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INTRODUCTION

The plant-associated bacterium Pseudomonas syringae pv. syringae simultaneously pro-
duces two classes of metabolites: the small cyclic lipodepsinonapeptides such as the
syringomycins and the larger cyclic lipodepsipeptide syringopeptins SP22 or SP25. The
syringomycins inhibit a broad spectrum of fungi (but particularly yeasts) by lipid-dependent
membrane interaction. The syringopeptins are phytotoxic and inhibitory to Gram-positive
bacteria. In this study, the fungicidal activities of two major syringopeptins, SP22A and
SP25A, and their mechanisms of action were investigated and compared to those of
syringomycin E. SP22A and SP25A were observed to inhibit the fungal yeasts Saccha-
romyces cerevisiae and Candida albicans although less effectively than syringomycin
E. S. cerevisiae mutants defective in ergosterol and sphingolipid biosyntheses were
less susceptible to SP22A and SP25A but the relative inhibitory capabilities of SRE vs.
SP22A and SP25A were maintained. Similar differences were observed for capabilities
to cause cellular KT and Ca?* fluxes in S. cerevisiae. Interestingly, in phospholipid bilay-
ers the syringopeptins are found to induce larger macroscopic ionic conductances than
syringomycin E but form single channels with similar properties. These findings suggest
that the syringopeptins target the yeast plasma membrane, and, like syringomycin E,
employ a lipid-dependent channel-forming mechanism of action. The differing degrees
of growth inhibition by these lipodepsipeptides may be explained by differences in their
hydrophobicities. The more hydrophobic SP22A and SP25A might interact more strongly
with the yeast cell wall that would create a selective barrier for their incorporation into the
plasma membrane.
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K™ efflux and transient Ca?* fluxes (Zhang and Takemoto, 1989;

In addition to well-characterized small cyclic lipodepsinonapep-
tides, Pseudomonas syringae pv. syringae produces larger cyclic
lipodepsipeptides known as the syringopeptins. These compounds
are composed of 22 or 25 amino acids (SP22 and SP25, respec-
tively) with an octadepsipeptide ring structure and a 3-hydroxy
fatty acyl chain. Isoforms of SP22 and SP25 possessing fatty acyl
chains composed of 10 and 12 carbons are designated A and B
homologs, respectively. They or close structural variants are pro-
duced by other P, syringae pathovars (Vassilev et al., 1996; Grgurina
et al., 2005). The syringopeptins are phytotoxic, and also have
antimicrobial activities against Gram-positive bacteria (Lavermic-
occa et al.,, 1997; Grgurina et al., 2005; Bensaci and Takemoto,
2007). However, little is known about the antifungal properties
of the syringopeptins although inhibitory activities against yeasts
including the pathogen Candida albicans are briefly mentioned in
reports (Iacobellis et al., 1992; Lavermicocca et al., 1997; Grgurina
et al., 2005).

The small cyclic lipodepsinonapeptide syringomycin E (SRE)
acts on yeast plasma membranes to cause increases in cellular

Takemoto et al., 1991). The effects are consistent with SRE’s ability
to form ion-conducting voltage sensitive channels in planar lipid
bilayers (Feigin et al., 1996; Kaulin et al., 1998; Malev et al., 2002).
Studies with yeast lipid mutants revealed that sphingolipids and
sterols (lipids that predominate in the plasma membrane) modu-
late SRE’s fungicidal activity (Cliften et al., 1996; Grilley etal., 1998;
Stock et al., 2000). Lipid-modulated clustering of single channels
each composed of six SRE molecules has been proposed as the
structural basis for SRE’s mechanism of action on membranes
(Kaulin et al., 1998, 2005; Malev et al., 2002).

