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Gene replacement therapy by in vivo delivery of adeno-associated virus (AAV) is attrac-
tive as a potential treatment for a variety of genetic disorders. However, while AAV has
been used successfully in many models, other experiments in clinical trials and in animal
models have been hampered by undesired responses from the immune system. Recent
studies of AAV immunology have focused on the elimination of transgene-expressing cells
by the adaptive immune system, yet the innate immune system also has a critical role,
both in the initial response to the vector and in prompting a deleterious adaptive immune
response. Responses to AAV vectors are primarily mediated by theTLR9–MyD88 pathway,
which induces the production of pro-inflammatory cytokines by activating the NF-κB path-
ways and inducing type I IFN production; self-complementary AAV vectors enhance these
inflammatory processes. Additionally, the alternative NF-κB pathway influences transgene
expression in cells transduced by AAV. This review highlights these recent discoveries
regarding innate immune responses to AAV and discusses strategies to ablate these
potentially detrimental signaling pathways.
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INTRODUCTION
Adeno-associated virus (AAV) has emerged as a promising vector
for viral gene therapy over the past 20 years (Mueller and Flotte,
2008; Mays and Wilson, 2011; Mingozzi and High, 2011). AAV is a
parvovirus, which is a family of small, non-enveloped viruses con-
taining a single-stranded linear DNA genome of about 5 kb; the
wild-type virus is replication-deficient, requiring a helper virus
in order to reproduce (Srivastava et al., 1983). In humans, AAV
has not been found to be pathogenic. This fact, along with the
tendency for the genomes of recombinant AAV (rAAV) vectors
to remain as episomal concatemers rather than integrating into
the host genome (reducing the risk for insertional mutagenesis),
makes AAV a relatively safe gene therapy vector for testing in the
clinic (Nakai et al., 2001). Indeed, AAV has become a preferred
choice by many investigators for in vivo viral gene transfer, and
due to its wide tissue tropism, it has been used in over 20 clinical
trials to treat a wide variety of monogenetic diseases, including
but not limited to: hemophilia B, α1 antitrypsin deficiency, cys-
tic fibrosis, Parkinson’s disease, and Leber’s congenital amaurosis
(LCA; Zhao et al., 2006; Nathwani et al., 2011).

It is widely accepted that the trial for LCA represents the
first example of successful AAV gene therapy in humans with-
out immune consequences. LCA is a genetic disease characterized
by severe vision deficits due to a mutation in RPE65. Patients who
received one subretinal injection of rAAV encoding RPE65 tol-
erated the transgene well and showed improved visual capability

both in psychophysical (e.g., visual acuity) and functional (e.g.,
ability to navigate an obstacle course) measures (Maguire et al.,
2009). So far, the improvements have persisted for over 3 years
(Mingozzi and High, 2011). However, other clinical trials using
AAV have not been as successful due to interference from the
immune system (Manno et al., 2006). The success of the LCA
trials is likely due to unique features of the target tissue that make
it ideally suited for gene transfer. The retina is easy to access with-
out potential exposure of vector to other tissues, and the relatively
small number of target cells allow a small volume and low vector
titer to result in a high multiplicity of infection (Mccarty, 2008).
Additionally, the eye is generally regarded as an immunoprivileged
site, greatly reducing the likelihood of developing a deleterious
immune response (Hauswirth et al., 2008).

Conversely,other target tissues do not possess the near complete
immunological ignorance displayed by the retina. The potential
effects of an immune response on gene transfer are illustrated by
the 2006 trial using AAV serotype 2 (AAV2) to transfer human
blood coagulation factor IX (hF.IX) to the livers of hemophilia B
patients deficient in factor IX. In this trial, one patient showed
elevated circulating F.IX at 2 weeks, followed by a decline of trans-
gene with a concomitant rise in liver enzymes, indicative of the
destruction of hepatocytes; this damage was most likely medi-
ated by a CD8+ T cell response against the AAV capsid (Manno
et al., 2006; Mingozzi et al., 2007). Subsequently, it was shown
that input capsid-derived peptides are presented by MHC class I

www.frontiersin.org September 2011 | Volume 2 | Article 194 | 1

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Microbial_Immunology/10.3389/fmicb.2011.00194/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=34624&d=2&sname=GeoffreyRogers&name=Medicine
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=35513&d=2&sname=AshleyMartino&name=Medicine
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=32078&d=1&sname=GeorgeAslanidi&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=32281&d=1&sname=ArunSrivastava&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=28571&d=2&sname=RolandHerzog&name=Medicine
mailto:aruns@peds.ufl.edu
mailto:rherzog@ufl.edu
http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


Rogers et al. Innate responses to AAV vectors

molecules on the surface of hepatocytes following transduction
with AAV2 vectors (Pien et al., 2009). Therefore, transduced cells
may become targets for AAV capsid-specific CTLs. Another subject
with a higher neutralizing antibody (NAB) titer against the capsid
did not show appreciable levels of circulating F.IX, likely because
the antibodies prevented transduction of hepatocytes (Mingozzi
and High, 2007). These results illustrate a major problem with
using AAV for in vivo gene therapy – pre-existing immunity. Since
AAV is a naturally occurring infection in the human population,
it is not surprising that reports have indicated that CD8+ memory
T cells as well as NAB to AAV are common (Mingozzi and High,
2007; Calcedo et al., 2009; Boutin et al., 2010).

