsule are charac-
terized, how the polysaccharides are spatially organized is still
unknown. The polysaccharide is organized in fibers that can self-
associate through non-covalent interactions (Pierini and Doering,
2001; McFadden et al., 2006b). In the case of GXM, seven differ-
ent basic structures have been described (Cherniak et al., 1998;
Nimrichter et al., 2007), but how these structures are organized,
and repeated is still unknown. Recent findings indicate that the
capsular fibers are highly branched (Cordero et al., 2011). A clear
conclusion from the basic analysis of the capsule is that multiple
structures, repetitions, and ramifications are possible in the same
GXM or GXMGal molecule (see reviews in McFadden et al., 2006a;
Rodrigues et al., 2011; and in Rodrigues et al. in this same issue).
As a consequence, C. neoformans has classically been classified in
five different serotypes (A, B, C, D, and AD hybrid), based on
the different antigenic properties of the capsular polysaccharide.
The use of structural and analytical techniques, such as NMR or
mass spectrometry has demonstrated that the capsular variation
occurs at inter- and intra-strain levels (Cherniak et al., 1988a,b;
McFadden et al., 2006b). The use of monoclonal antibodies that
bind to the capsule has been extremely useful to understand the
variability and complexity of this structure (Dromer et al., 1987;
Eckert and Kozel, 1987; Todaro-Luck et al., 1989; van de Moer
et al., 1990; Casadevall et al., 1992, 1994; Pirofski et al., 1995).
Most of these mAbs have different affinities and specificities for
different epitopes in the capsule, which indicates that the capsule
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has a complex and heterogeneous structure. Moreover, the epitope
distribution for some of these Abs is not homogeneous through
the capsule (Maxson et al., 2007b).

The use of mAbs has been of particular interest to show, not
only the variability of the capsule between strains, but also how
this structure changes in the same strain depending on the envi-
ronment. McFadden et al. (2007) demonstrated that the binding
of two different antibodies to the capsule changed when the fun-
gal strain was grown in different media. Consistent with these
findings, the capsule exhibits a high heterogeneity in the expres-
sion of epitopes, which depends on cell age, growth conditions,
and serotype (Garcia-Hermoso et al., 2004; Gates-Hollingsworth
and Kozel, 2009). The relationship between cell age and capsule
structure is supported by the fact that the capsule of the buds is
structurally different from the capsule of the mother cells (Pierini
and Doering, 2001; Zaragoza et al., 2006; Gates-Hollingsworth
and Kozel, 2009). Taken together, these findings clearly illustrate
how the capsule is a dynamic structure that undergoes important
rearrangements.

Changes of the capsule structure also occur in vivo, which sug-
gest that these variations have consequences on the interaction
with the host. A seminal article by Charlier et al. (2005) elegantly
demonstrates how the capsule undergoes significant rearrange-
ments during infection. The authors use two mAbs which present
different in vitro serotype specificity (E1 mAb, which binds to
serotype A, and CRND-8, which binds to serotype D). When ani-
mals are challenged with a serotype A strain, the fungus bound
E1 mAb at early times of infection. After several days of infection,
the binding specificity changed, and the fungal cells preferentially
bound the CRND-8 mAb. This evolution of the capsule structure
seems to be organ specific (Garcia-Hermoso et al., 2004). More-
over, there is evidence that similar capsular rearrangements occur
during human cryptococcal meningitis (Cherniak et al., 1995),
where structural changes in the capsule of isolates from patients
with recurrent cryptococcosis have been described. The molecu-
lar basis underlying the variability in capsule structures are not yet
known.

The capsule can also significantly change the polysaccharide
density. Many reports indicate that the density of the capsule
varies according to its spatial distribution, being denser at the
inner locations close to the cell wall (Pierini and Doering, 2001;
Gates et al., 2004; Zaragoza et al., 2006; Maxson et al., 2007b). In
addition, the density can significantly increase with cellular age
and independently of capsule size (Maxson et al., 2007b). This
change is associated with a higher resistance of the capsule to fac-
tors that induce its separation from the cell, such as γ-radiation,
which suggests that increase in density is associated with a higher
crosslinking of the polysaccharide fibers (Maxson et al., 2007b).
Increase in polysaccharide density also occurs during infection
(Gates et al., 2004).