Less is known about the mechanisms of action of the
syringopeptins. A few studies have shown that the syringopeptins
are capable of forming ion-conducting membrane channels
(Hutchison and Gross, 1997; Dalla Serra et al., 1999; Agner et al.,
2000). In lipid bilayers and erythrocytes, SP22A channels do
not thermally inactivate as do SRE channels — a phenomenon
related to SP22A’s greater effectiveness in ordering membrane
lipids (Szabo etal.,2004). In plant systems, the syringopeptins have
been shown to cause electrolyte leakage in leaf tissues (Iacobellis
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et al., 1992; Lavermicocca et al., 1997), to increase the perme-
ability of tonoplasts (Carpaneto et al., 2002), close stomata (Di
Giorgio et al., 1996a), and modify H' fluxes across mitochondria
and plasma membranes (Di Giorgio et al., 1994, 1996b). Finally,
syringopeptins interact with bacterial cell surface teichoic acids
(Bensaci and Takemoto, 2007), but whether and how they act on
bacterial membranes is still unknown. Despite recognition that
the syringopeptins are antifungal, there are no published studies
devoted to the fungicidal mechanisms of action of syringopeptins.

In this study, we addressed the relationship between fungici-
dal activity and the mechanism of action of the syringopeptins.
Despite structural differences between the syringopeptins and
SRE, we show that the physiological responses and the mem-
brane lipid requirements for growth inhibition are similar but the
degrees of effectiveness differ in the order: SRE > SP22A > SP25A.
To examine the basis for these differences, the channel-forming
properties of the syringopeptins in lipid bilayers in comparison
with those of SRE were investigated. It was found that in pla-
nar lipid bilayers SP22A and SP25A induce larger macroscopic
conductances than SRE but form single channels of very similar
properties.

MATERIALS AND METHODS

YEAST STRAINS

Saccharomyces cerevisiae SRE-sensitive strains KZ1-1C, 8A-1B,
W303C, and BY4741 and SRE-resistant and lipid biosynthesis
mutant strains Aerg3, Asyr2, Aiptl, Aelo2, Aelo3, and Afahl
were described previously (Taguchi et al., 1994; Hama et al., 2000
Stock et al., 2000). SRE-resistant strains Aerg3 (formerly Asyrl,
Taguchietal., 1994) and Afahl are single-gene disruptants and iso-
genic to parental strains 8A-1B and BY4741, respectively. All other
SRE-resistant mutants are single-gene disruptants and isogenic to
parental strain W303C. C. albicans ATCC10231 was obtained from
the American Type Culture Collection (Manassas, VA, USA). All
yeast strains were grown at 28°C and maintained (at 5°C) with yeast
extract—peptone dextrose (YPD) broth or agar medium (Hama
et al., 2000).

PURIFICATION OF SRE, SP22A, AND SP25A

SRE (M; 1224) was purified from P. syringae pv. syringae strains
B301D or M1 by previously described methods of Bidwai et al.
(1987), Adetuyi et al. (1995). SP22A (M; 2142) and SP25A (M;
2397) were purified from extracts of strains P. syringae pv. syringae
B301D and M1 respectively, using methods described earlier
(Bensaci and Takemoto, 2007).

GROWTH INHIBITION

For measuring growth inhibition in liquid batch cultures, S. cere-
visiae strain KZ1-1C was first grown in YPD broth medium at
28°C in 125 mL capacity Erlenmeyer flasks with rotary shaking
for 48 h to a density of ~8 x 108 cellsmL™!. The cells were cen-
trifuged and the sedimented cells suspended in YPD broth medium
to give 2.4 x 107 cells mL~!. SRE, SP22A, or SP25A were added
at designated concentrations (between 0.8 and 9.3 uM). The sus-
pensions were incubated with rotary shaking at 28°C and samples
removed hourly for direct cell counts using a light microscope
and hemocytometer. Minimal inhibitory concentrations (MICs)

were determined by the microbroth dilution assay according to
methods of the National Committee of Clinical Laboratory Stan-
dards (NCCLS, 2002). Yeast strains were grown to a final concen-
tration of 108 colony-forming units (CFU) mL~! and suspended
at a final concentration of 5 x 10> CFUmL™!. Cell suspensions
(25 wL) were added to 25 pL aliquots of twofold serial dilutions of
SRE, SP22A, and SP25B. YPD broth media were dispensed (100 wL
total volume) in wells of 96-well polystyrene microtiter plates. The
plates were incubated for 24 h at 28°C. The MICs were determined
by visual inspection of the plate. For determination of cell viabil-
ity, a suspension of 4 x 10> CFU mL~! was treated with different
concentrations of SRE, SP22A, and SP25A and the cell suspension
was twofold serially diluted. Aliquots (100 pLL) were spread-plated
onto YPD agar, the agar plates incubated for 24-48 h at 28°C, and
the numbers of colony-forming units per milliliter of undiluted
cell suspension determined. All growth inhibitory experiments
were performed in triplicate and the results reported as mean
values.