Studies in animal models have also revealed concerns beyond
pre-existing immune responses to AAV. Without a memory
response against the capsid developed due to natural infection,
it is easier to successfully transduce wild-type mice with hF.IX via
hepatic gene transfer; the resulting induction of tolerance to the
transgene is thought to be mediated by hF.IX-specific regulatory
T cells (Tregs; Dobrzynski et al., 2006; Cao et al., 2007). How-
ever, even in animal models, sustained transgene expression is not
guaranteed. Hemophilic mice with missense mutations in trans-
genically expressed hF.IX genes are more tolerant to hF.IX gene
transfer than total deletion mutants. The target tissue for trans-
gene expression can also affect the outcome of gene transfer. In
the same hemophilic mouse strains, hF.IX was less tolerated when
expressed in skeletal muscle than when expressed in hepatocytes
(Cao et al., 2009). Furthermore, tolerance can be affected by the
serotype of AAV that is used; increased transduction efficiency in
the liver is more likely to lead to tolerance to the transgene. In this
regard, AAV8 is more tolerogenic than AAV2 (Cooper et al., 2009).
Transduction efficiency can be also be increased by mutating sur-
face exposed tyrosine residues on the capsid, which is thought
to reduce proteasomal degradation, increasing trafficking to the
nucleus (Zhong et al., 2008; Markusic et al., 2010). Though a
variety of mechanisms are involved in these studies, they, along
with other studies in animals, are united by a common theme:
in current murine models, functional CD8+ T cell infiltrates in
AAV transduced tissues are primary directed against the transgene
product rather than the capsid, while an antibody response is often
observed to both potential immunogens (Siders et al., 2009).

With these concerns in mind, many investigators have focused
more on the adaptive immune response to AAV2. Additionally,
a previous study comparing adenoviral vectors and AAV2 found
that the innate immune response to AAV was weak and transient
relative to the potent and prolonged response to adenovirus, sug-
gesting that innate immunity to AAV2 may be insignificant (Zaiss
et al., 2002). It is commonly accepted that innate responses pro-
vide activation signals critical for subsequent adaptive immunity.
Even though the adaptive immune system has the effector func-
tions that impact viral gene transfer, signals provided by the innate
immune system can recruit and activate antigen presenting cells,
T cells, and B cells (Hensley and Amalfitano, 2007). In the absence
of proper activation signals, lymphocytes may be unresponsive to
the presence of antigen. In this article, we will review the mecha-
nisms that the innate immune system uses to respond to viruses,
and then specifically consider how responses to rAAV vectors are
mediated and how they affect successful transgene expression.

OVERVIEW OF INNATE IMMUNE RESPONSES TO VIRUSES
As with other pathogens, in order to respond to viruses, the innate
immune system needs to identify the particle as foreign and poten-
tially dangerous. This occurs by recognizing structural motifs
unique to non-self organisms, commonly referred to as pathogen-
associated molecular patterns (PAMPs), via pattern recognition
receptors (PRRs). The innate immune system distinguishes the
unique characteristics of viruses via PRRs that can recognize both
viral nucleic acids and membrane glycoproteins (Akira et al.,
2006).

The most studied family of PRRs are the toll-like receptors
(TLRs), of which 13 have been described so far (Huang and Yang,
2009). These transmembrane proteins are characterized by an
extracellular domain that binds to the receptor’s cognate PAMP
and an intracellular Toll/IL-1R homology (TIR) domain. TLR2
(glycoproteins and lipoproteins), TLR3 (dsRNA), TLR4 (glycopro-
teins and bacterial LPS), TLR7 (ssRNA), TLR8 (ssRNA), and TLR9
(unmethylated CpG DNA) have all been implicated in initiating
inflammatory responses to viruses (Kawai and Akira, 2011). The
glycoprotein-recognizing receptors are generally found on the cell
surface, while the nucleic acid specific TLRs are most commonly
located in endosomal compartments. TLRs are mostly found in
immune cells – including DCs, macrophages, B cells, and some T
cells – but also in some non-immune cells such as fibroblasts and
epithelial cells (Akira et al., 2006).

Upon receptor engagement, most TLRs recruit MyD88, which
causes phosphorylation of IRAK4 and IRAK1. Subsequent interac-
tion of the IRAKs with TRAF6 and NEMO leads to ubiquitination
of the latter molecules. Once ubiquitinated, TRAF6 and NEMO
recruit TAK1, which activates the MAP kinase and classical NF-κB
pathways (via ubiquitin-mediated degradation of IκB, freeing the
RelA-p50 heterodimer to enter the nucleus). This results in the
production of pro-inflammatory cytokines such as TNF-α and
IL-6. TLR3, on the other hand, uses TRIF as an adaptor molecule
instead of MyD88, but this pathway also leads to TRAF6-mediated
activation of TAK1 and the same downstream inflammatory path-
ways. TLR2 and TLR4 can also induce an inflammatory response
by signaling through TRIF (Kawai and Akira, 2007).