IMPORTANCE OF CAPSULE STRUCTURE CHANGES DURING THE
INTERACTION WITH THE HOST
The fact that capsule structure can change depending on the
environmental conditions has profound consequences for the
interaction with the host, since this structure is the first barrier
recognized by the immune cells. An example of this situation is
provided by the opsonic effect of some antibodies that do not bind

to Fc receptors in the macrophages, such as IgM or Fab fragments,
and that in consequence, are not opsonic by themselves. In these
cases, the binding of the antibody produces a structural change in
the capsule that exposes polysaccharide epitopes that can bind to
CD18 and induce phagocytosis through the complement receptors
(Netski and Kozel, 2002; Taborda and Casadevall, 2002). Con-
versely, changes in capsule structure alter the recognition of Abs.
For example, changes in the acetylation can dramatically influence
the binding of Abs to the capsule (Todaro-Luck et al., 1989; Kozel
et al., 2003). Capsular differences between serotypes also influ-
ence the binding pattern of the same Ab (which can be annular
or punctuate, depending on the serotype), and this correlates with
opsonic efficiency and protection during infection (Cleare and
Casadevall, 1998; Mukherjee et al., 1998). These findings suggest
that if a specific adaptive response elicits certain Abs during infec-
tion, the ability to change the capsular structure will yield fungal
cells which will not be recognized by those antibodies.

Changes in capsular structures occur during the cross of
the brain–blood barrier, suggesting that capsular variations are
required for dissemination and organ colonization (Garcia-
Hermoso et al., 2004; Charlier et al., 2005).

In addition to Ab recognition, capsule structure affects the
deposition of other molecules of the immune system. For exam-
ple, the capsule is a potent inducer of the alternative pathway of
complement activation, and it has been shown that differences in
capsular structure influence the rate of complement deposition on
the capsule. While all the serotypes accumulated the same amount
of C3 molecules, the kinetics of the process was much faster when
strains from serotypes A and D were used compared to strains
from serotypes B and C (Young and Kozel, 1993).

The change in capsule density is another factor that determines
some aspects of the interaction with the host. In particular, capsule
density influences the penetration of different molecules of the
immune system, such as complement or Abs, in the capsule, and
affects the biological activity of these molecules (Zaragoza et al.,
2003b; Gates and Kozel, 2006; Zaragoza and Casadevall, 2006).
More recently, it has been demonstrated that a high degree of
branching and viscosity of the capsule enhances some properties
of the polysaccharide that are important during the interaction
with the host, such as complement activation and phagocytosis
avoidance, and the ability to act as a protective agent against free
radicals (Cordero et al., 2011).

Another phenomenon that highlights the importance of cap-
sule structure during infection is phenotypic switching. In C.
neoformans, two different types of colony morphologies, smooth
and mucoid, have been described (Goldman et al., 1998) that
present differences in capsule viscosity (McFadden et al., 2007).
These phenotypic variations are involved in virulence, since
mucoid isolates are hypervirulent (Goldman et al., 1998; Guerrero
et al., 2010).