K* EFFLUX

Whole cell K™ efflux rates were determined as changes in extracel-
lular K™ concentrations. Yeast strain KZ1-1C was grown in YPD
broth medium with rotary shaking at 28°C to a density of 103
cells mL~!. Cells were suspended in 2 mM Tris/MES buffer, pH
6.5, and 0.1 M-glucose with or without SRE, SP22A, or SP25A (at
concentrations of 1, 10, or 100 wM) to Agoo nm of 1 in 125 mL
capacity Erlenmeyer flasks with rotary shaking (200 rpm) at 28°C
(Takemoto et al., 1991). At 5 min after suspension, 1 mL samples
were withdrawn, centrifuged in an Eppendorf microcentrifuge for
30's, and the supernatant fractions were recovered. K™ concentra-
tions were determined by atomic absorption spectroscopy (AA/AE
spectrophotometer 457, Instrumentation Laboratories).

CAZ+ UPTAKE

The net cellular uptake of °Ca** was measured using strain
KZ1-1C as described previously (Takemoto et al., 1991). Cells
were grown in YPD broth medium to a density of 1 x 107 cells
mL~!, harvested by centrifugation, and then suspended in YPD
broth medium to a density of 4 x 107 cells mL™!). Ten milliliter
aliquots were dispensed in 125 mL capacity Erlenmeyer flasks with
radioactive ¥°CaCl, (Amersham Radiochemicals) and incubated
with rotary shaking (200 rpm) at 28°C. The specific radioactivity
of ¥*Ca?* was adjusted to 4 mCi (148 MBq) per millimole of CaCl,
(Takemoto et al., 1991). SRE, SP22A, or SP25A were added 5 min
following addition of 43CaCly. At designated times, cell samples
(200 L) were collected on glass fiber filters (0.45 WM pore size),
the filters were quickly washed twice with ice-cold water, and the
radioactivity on the filters determined using a liquid scintillation
counter.

CHANNEL FORMATION IN PLANAR LIPID BILAYERS

Lipid bilayer electrophysiological experiments were performed
using 1,2-dioleoyl-sn-glycero-3-phosphorylcholine (DOPC; Avanti
Polar Lipids) as previously described (Blasko et al., 1998; Malev
et al., 2002). Solutions of 0.1 M NaCl were buffered with 5 mM
MOPS (Sigma) to pH 6. Bilayer lipid membranes were prepared by
a monolayer-opposition technique (Montal and Mueller, 1972) on
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a 50- to 100-pm diameter aperture in the 15-pm thick Teflon film
separating two (cis and trans) compartments of a Teflon chamber.
SP22A,SP25A, and SRE were added to the aqueous phase of the cis-
side compartment. A pair of Ag/AgCl electrodes with agarose/2 M
KCl bridges was used to apply transmembrane voltages and to
measure single-channel currents. All experiments were performed
at room temperature (22 & 2°C). Current measurements were car-
ried out using an Axopatch 200B amplifier (Axon Instruments) in
a voltage clamp mode. The data were filtered with a low-pass 8-
pole Model 9002 Bessel filter (Frequency Devices) at 1 kHz and
directly recorded into computer memory with a sampling fre-
quency of 5kHz. Data were analyzed using pClamp 9.2 (Axon
Instruments) and Origin 7.0 (Origin Lab). Current transition his-
tograms were generated for each tested voltage. Histogram peaks
were fitted with the normal distribution function. Single-channel
conductance was calculated as the mean single-channel current
divided by the applied transmembrane voltage.