TLR7 and TLR9 signaling can induce the production of type I
interferons (IFNs) in plasmacytoid dendritic cells (pDCs), which
are a subset of DCs specifically designed to sense and respond
to viral infections by producing large amounts of IFN. This sig-
naling pathway is also dependent on MyD88; however, in order
to stimulate IFN production, TLR9 must interact with AP-3 and
traffic to the LAMP2+ lysosome-related organelle (LRO), where
it can engage TRAF3 and signal IRF7 (Gilliet et al., 2008; Sasai
et al., 2010). It is important to note that this pathway need not
be activated in the same cell as the classical NF-κB pathway.
IFNs are a class of soluble cytokines uniquely suited to com-
bat intracellular infections by stimulating the production of over
100 interferon response genes (ISGs). The combined actions of
these genes induce an antiviral state that renders the cell resis-
tant to viral infection. Although the individual effects of most of
these genes are still unknown, the family includes proteins such
as Mx, which sequesters viral ribonucleoproteins, PKR, which
leads to phosphorylation of eIF2α, inhibiting translation, and
OAS, which activates RNAse L to degrade cellular and viral RNA
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(Garcia-Sastre and Biron, 2006). Furthermore, type I IFNs play a
role in augmenting the innate immune response and stimulating
the adaptive immune response to a viral infection by activating NK
cells, inducing short-term proliferation of memory CD8+ T cells,
aiding expansion and functionality of naïve T cell populations,
and acting on CD4+ T cells and B cells to induce antibody isotype
switching (Garcia-Sastre and Biron, 2006; Zhu et al., 2007, 2008).

In addition to the transmembrane TLRs, soluble PRRs can be
found in the cytoplasm. As with the TLRs, these receptors mostly
respond to viral nucleic acids. RIG-I and MDA5 detect dsRNA
formed during the life cycle of most RNA viruses, while DAI has
been implicated in cytoplasmic responses to DNA (Akira et al.,
2006). There is also evidence that NLR proteins in association with
mitochondrial antiviral signaling protein (MAVS; also known as
IPS-1) are capable of regulating type I IFN and NF-κB produc-
tion in response to viral single-stranded or double-stranded RNA
(Ting et al., 2010). Finally, the NLRP3 inflammasome, a cytoplas-
mic complex that consists of NLRP3, ASC, and procaspase-1, can
cleave pro-IL-1β and pro-IL-18 into their active and secreted forms
in response to viral DNA (Muruve et al., 2008).

In summary, the innate immune system has a wide variety of
membrane-bound and cytoplasmic mechanisms to detect viral
components and initiate inflammatory responses that are pri-
marily mediated by NF-κB and type I IFNs. Only some of these
pathways and mechanisms are involved in innate immunity to
AAV, which elicits a limited response. Our current knowledge
of the interactions between the innate immune system and AAV
vectors is summarized in the following.

INNATE RESPONSES TO AAV
As previously noted, the innate immune responses to single-
stranded AAV vectors (ssAAV) are typically low, particularly when
compared with adenoviral vectors (Zaiss et al., 2002). In some sit-
uations, these vectors appear to lack the inflammatory signals that
allow transduced cells such as hepatocytes to be targeted by a CTL
response (Somanathan et al., 2010). Nevertheless, other studies
have indicated that innate immune signaling through TLR9 can
have a crucial effect on the development of a CD8+ T cell response
against a transgene product (Zhu et al., 2009). The authors showed
that AAV can induce the production of type I IFNs in pDCs
[but not cDCs, Kupffer cells (KCs), or macrophages] in vitro, and
that this induction is dependent on the TLR9–MyD88 pathway.
In order to be exposed to this endosomal PRR, AAV must enter
the endosomal pathway. There are two potential mechanisms by
which AAV particles may enter APCs and traffic to endosomes.
Binding to a specific receptor and co-receptor cause the particle to
be endocytosed into a clathrin-coated pit (Figure 1A). Receptor
specificity varies among the AAV serotypes. Examples of primary
receptors utilized by some serotypes include heparin sulfate pro-
teoglycan (HSPG) or sialic acid. AAV2 can utilize several different
co-receptors, including αVβ5 integrin and platelet-derived growth
factor receptor (PDGFR; Ding et al., 2005; Muzyczka, 2010). Alter-
natively, the virus may enter APCs via a clathrin-independent
mechanism, such as pinocytosis (Figure 1A; Harbison et al., 2008).
Once in the endosome, degradation of the viral capsid can expose
the genome to TLR9, which then signals through MyD88 to
activate NF-κB and ISGs (Figures 1B–F; Zhu et al., 2009).

Zhu et al. (2009) also demonstrated that this pathway is crit-
ical for the development of an anti-transgene CTL response and
NAB to both the transgene product and the AAV capsid. This study
represented a significant breakthrough in attempts to elucidate the
source of innate immune responses to AAV and their effects on the
formation of an adaptive immune response that can lead to trans-
gene rejection. A recent study by Martino et al. (2011) explored
the innate immune responses to ssAAV and self-complementary
(scAAV vectors) during hepatic gene transfer. Such scAAV vectors
could potentially display altered responses due to their unique
genome organization (dsDNA rather than single-stranded) and
transduction kinetics (Mccarty, 2008).