Changes in capsular structure can influence not only the inter-
action between the yeast cells and the immune system, but can also
affect the diagnosis of the infection. The most widely diagnostic
tool used for cryptococcosis is based on serological tests which
use reactive sera against the capsular polysaccharide which circu-
lates in the serum. However, this circulating polysaccharide can
change its structure over time, resulting in lack of reactivity, and
false negative diagnoses (McFadden et al., 2004).
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CHANGES IN CAPSULE SIZE
A striking feature of the capsule is that it can undergo significant
changes in its size according to the environmental conditions. This
finding was first described in the 1950s (Littman, 1958), and in this
work, a medium which produced capsule growth was described.
More factors that induce capsule enlargement have been described,
such as CO2, iron limitation, mammalian serum, low nutrient
concentration at moderate basic pH and mannitol (Anna, 1979;
Granger et al., 1985; Vartivarian et al., 1993; Zaragoza et al., 2003a;
Zaragoza and Casadevall, 2004; Guimaraes et al., 2010). More
importantly, while the capsule of C. neoformans is small in the
environment and in regular laboratory conditions, it significantly
increases in size after a few hours post-infection (Feldmesser et al.,
2001).

Capsule enlargement represents a significant change for the
cell. In cells with large capsule, this structure accounts for approx-
imately 95% of the total volume of the cell (Maxson et al., 2007a).
Capsule enlargement is achieved by addition of new polysaccha-
ride to the old capsule (Maxson et al., 2007b; Frases et al., 2009).
An estimation of the mass of the capsule has been made, and
it has been found that in media where the capsule enlarges, the
total mass of the polysaccharide increases by a 20% in only a
few hours. (Maxson et al., 2007a). These changes indicate that
capsule enlargement is a dramatic change for the cell, and sug-
gest that it is a high energy cost process. Structural studies have
shown that the new polysaccharide fibers are different from the
ones that are previously attached to the cell (Frases et al., 2008).
Capsule growth is a regulated process, and does not occur indefi-
nitely. After enlargement, the capsule size reaches a limit, which is
directly proportional to the size of the cell body, delimited by the
cell wall (Zaragoza et al., 2006).

IMPORTANCE OF CAPSULE GROWTH DURING THE INTERACTION WITH
THE HOST
Capsule growth occurs during the first hours after being inhaled
(Feldmesser et al., 2001),and is considered an“early”response of C.
neoformans during the interaction with the host. Different studies
have shown that this process confers advantages to the pathogen.
By increasing the size of the capsule, the pathogen increases its
total size, which may impair phagocytosis. However, phagocytosis
of C. neoformans can occur in the presence of opsonins, such as
proteins of the complement (C) system or antibodies. In the case of
C-mediated phagocytosis, capsule enlargement plays a prominent
role in determining the degree of internalization of the fungus.
The localization of C3 protein, which is the main opsonin of the
complement system involved in C. neoformans uptake, depends
on the size of the capsule. In cells with small capsule, C3 binds
at the edge of the capsule, a location which is accessible for the
complement receptors (Zaragoza et al., 2003b), and phagocyto-
sis occurs. However, when the capsule enlarges, C3 proteins bind
deep in the capsule, several microns away from the edge, and is
not accessible to the receptors (Zaragoza et al., 2003b). In this way,
capsule enlargement promotes phagocytosis avoidance even in the
presence of complement proteins.

Another role of capsule enlargement has been described during
intracellular pathogenesis of C. neoformans. This fungal pathogen
can evade killing by phagocytes once it has been internalized,

and is considered a facultative intracellular pathogen (Diamond
and Bennett, 1973; Levitz et al., 1999; Tucker and Casadevall,
2002). The mechanism of intracellular survival is still unknown. C.
neoformans does not inhibit phagosome maturation or lysosome
fusion and acidification (Levitz et al., 1999), which suggests that
C. neoformans expresses some phenotypic traits that allow killing
escape and survival. In this sense, capsule enlargement confers
resistance to stress factors from the phago-lysosome, such as free
radicals and antimicrobial peptides (Zaragoza et al., 2008). It is
believed that capsule enlargement protects against free radicals
by acting as a buffering structure. In cells with large capsule, free
radicals would mainly exert their action on the capsular polysac-
charide since it constitutes more than 90% of the volume of the
cell (Maxson et al., 2007a). Since the capsule is not required for the
normal growth of the yeast, alterations in the polysaccharide fibers
by free radicals attack would result in increased survival compared
to cells with small capsule. This idea is supported by the finding
that capsule enlargement is in fact induced by macrophage factors
(Ma et al., 2006; Chrisman et al., 2011).