RESULTS

GROWTH INHIBITORY ACTIVITIES AGAINST YEASTS

SRE and syringopeptins SP22A and SP25A inhibited the growth
of different strains of S. cerevisiae and C. albicans ATCC 10231
(Table 1). In all cases, SP22A was ~2-fold more active than
SP25A and both were less inhibitory than SRE. The same relative
inhibitory capabilities (i.e., SRE > SP22A > SP25A) were observed
when measuring effects on cell numbers in batch growth cultures
(Table 2) and on cell viability (Figure 1). In microbroth dilu-
tion inhibition assays, growth did not resume at MIC levels of
SRE, SP22A, or SP22B after 48 h incubation indicating that these
compounds were fungicidal (data not shown).

Table 1 | Minimal inhibitory concentrations (MICs) of SRE, SP22A, and
SP25A against S. cerevisiae strains, lipid biosynthetic mutants, and
C. albicans ATCC10231.

Yeast strains MIC (nM)*
SRE SP22A SP25A

S. cerevisiae
Kz-1C 0.8 3.6 "6.5-13
W303C ~0.8-1.6 1.8-3.6 "3.3-6.5
Asyr2 "3.2-6.4 N72-14.4 13.0
Aelo3 "1.6-3.2 "3.6-72 ~6.5-13
BY4741 0.8 1.8 3.3
Aipt1 N1.6-3.2 "3.6-72 "6.5-13
Afah1 "1.6-3.2 "1.8-3.6 "6.5-13
Aelo2 ".6-3.2 "3.6-72 "6.5-13
Asknl N1.6-3.2 "3.6-72 "6.5-13
8A-1B 0.8 1.8 3.3
Aerg3 3.2 72 13

C. albicans ATCC10231 3.2 3.6 6.5

"MIC values were obtained from at least two experiments each with triplicate
determinations.
~Two different values were obtained in replicate experiments.

SUSCEPTIBILITY OF LIPID BIOSYNTHETIC MUTANTS

Previous studies showed that certain S. cerevisiae mutants with
defects in sphingolipid or sterol biosynthesis are more resistant to
SRE than isogenic wild type strains (Grilley et al., 1998; Hama

Table 2 | Effects of SRE, SP22A, and SP25A on batch culture growth of
S. cerevisiae strain KZ-IC.

Addition Amount (LM) Generation time (h)’
None 0.0 5.33
SR 0.8 oo
SP22A 2.3 8.66
4.7 o0
9.3 00
SP25A 2.1 6.3
4.1 8.66
8.2 o0

"Calculated as 0.693 divided by the specific growth rate (cell doubling h~') during
exponential growth. Mean values from three separate experiments.
~oo = Infinite.
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FIGURE 1 | Inhibition of yeasts and lipid mutants by syringopeptins
and SRE. (A) Effects of SP25A (¢), SP22A (M), and SRE (A) at the
designated concentrations on the viability of C. albicans (solid line) and S.
cerevisiae strain KZ-1C (dashed lines). Error bars indicate SDs from average
values from three separate experiments. (B) Effects on sphingolipid and
ergosterol biosynthesis mutants and isogenic parental strains replica plated
onto YPD agar with or without: SP22A (1.8 wM), SP25A (3.3 uM) or SRE
(0.8 M). The plates were incubated at 28°C for 48 h.
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et al., 2000; Stock et al., 2000). In the present study, mutant
strains with genes deleted for dihydrosphingosine C-4 hydroxy-
lase (Asyr2), mannosyl-diinositolphosphoryl-ceramide synthase
(Aiptl), sphingolipid very long chain elongases (Aelo2 and
Acelo3),and sterol C5,6 desaturase (A erg3) were each less suscepti-
ble to inhibition by SP22A and SP25A at MICs for their respective
isogenic wild type parental strains (Table 1; Figure 1B). Mutant
strain Afahl defective in sphingolipid fatty acid a-hydroxylase was
more susceptible to SP22A than to SRE or SP25A (Figure 1B) but
nevertheless more resistant to SP22A concentrations below 2 uM
that were inhibitory to isogenic wild type strain BY4741 (Table 1).
The inhibitory patterns suggest influences of target membrane
lipids on the fungicidal action of SP22A and SP25A similar to
those for SRE (Grilley et al., 1998; Hama et al., 20005 Stock et al.,
2000; Kaulin et al., 2005). Although needed at higher concentra-
tions with the mutants, the same relative inhibitory capabilities
of SRE > SP22A > SP25A were observed regardless of the lipid
biosynthesis defect.