TLR9 FACILITATES ENHANCED RESPONSES TO scAAV VECTORS
DURING HEPATIC GENE TRANSFER
Overall, the study by Martino et al. (2011) found that the innate
responses to scAAV vectors were increased relative to ssAAV
(Figure 2). Consistent with previous findings, the response to
single-stranded vectors was rapid yet transient. Within 2 h after
administration, a small increase in type 1 IFNs, TLR9, MyD88,
and TNF-α RNA levels could be observed, which faded within 6 h.
Conversely, the scAAV vectors induced much higher expression of
these genes, plus increases in IL-6 (which now could be observed

FIGURE 1 | A proposed model for innate immune recognition of AAV

vectors (based onTLR9 dependence of the response and general

knowledge ofTLR9 signaling). (A) AAV particles are taken up by APCs;
the exact mechanism of uptake in these cell types is not presently known.
Typically, AAV is taken up via receptor/co-receptor interactions that lead to
internalization in a clathrin-coated pit. However, viral particles might also
enter APCs through other pathways such as pinocytosis. (B) Some capsid
breaks down in the endosome, exposing the genome to TLR9. (C) MyD88
initiates a signaling cascade, resulting in activation of NF-κB1 (p52–RelA
heterodimer). (D) NF-κB enters the nucleus, initiating transcription of
pro-inflammatory cytokines. (E) Alternatively, TLR9 may be rerouted to a
LAMP2+ compartment by AP-3, allowing it to activate IRF7. (F) IRF7
translocates into the nucleus, inducing transcription of interferon response
genes, including IFNα/β.
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FIGURE 2 | Increased innate responses are induced by scAAV relative to

ssAAV. (A) Degradation of the capsid within the endosome can expose the
vector genome to TLR9, which subsequently induces production of
inflammatory cytokines and type I IFNs. The stronger response to
self-complementary genomes may be due to reduced capsid stability of
scAAV, leading to more genome exposure to TLR9. Alternatively, the structure
of the double-stranded DNA may lead to increased TLR9 signaling and

heightened inflammation relative to single-stranded DNA. (B) Experiments in
aTLR9 reporter cell line demonstrate that sensing of scAAV results in stronger
TLR9 signaling compared to ssAAV; this response can be blocked by TLR9
antagonists. Secreted embryonic alkaline phosphatase (SEAP) levels were
measured by absorbance at 650 nm followingTLR9 activation in a 293 reporter
cell line (Invivogen, San Diego, CA, USA) after infection at an MOI of 104 with
ssAAV, scAAV, or scAAV with a TLR9 inhibitory oligonucleotide (ODNi).

systemically by 2 h), CCL5, MIP-1, and TLR2. Cytokine responses
varied with vector dose for scAAV but not ssAAV. Other pro-
inflammatory genes, such IL-1α/1β, TLR1, and TLR3-8, were not
upregulated following injection with either single-stranded or
self-complementary AAV. Unlike adenoviral vectors, neither type
of AAV vector could activate the inflammasome (Martino et al.,
2011).

In accordance with the differential induction of chemokines
by ssAAV and scAAV, the vectors provoked dissimilar levels of
innate immune cell infiltrates 2 h after vector administration.
The ssAAV vectors caused a slight increase in neutrophil and
macrophage infiltration, whereas scAAV injection led to more
substantial infiltration by neutrophils, macrophages, and NK cells.

The production of pro-inflammatory cytokines in response
to scAAV is almost entirely dependent on TLR9. TLR9−/− mice
injected with scAAV displayed no increases in RNA transcripts
for any of the markers previously upregulated, except for a mar-
ginal increase in TLR2. The same effect can be achieved using an
inhibitory oligodeoxynucleotide (ODN); these molecules binds
strongly to TLR9 without inducing signaling, allowing them to
serve as antagonists and block normal TLR9 signals (Stunz et al.,
2002). Co-administration of inhibitory ODN with scAAV broadly
blocked the cytokine response in a similar manner to the TLR9
knockout mice. It was also able to effectively blunt infiltration
by macrophages, NK cells, and neutrophils, demonstrating that
the recruitment of those cells depends on chemokines induced
by TLR9 signaling. The rapid activation of pro-inflammatory
cytokines suggests that the classical NF-κB pathway initiates their
production, which is supported by other studies (Jayandharan
et al., 2011).

At the cellular level, innate immune responses to scAAV in the
liver were found to be partially dependent on KCs, concurring with
previous data from ssAAV (Zaiss et al., 2002). Inactivation of KCs
via gadolinium chloride (GdCl3) injection prior to scAAV admin-
istration significantly altered the profile of the immune response.
Transcripts for IFNα/β, IP-10, and IL-6 were not increased by
scAAV injection following GdCl3 treatment. More minor changes

in TLR9, MyD88, MCP-1, and MIP-1 were observed, while tran-
scripts for TNF-α and TLR2 were not significantly affected by KC
inactivation. This treatment was also able to diminish recruitment
of neutrophils and NK cells, but only slightly reduced macrophage
accumulation. The underlying mechanism of these results is not
yet clear. However, since changing the scAAV capsid to serotype
8, which more effectively transduces hepatocytes, did not increase
the innate immune response, the hepatocytes themselves may not
respond to the vector genomes; it is therefore more likely that the
response is due to an uptake of AAV particles by APCs. Addition-
ally, inactivation of KCs in the presence of scAAV vector prevented
the type I IFN response (Martino et al., 2011).