CHANGES IN THE TOTAL SIZE OF THE CELL
Changes in the total cell size of C. neoformans occur during infec-
tion. Although C. neoformans is mainly found as rounded yeast
cells in the host, the size of the blastoconidia found in the tissues
(in particular, lungs) undergoes enormous variations. The regular
cell size of C. neoformans cells in vitro ranges from 5 to 7 μm.
During infection, sizes from 1 to 100 μm are found (see Figure 1
and Cruickshank et al., 1973; Feldmesser et al., 2001). Hence, C.
neoformans can produce both microforms and macro cells in the
host. These variations have occasionally been described in the liter-
ature, but it has not been until recently that these types of cells have
raised the interest of the scientific community. These phenom-
ena are extremely interesting and suggest multiple consequences
during the interaction with the host.

The best characterized phenomenon is the ability to form cells
of a tremendous size in the lungs of infected mice. This transition
is observed after several days of infection, so it could be considered
as a “late” morphological response of the pathogen. Recently, two
independent articles have characterized these cells in detail (Oka-
gaki et al., 2010; Zaragoza et al., 2010). These articles defined them
as “giant” or “titan” cells. So I will refer to them as fungal or cryp-
tococcal “giant/titan cells.” Using different approaches, these two
groups show that fungal giant/titan cells are reproducibly found
during infection, but their proportion is highly variable. During
infection in murine models, where disseminated disease is accom-
panied by a strong inflammatory response, the proportion of
fungal giant/titan cells is very low,around 5–10% of the total fungal
burden. Okagaki et al. (2010) find that this proportion significantly
increases when co-infections with MATa and MATα mating types
are performed, indicating that the pheromone signaling pathway
plays an important role in the development of giant/titan cells. On
the other hand, the proportion of cryptococcal giant/titan cells also
increases when the fungal burden in the lungs is low and the mice
develop chronic asymptomatic infection (Zaragoza et al., 2010).
In addition, cAMP signaling pathway is required for cryptococcal
giant/titan cell formation (Zaragoza et al., 2010). In agreement,
other elements involved in the cAMP signaling pathway have been

Frontiers in Microbiology | Fungi and Their Interactions September 2011 | Volume 2 | Article 181 | 4

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Fungi_and_Their_Interactions
http://www.frontiersin.org/Fungi_and_Their_Interactions/archive


Zaragoza Morphogenesis in Cryptococcus neoformans

recently described to affect giant/titan cell formation, such as Ste3a
and Gpr5 (G-protein coupled receptors), and the transcription
factor Rim101 (Okagaki et al., 2011). Moreover, analysis of a col-
lection of gene deletion mutants have identified other proteins
involved in cellular enlargement, like G1 cyclins, Rho-GTPases,
and GTPases-activating proteins, suggesting that titan formation
requires the interplay of different pathways in the cell (Okagaki
et al., 2011). Ras1 and MAPK signaling pathway do not seem to
participate in giant/titan cell induction (Zaragoza et al., 2010; Oka-
gaki et al., 2011). Fungal giant/titan cells are polyploid (Okagaki
et al., 2010; Zaragoza et al., 2010), suggesting that the formation of
these cells is achieved by endoreduplication, a well known process
that yields cells of enormous size. In addition to an increase in the
DNA content, fungal giant/titan cells present other phenotypic
differences compared to regular cells. The capsule of titan cells has
a higher polysaccharide density and presents different antigenic
properties compared to cells grown in vitro (Zaragoza et al., 2010).
In addition, the cell wall is significantly thicker, reaching a width of
2–3 μm (Zaragoza et al., 2010). Titan cells present peculiar intra-
cellular features, such as the presence of a fragmented vacuole.
Cryptococcal giant/titan cell formation is achieved not only by an
increase in the capsule size, but also in the cell body size, which
in some cases could reach a diameter of 100 μm (Okagaki et al.,
2010).