EFFECTS ON CELLULAR K+ AND CAZ* FLUXES

As previously observed for SRE (Takemoto et al., 1991), SP22A,
and SP25A caused net Kt effluxes and Ca?T influxes in whole
cells of S. cerevisiae strain KZ1-1C (Figure 2). Higher concen-
trations of SP22A and SP25A were required to give the effects
as compared to SRE. SRE stimulated K™ efflux at concentrations
starting from 1 wM; while 10 and 100 uM of SP22A and SP25A,
respectively, were required to achieve similar degrees of K efflux.
Cellular Ca?* influx was observed within 15 min after 5 WM SRE
addition (data not shown). But, 40 and 120 uM of SP22A and
SP25A, respectively, were required for detection of Ca?* influx. At
these concentrations, Ca>* influx was not evident until about 20
and 30 min after addition of SP22A and SP25A, respectively.

CHANNEL FORMATION IN PLANAR LIPID BILAYERS
SRE forms well-characterized voltage-dependent ion-conducting
channels in lipid bilayers (Feigin et al., 1996; Kaulin et al., 1998;
Malev et al., 2002). To examine whether the differences in the rel-
ative fungicidal capabilities of SRE, SP22A, and SP25A may lie
in their different channel-forming properties, the conductances
of planar lipid bilayers doped with the three compounds were
compared (Figure 3). In all three cases, application of poten-
tials negative from the side of lipodepsipeptide addition induced
increases in macroscopic conductance. After a 5-min equilibra-
tion, the conductance reached its stationary value, which within
the deviations expected for stochastically operating discrete pores,
was stable for at least 10 min (Figure 3A). Application of pos-
itive voltages produced membrane conductance decreases (not
shown), indicating closing of the pores. SRE produced smaller
steady-state conductances at concentrations that were significantly
higher (~150-fold) than those produced by the syringopeptins.
SP22A induced slightly higher conductances than SP25A.
Single-channel recordings with all three lipodepsipeptides
demonstrated a similar pattern (Figure 3B). In all cases, two types
of single-channel conductance fluctuations were observed, small
and large, differing in the levels of conductance five to sixfold
as was described earlier for SRE (Malev et al., 2002; Kaulin et al.,
2005). The dwell times of the large channels were longer than those

o
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FIGURE 2 | Influence of syringopeptins on ion fluxes of yeast cells. (A)
Effects of SRE (blank bars), SP22A (gray bars), and SP25A (striped bars) on
K* efflux by yeast S. cerevisiae strain KZ1-1C cells growing in YPD medium.
The cells were exposed to designated concentrations of SRE, SP22A, or
SP25A and extracellular K* concentrations measured. Control efflux (no
treatment) was similar to efflux with SP22A treatment at 1 wM. Error bars
show relative SEs from three separate experiments. (B) Effects on *Ca?*
uptake by S. cerevisiae strain KZ1-1C cell suspensions. SRE, SP22A, and
SP25A were added 5 min following addition of **CaCl,. SP22A (solid lines)
concentrations were 10 wM (4) and 40 wM (H); SP25A (dashed lines)
concentrations were 10 uM (4), 40 LM (o), and 120 uM (A). Total CaCl,
concentration was 50 uM. SRE concentration was 5 M (inset). Error bars
indicate SDs of average values from three separate experiments.

of the small ones. The values of the single-channel conductance
for the small channels over the range of 200 mV were close for
all three lipodepsipeptides (Figure 3C). Thus, the properties of
the single transmembrane channels, formed by SRE, SP22A, and
SP25A were essentially the same.