Not surprisingly, the disparity found in innate immune
responses between ssAAV and scAAV correlates with differences
observed in adaptive responses. At equal doses, scAAV vectors
induced higher CD8+ T cell and antibody responses against the
vector capsid compared to ssAAV. Prevention of TLR9 signaling
either via injection into TLR9−/− mice or co-administration of an
inhibitory ODN caused a significant reduction in CTL responses
and delayed the formation of anti-AAV antibodies. This suggests
that the increased adaptive response to scAAV, like the innate
response, depends on TLR9 signaling. However, following liver-
directed delivery, the adaptive response to the F.IX transgene was
unchanged between ssAAV and scAAV, most likely due to the
temporal separation between the innate signals and transgene
expression. The pro-inflammatory cytokine response induced by
scAAV occurs primarily during the first 9 h after vector adminis-
tration, while the transgene is only expressed after viral uncoating
and transcriptional activation. Thus, the immune system would
not encounter hF.IX in the presence of inflammatory signals that
could induce an effector response (Martino et al., 2011). In con-
trast to hepatic gene transfer, there is some evidence that, in skeletal
muscle, scAAV vectors can direct a stronger response to the trans-
gene product (H. C. Ertl, personal communication). Still, despite
the lack of anti-transgene response after scAAV liver gene trans-
fer, inhibition of TLR9 signaling increases systemic F.IX expres-
sion. This would imply that factors other than an anti-transgene

Frontiers in Microbiology | Microbial Immunology September 2011 | Volume 2 | Article 194 | 4

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


Rogers et al. Innate responses to AAV vectors

adaptive response, such as NK cells or type I IFN activity, could
affect the overall levels of transgene expression in animal models
for AAV, as is known to be the case for adenovirus (Zhu et al.,
2008).

Interestingly, the heightened responses observed for scAAV vec-
tors appear to be entirely dependent on their unique genome
conformation. Single-stranded AAV8 and ssAAV–tyrosine mutant
(TM; an altered AAV2 vector with three surface tyrosines changes
to phenylalanine) displayed a comparable cytokine response to
ssAAV2 vectors, while scAAV8–GFP was similar to scAAV2–hF.IX.
Thus, the capsid serotype and transgene do not appear to affect
the TLR9-mediated innate responses to scAAV during hepatic gene
transfer (Martino et al., 2011).

The highly transient nature of the innate response further
explains why hepatic gene transfer with AAV vectors has been
successful for tolerance induction to transgene products, which is
further facilitated by the anti-inflammatory microenvironment of
the liver (Breous et al., 2009; Loduca et al., 2009; Martino et al.,
2009; Somanathan et al., 2010; Hoffman et al., 2011).

ROLE OF THE AAV CAPSID IN IMMUNE RESPONSES
Although capsid alterations do not modify the TLR9 dependent
innate response, variable immune responses to different AAV cap-
sids has been demonstrated. Some reports have suggested that
certain serotypes, specifically AAV1, are capable of transducing
DCs (Lu and Song, 2009). After transduction and maturation,
DCs may initiate an immune response to the foreign transgene
product; thus, the report by Lu and Song found that transgene
delivered to NOD mice in an AAV1 capsid was more immuno-
genic and less tolerated than when it was delivered with AAV8,
which does not effectively transduce DCs.

Other AAV capsid types have also been shown to have vari-
able immunogenicity. AAVrh32.33, an evolutionarily divergent
serotype isolated from rhesus macaques, yields reduced transgene
expression and stronger anti-vector and anti-transgene CD8+ T
cell responses than AAV8 when injected into skeletal muscle (Mays
et al., 2009). This enhanced response was shown to depend on
CD4+ helper T cells, plus CD40L and CD28, both of which are
co-stimulatory molecules involved in immune activation. Interest-
ingly, anti-CD40 antibody, which is usually able to restore immune
responsiveness in CD40L−/− mice, was ineffective in this case.

Interactions between the viral capsid and complement have
also been shown to play a role in the innate immune response
to AAV (Zaiss et al., 2008). Immunoprecipitation studies showed
that iC3b can bind to the AAV capsid, and that, in vitro, com-
plement binding to AAV2 can increase capsid uptake and pro-
inflammatory cytokine production by macrophages. This effect
was also observed in vivo. Mice deficient in complement receptor
1/2 or C3 were less able to mount a humoral immune response to
AAV than wild-type mice. However, AAV was not found to acti-
vate the alternative complement pathway. The capsid appears to
bind factor H, which can then inhibit factor I-mediated degrada-
tion of C3b to iC3b, providing the virus some protection against
complement.