Besides the formation of titan cells, C. neoformans can also form
micro-cells, of a size lower than 1 μm (Feldmesser et al., 2001).
These cells have not been studied in detail, but they are a common
feature of the C. neoformans infection. The fact that C. neoformans
can exhibit giant/titan and micro-cells during infection sug-
gests that this pathogen has developed a complex morphogenetic
program that allows adaptation to the host environment.

IMPORTANCE OF CHANGES IN TOTAL CELL SIZE DURING THE
INTERACTION WITH THE HOST
The presence of cryptococcal giant/titan cells during infection
represents a multilevel problem for the immune system. These
cells present a higher resistance to oxidative agents (Okagaki et al.,
2010; Zaragoza et al., 2010). In addition, titan cells avoid phago-
cytosis, although macrophages seem to recognize and bind to
these fungal cellular forms (see Figure 2 and Okagaki et al., 2010;
Zaragoza et al., 2010). These two features confirm that cryptococ-
cal giant/titan cells can evade the host immune system. However,
the role of these cells in the pathogenesis of the yeast is still unclear.
Co-infection with MATa and MATα cells produced an increase in
the proportion of fungal giant/titan cells in the lung, and this cor-
related with decreased dissemination of the fungus to the brain
(Okagaki et al., 2010), suggesting that their large size impairs
their ability to exit the lungs and cross biological barriers. Dur-
ing chronic infection, where a low number of yeasts are found in
the lungs and there is no inflammation, the proportion of fun-
gal giant cells was around 70–90% (Zaragoza et al., 2010). These
observations suggest that, in fact, fungal giant/titan cells are not
involved in the development of a disseminated disease. Instead,
they provide fungal resistant forms that can persist in the host
for long time periods. However, recent findings demonstrate that
fungal giant/titan cells are virulent in the non conventional host
Galleria mellonella (Garcia-Rodas et al., 2011), suggesting that this

FIGURE 2 | Interaction between macrophages and cryptococcal

giant/titan cells. Fungal giant/titan cells obtained from infected mice were
co-incubated in vitro with RAW264.7 macrophage-like cells. As shown in
the figure, the macrophages can recognize and bind to the fungal giant/titan
cells, but they cannot internalize the fungal cells due to their enormous size.

type of cells can also contribute to the development of the disease
in certain situations, most probably by producing a progeny of
cells of regular size.

Cryptococcal giant/titan cells have been also described in other
model hosts. Recently, it has been found that incubation of C.
neoformans in ameba extracts results in capsule enlargement
(Chrisman et al., 2011), and occasionally, also in the appearance
of titan cells (Chrisman et al., 2011). Furthermore, unpublished
results from our group indicate that during infection in the non-
conventional host Galleria mellonella, C. neoformans also forms
giant/titan cells (Garcia-Rodas et al., 2011). These findings indicate
that gigantism is a general feature elicited by C. neoformans that
occurs during infection in different types of hosts,which highlights
the idea that this morphological transition plays an important role
in fungal survival and persistence in the host.

Cryptococcus neoformans can also produce cells of a smaller
size, known as micro-cells. Although their role in virulence has
not been described, their presence during infection raises chal-
lenging questions. For example, it is tempting to hypothesize that
due to their reduced size, these cells could have a particular abil-
ity to disseminate and cross biological barriers, such as endothelia
and the brain–blood barrier, and in consequence, contribute to
the development of cryptococcal meningitis.