DISCUSSION

SRE, SP22A,and SP25A caused cellular K* and Ca* fluxes at rela-
tive concentrations that paralleled their relative growth inhibitory
activities against yeasts. The concentrations of these compounds
needed to elicit the ion fluxes were higher than the correspond-
ing MIC values suggesting that additional events are contributing
to growth inhibition. It was also observed that SP22A and SP25A
induced voltage-dependent conductance in planar lipid bilayers
and that their yeast inhibitory capabilities were influenced by
sphingolipid and sterol biosynthesis — phenomena characteristic
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FIGURE 3 | (A) Time courses of the macroscopic ion conductance of
bilayers doped with SRE, SP22A, and SP25A, recorded at the applied
voltage of —100 mV. Ten individual observations were made for each
compound and concentration with one representative trace shown
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here. (B) Records of conductance fluctuations at —150 mV/
transmembrane voltage of SRE, SP22A, and SP25A-modified bilayers.
(C) Conductance-voltage curves for SRE, SP22A, and SP25A small
channels.

of SRE effects (Feigin et al., 1996; Grilley et al., 1998; Hama et al.,
2000; Stock et al., 2000). Therefore, based on what is known of
SRE’s mechanism of action (Malev et al., 2002; Takemoto et al.,
2003; Kaulin et al., 2005), it is suggested that the syringopeptins
form stable membrane pores comprised of and modulated by host
membrane lipids and particularly sphingolipids and sterols.

The membrane channel properties of SP22A and SP25A were
examined with planar lipid bilayers to explore the reasons for
their lower yeast growth inhibitory activities as compared to SRE.
Both syringopeptins turned out to be ~150 times more effec-
tive than SRE in inducing macroscopic conductance in DOPC
bilayers. At the same time, the properties of the single channels
formed by all three lipodepsipeptides were very similar (Figure 3)
pointing to their similar structural organization (Ostroumova
et al., 2007). It is suggested that the macroscopic conductance
differences stem from the structural differences of SRE vs. the
syringopeptins. SRE lacks a hydrophobic peptide domain, whereas
SP22A and SP25A have hydrophobic peptide domains of 14 and
17 amino acids, respectively (Ballio et al., 1991). As a consequence,
the syringopeptins are expected to interact more favorably with
lipids than SRE. However, due to SP22A and SP25A increased
hydrophobicities, their interaction with the yeast cell wall (Chaf-
fin et al, 1998; Klis et al., 2006) might also be significantly
increased thus boosting its filtering function. This additional bar-
rier on their route to the plasma membrane may account for the

discrepancy between their activities in planar lipid bilayers vs.
growing cultures.

It is not known precisely how the syringopeptins and SRE
interact with membrane lipids to form channels (Malev et al,,
2002). However, the electrostatic and hydrophobic interactions
between SP22A and membrane lipids are known to increase lipid
ordering as a prelude to stable pore formation (Szabo et al,
2004). In addition, unlike SRE, the SP22A pores are not ther-
mally inactivated suggesting a higher degree of affinity between
SP22A and membrane lipids as compared to SRE (Szabo et al,,
2004). It is therefore reasonable to assume that the lipid compo-
sitions of the yeast plasma membranes will influence stabilization
of syringopeptin channel clusters differently from SRE channel
clusters. This may constitute an additional component of the
mechanistic basis for the different degrees of fungicidal activities
of these lipodepsipeptides.

The present results emphasize the importance of the size and
character of the hydrophobic moieties of these cyclic lipodep-
sipeptides in target cell specificity. SRE is mainly antifungal and
the syringopeptins are antibacterial and phytotoxic as well (Iaco-
bellis et al., 1992; Lavermicocca et al., 1997; Grgurina et al,,
2005). It appears that the higher degree of hydrophobicity of the
syringopeptins imparts a broader range of target cell specificity for
plant-associated pseudomonads that produce these compounds.
These bacteria are mainly plant epiphytes but also opportunistic
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plant pathogens, and their cyclic lipodepsipeptide profiles would
influence the complex balance between pathogenicity and sapro-

phytic existence.

In summary, the present studies show that like SRE the
syringopeptins inhibit the growth of fungal yeasts and with similar
physiological responses. Although they are less potent fungicides
than SRE, the syringopeptins form lipid-modulated single chan-
nels in planar lipid bilayer membranes that are similar to those

of SRE.
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