The observation that scAAV vectors can slightly activate TLR2
transcription raises the question of whether this PRR may play
a minor role in responses to AAV (Martino et al., 2011). While

TLR2 is more commonly associated with sensing surface glyco-
proteins of enveloped viruses, leading to the production of type I
IFNs in inflammatory monocytes, it has also been demonstrated
to be involved in sensing adenoviral particles, which, like AAV,
are non-enveloped (Appledorn et al., 2008; Barbalat et al., 2009;
Quigley et al., 2009). Further, it has been reported that empty AAV
capsids can induce innate immune responses (Hoesel et al., 2010).
Though that mechanism is unclear, it is possible that the capsid-
based inflammatory response could involve TLR2; further study
will be required to elucidate this molecule’s role in innate immune
responses to AAV.

EFFECTS OF TARGET TISSUE ON INNATE IMMUNE RESPONSIVENESS
As has been mentioned previously, the target tissue transduced
by AAV can significantly impact the resulting immune response.
Preclinical and clinical studies of gene therapy for hemophilia
have focused on two target tissues: the liver and skeletal mus-
cle (Matrai et al., 2010). Generally, the tolerogenic nature of
the liver renders hepatic gene transfer more conducive to long-
term transgene expression than gene transfer to skeletal mus-
cle, as demonstrated by an 8-year study in hemophilic dogs
and a detailed analysis in hemophilia B mice (Cao et al., 2009;
Niemeyer et al., 2009). The divergent outcomes between muscle
and liver gene transfer do not appear to be related to differ-
ences in innate responses due to TLR3 signaling (Cao and Herzog,
2008). Despite this, skeletal muscle gene transfer remains a useful
tool for investigators. The more pronounced immune responses
generated in muscle make it easier to elucidate the mechanisms
of immune responsiveness to AAV. Muscular injection of AAV–
CMV–OVA vectors demonstrated that a strong, transgene specific
immune response could cause a loss of transgene expression
(Wang et al., 2005). Other studies in muscle have demonstrated
that the nature of the transgene can affect the development of
an immune response. Membrane-bound β-gal delivered via AAV
was found to be more immunogenic than cytoplasmic transgene,
presumably because it was more accessible for uptake by DCs
and presentation to T cells on MHC class I and II (Sarukhan
et al., 2001). Hopefully, expanding studies of scAAV to mus-
cle can further our understanding of the immune responses to
these vectors and help determine organ-specific effects on innate
immunity.

THE ALTERNATIVE NF-κB PATHWAY AND AAV
So far, this article has focused on traditional innate responses
to AAV initiated through the classical NF-κB pathway. These
responses use NF-κB1 (p105), which is constitutively cleaved into
p50 and complexes with RelA; this heterodimer can be disin-
hibited through ubiquitin-mediated degradation of IκB by IKKβ

(Kawai and Akira, 2007). In contrast, the alternative pathway
uses NF-κB2 (p100). NIK activates IKKα, which induces pro-
teolytic cleavage of p100 into p52, allowing p52–RelB dimers
to translocate to the nucleus and initiate transcription (Sen-
ftleben et al., 2001; Lawrence and Bebien, 2007). While the
classical pathway is strongly involved in the production of pro-
inflammatory cytokines during the innate immune response,
the alternative pathway is considered important for adaptive
immunity (Lawrence and Bebien, 2007).
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However, a recent study has also described a role for the alterna-
tive pathway in AAV transduction (Jayandharan et al., 2011). The
authors report that, in addition to classical NF-κB activation by 2 h
(Figure 3A), infection with AAV is capable of inducing alternative
pathway activation after 9 h, as demonstrated by increased levels
of nuclear p52 both in vitro and in vivo. Expression of an EGFP
transgene was also increased by 20–25 fold following alternative
pathway activation. VP16, an activator of both pathways, increased
fluorescence in HeLa cells, while Bay11, which can inhibit both the
classical and alternative pathways, ablated transgene expression.
PDTC (an inhibitor of the classical pathway), on the other hand,
did not affect transgene expression. This result concurs with pre-
vious studies demonstrating that the AAV genome can be bound

and transcriptionally inhibited by cellular proteins, one of which
was later shown to be an NF-κB-repressing factor (Qing et al.,
1997; Jayandharan et al., 2011).

Adeno-associated virus was also able to induce alternative path-
way signaling in vivo (Jayandharan et al., 2011). Liver homogenates
from 9 h after injection showed increased nuclear p52, suggest-
ing NF-κB2 signaling; p52 elevation could be ablated if Bay11
was administered before the vector (Figure 3D). That alternative
pathway signaling could be detected from whole liver suggests
the transduced hepatocytes, rather than tissue-resident APCs, are
responsible for this expression. Indeed, DCs exposed in vitro to
AAV did not active the classical or alternative NF-κB pathways
and were not effectively transduced to produce EGFP. Addition