FINAL REMARKS ABOUT THE ROLE OF MORPHOLOGICAL
AND PHENOTYPIC VARIATIONS IN DIFFERENT PHASES OF
THE INFECTION AND DISEASE CAUSED BY CRYPTOCOCCUS
NEOFORMANS
As it has been described in this review, C. neoformans can produce
a large number of phenotypic forms by inducing changes in the
structure and/or size of the capsule, and in the total size of the
cell. These changes have profound effects during the interaction
with the host. They contribute to immune evasion, adaptation
to the host environment, dissemination, and long term survival
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during infection. These phenotypic and morphological variations
constitute mechanisms that contribute to the cryptococcal infec-
tion, in addition to the well established role of the cryptococcal
exopolysaccharide as a virulence factor (see review in Zaragoza
et al., 2009). The molecular mechanisms involved in the regulation
of these changes, and their contribution to the cryptococcal patho-
genesis remain unknown, but it is reasonable to hypothesize that
they participate in different states of the cryptococcal disease. After
the first contact of the yeast with the host, capsule enlargement
(an “early” response of the fungus) contributes to phagocytosis
escape and intracellular survival, which allows the yeast to evade
the first line of defense elicited by the host. In immunocompe-
tent hosts, the infection is controlled, but the fungal cells are
not completely cleared, and it is believed that C. neoformans can
develop a latent state (Dromer et al., 2011). In these conditions,
the production of fungal giant/titan cells (a “late” fungal response)
could be a key factor to ensure long term survival. During the
most typical clinical manifestation, which is dissemination and
meningitis, morphological changes also contribute to the disease.
First, the ability to produce capsular rearrangements contributes
to the avoidance of recognition by immune cells and antibod-
ies. In addition, capsular rearrangements seem to contribute to
yeast dissemination and cross of biological barriers. The capac-
ity to produce micro-cells could also facilitate the dissemination
of the fungus and the consequent invasion of the brain. Finally,
the large number of different yeast forms that could be found
during infection could also play a role in another well known
disease caused by C. neoformans, which is the immune recon-
stitution inflammatory syndrome (IRIS) also known as immune
restoration disease (IRD). This is a disease developed by some HIV
patients who recover their immune system after the initiation of
the HAART. In these conditions, if an infection is encountered
by the immune system, an exaggerated inflammatory response is
elicited, which develops an acute disease. The pathogens which
are associated with this disorder are Mycobacterium tuberculosis
and C. neoformans (French, 2009), most probably because their
incidence is particularly significant among HIV patients. In the
case of C. neoformans, I hypothesize that in situations of immune
recovery, the presence of multiple variants of cryptococcal cells,
with different capsule structures and cell sizes may elicit multiple

immune responses simultaneously, which can contribute to the
appearance of the IRIS.

FUTURE PERSPECTIVES
In conclusion, although C. neoformans has not been classically
considered a fungus able to undergo morphological changes, it can
in fact elicit multiple cellular types which contribute to the survival
of the yeast in vivo. Although some effects of cryptococcal mor-
phogenesis have been described, many important questions still
need to be addressed. These transitions have been described in vitro
and in murine models, but their presence during human infection
has not been fully demonstrated. Clinical and histopathological
studies are needed to confirm the occurrence of capsular varia-
tions and the formation of micro- and giant/titan cells in humans.
In addition, the cellular mechanisms that regulate the variations
in structure and size of the capsule and the formation of fun-
gal giant/titan and micro-cells are unknown, and future studies
are required to unveil these molecular processes. For this pur-
pose, it is necessary to better characterize the genes involved in
capsule synthesis, and in particular, the interplay between them.
The finding that vesicle secretion is involved in capsule synthesis
suggests that exocytosis processes might be involved in capsular
rearrangements, and that induction or inhibition of extracellular
transport could result in variations of capsule structure. Concern-
ing the changes in total cell size, the formation of cryptococcal
giant/titan and micro-cells implies that C. neoformans can induce
alterations in their cell cycle, to undergo endoreduplication (to
produce gigantic cells), or to reduce the length of the cell cycle (to
produce micro-cells). The idea that cell cycle regulation depends
on host factors is a challenging hypothesis that deserves special
interest in future studies. To conclude, the full characterization of
morphological changes in C. neoformans, and in particular, the elu-
cidation of the molecular mechanisms involved in these processes
will also contribute to the design of new therapeutical strategies.
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