FIGURE 3 | Model of proposed in vivo innate and adaptive immune

responses to AAV vectors. (A) Within 2 h after vector injection, AAV is
phagocytosed by an APC; it is unclear whether initial contact is through a
cDC, pDC, KC, MΦ, or other cell type. Phagocytosis may be aided by
opsonization through iC3b and complement receptor 1/2 (CR1/2). Once in
the endosome, the virus’s genome is detected by TLR9, which
subsequently activates the classical NF-κB pathway and interferon
response genes (ISGs). TLR9i can inhibit both these responses, while
Bay11 can block the NF-κB pathway. (B) Initiation of these pathways
causes the APC to mature, up-regulating costimulatory molecules and
producing pro-inflammatory cytokines like TNF-α, IL-6, CCL5, MCP-1, and
type I IFNs. Steroids can inhibit the inflammatory activity of these
cytokines. Mature APCs also present capsid fragments on MHC class I
and II, unless protease inhibitors are utilized to hinder degradation of the
capsid. (C) Concurrently, AAV productively transduces target cells. (D)

Within 9 h, the alternative NF-κB pathway is triggered in these cells,

enhancing expression of the transgene product. Bay11 can also blockade
this NF-κB pathway. (E) Over the course of several days, the inflammatory
signals from internalized AAV particles and the local environment induce
maturation of APCs. Activation of the alternative NF-κB pathway in these
APCs may enhance transgene expression and cross-presentation,
augmenting their ability to prime an adaptive response (involving B cells,
CD4+ T cells, and CD8+ T cells) to both the AAV capsid and the transgene
product. (F) B cells subsequently produce antibodies against the capsid,
inhibiting further transduction, and against the transgene product,
inhibiting its efficacy. (G) Capsid or transgene specific CD8+ T cells
recognize peptide fragments of either protein in class I MHC on
transduced cells. Recognition prompts the CTLs to attack and kill the
target cell. Death of a significant number of transduced cells can lead to a
reduction or complete elimination of transgene expression.
Capsid-specific CTL killing can be reduced by inhibiting capsid degradation
in target cells with proteasome inhibitors.
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of VP16 or pro-inflammatory cytokines, which did activate both
pathways, caused the DCs to become permissive to AAV transduc-
tion. Addition of cytokines and Bay11 resulted in reduced NF-κB
activation and transduction relative to non-inhibited cells.

Thus, the alternative pathway seems to support AAV transduc-
tion in multiple cell types. While increased transduction efficiency
is desired in hepatocytes, expression in APCs is more likely to lead
to an enhanced immune response against the transgene. Activa-
tion of the alternative pathway can also enhance the ability of DCs
to cross-present exogenous antigen to CD8+ T cells, so even in the
absence of APC transduction, NF-κB2 activation could induce a
stronger immune response (Lind et al., 2008). The authors there-
fore investigated the effects of transient NF-κB suppression via
Bay11 on long-term transgene expression (Jayandharan et al.,
2011). Administration of Bay11 prior to gene transfer abrogated
the rapid production of pro-inflammatory cytokines mediated
by the classical pathway and reduced the anti-capsid antibody
response. Additionally, 2 weeks post injection, both Bay11 treated
and untreated mice showed comparable EGFP expression, sug-
gesting that temporary inhibition of the alternative pathway does
not interfere with sustained transgene expression. The mechanism
by which AAV infection activates the alternative pathway is unclear
and requires further study.

However, preliminary studies to test the mechanism of
NF-κB-mediated increases in transgene expression from AAV vec-
tors suggest that activation of the classical NF-κB p65 component
in the cytosol may require the vector capsid, while the activation
and function of alternative NF-κB p52 is subsequently amplified
by its binding to AAV2 inverted terminal repeats (ITRs; Jayand-
haran et al., 2011; Jayandharan, unpublished results). Transfec-
tion in HeLa cells with plasmids containing increasing numbers
of functional ITRs + D-sequence in the presence of the NF-κB
activator VP-16 showed an increase in EGFP expression in an
ITR + D-sequence-dependent fashion, whereas Bay11 ablated this
effect. This suggested that putative NF-κB-responsive transcrip-
tion factor binding sites exist in the AAV–ITRs. Further in silico
analysis with a human transcription factor database demonstrated
the presence of several binding sites for NF-κB binding co-factors,
such as p300, TFIIB, and SplI (Jayandharan et al., 2011). One of
these is the p300/CREB transcription factor that has been recently
shown to be associated with the AAV genome (Dean et al., 2009).

THERAPEUTIC POTENTIAL OF BLOCKING INNATE
RESPONSES TO AAV
After examining what is known about the innate immune
responses to AAV, it is prudent to discuss how these findings could
be translated into improved therapies in the clinic. Given the brief
nature of these responses, it seems that transient immunosup-
pression will down-regulate immune responses that are potentially
deleterious to successful gene therapy. The recent reports reviewed
here have, through preclinical studies, highlighted the potential
for this sort of protocol to succeed (Figure 3). Inhibition of TLR9
signaling through an ODN antagonist and suppression of both
NF-κB pathways were each able to reduce, but not completely elim-
inate, immune responses to the vector (Jayandharan et al., 2011;
Martino et al., 2011). Bay11 alone was probably only partially suc-
cessful because,as an NF-κB inhibitor, it does not block production

of type I IFNs, which are critical mediators of responses to viruses
(Figures 3A,D). Obstructing TLR9 activation (Figure 3A), on the
other hand, seemed mostly successful, but an anti-capsid antibody
response began to develop at 4 weeks post injection. Although
either alone was not completely effective,perhaps a combination of
these two therapies would more successfully abolish the immune
response to AAV.

While primary adaptive immune responses rely heavily on acti-
vation by inflammatory signals such as those derived from TLR
signaling, a recent report has indicated that secondary expansion
of memory CD8+ T cells occurs independently of MyD88 signal-
ing (Rahman et al., 2011). Hence, therapeutics directed against
specific innate pathways such as TLR–MyD88 may not be capable
of preventing the loss of transduced cells due to capsid-specific
memory CD8+ T cells.

Other groups are also exploring different transient treatments
to co-administer with vectors to increase the success of the therapy.
Treatment with glucocorticoids prior to systemic delivery of ade-
noviral vectors could ablate immunotoxicity without negatively
impacting transduction efficiency (Figure 3B; Seregin et al., 2009).
This strategy may also be applicable to AAV vectors. Adenoviral
research has also indicated that complement inhibition may reduce
the immune response to viral vectors. Fusion of decay-activating
factor (DAF), a complement inhibitor, to the capsid of adenovirus
5 reduced the antibody and CD8+ T cell response to Ad-encoded
HIV-Gag; antibody responses to the adenovirus capsid were also
diminished by this strategy (Seregin et al., 2011). Thus, comple-
ment inhibition may be another strategy to increase the efficacy of
AAV-mediated gene transfer.

Instead of artificially blocking the immune response with drugs,
the other way to reduce inflammation would be to reduce vector
load. To that end, as mentioned previously, tyrosine mutant AAV
vectors have been developed that enhance transduction efficiency
by resisting proteasomal degradation; this allows fewer vector par-
ticles to achieve the same expression levels as significantly higher
titers of wild-type AAV (Li et al., 2010; Markusic et al., 2010).
A similar effect could also potentially be achieved using protea-
some inhibitors at the time of vector administration to enhance
transduction efficiency (Figures 3B,C).

These two treatment modalities do not have to be mutually
exclusive. It is possible that a combination of methods that enhance
vector efficiency and suppress the immune response could lead to
safer and more effective AAV gene therapy in humans.

CONCLUSION
It is clear that, despite its low immunogenicity, AAV is detected
and can cause innate immune responses. These responses can
interfere with transgene expression, negatively impacting the out-
come of gene therapy. Among the variety of mechanisms to
respond to viruses, sensing of vector genomes by TLR9 appears
to be the key mediator of these responses. Through MyD88,
TLR9 induces the production of pro-inflammatory cytokines
and chemokines (via NF-κB) and type I IFNs (Figure 1). These
recruit additional pro-inflammatory cells, interfere with trans-
duction, and lead to the development of an adaptive immune
response (Figures 3E–G). Preventing signaling through TLR9
completely blocks the innate response and reduces adaptive

www.frontiersin.org September 2011 | Volume 2 | Article 194 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


Rogers et al. Innate responses to AAV vectors

responses, suggesting that it is the most important innate response
element to AAV. However, there is also evidence that the cap-
sid can be involved in these responses, by dictating which cell
types are transduced, by binding complement, and perhaps by
some signaling through TLR2. Additionally, the alternative NF-
κB pathway has a role in immune responses and transgene
expression.

Though we have a much greater understanding of AAV
immunology due to recent findings, a number of questions remain
unanswered. For instance, it is unclear why the response to AAV
disappears so rapidly compared to other viral vectors. Is the ini-
tial inflammatory signal too weak to continue to self-propagate,
is the duration of active signaling following pathogen recognition
reduced compared to other vectors, or could the vector trigger
a pathway that down-regulates the response? Also, the mecha-
nisms behind the enhanced responses observed to scAAV vectors
need further investigation. Although there is evidence that self-
complementary TLR9 agonists can signal more strongly than
single-stranded agonists, other factors maybe involved (Struthers
et al., 2010). The capsid of self-complementary vectors may be
less stable, causing more DNA to be released in the endosome,
or perhaps the self-complementary genome is not completely
encapsulated (Figure 2A). The vector cassette does not affect the

response, and it is therefore unlikely that specific sequences in the
DNA are responsible.

Furthermore, the cell–cell interactions during in vivo responses
to AAV are still uncertain. In vitro data indicate that pDCs are
responsible for type I IFN production, yet in vivo results from
hepatic gene transfer demonstrate that KCs are required (Zhu
et al., 2009; Martino et al., 2011). These cell types, and per-
haps others, likely cooperate within in the host to mount an
immune response. Blocking innate responses noticeably reduces
the adaptive response to capsid, yet it is uncertain whether this
effect extends to the transgene product. Nonetheless, in TLR9−/−
mice, AAV2–influenza hemagglutinin (HA) gene transfer to skele-
tal muscle exhibits diminished responses against HA (Zhu et al.,
2009). On the other hand, in the liver, increasing signaling through
TLR9 with scAAV vectors did not increase the adaptive response to
hF.IX (Martino et al., 2011). Whether adaptive immune responses
to the transgene product can be effectively prevented by blocking
innate immunity can be addressed in future studies.

Clearly, a number of additional studies will be required in order
to better understand the innate immunology of AAV. Hopefully,
in answering these questions, we can define interventions that will
allow us to improve AAV gene therapy and make it a practical
treatment for a variety of genetic diseases.
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