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Seasonal plankton blooms correlate with occurrence of cholera in Bangladesh, although the
mechanism of how dormant Vibrio cholerae, enduring interepidemic period in biofilms and
plankton, initiates seasonal cholera is not fully understood. In this study, laboratory micro-
cosms prepared with estuarine Mathbaria water (MW) samples supported active growth
of toxigenic V. cholerae O1 up to 7 weeks as opposed to 6 months when microcosms were
supplemented with dehydrated shrimp chitin chips (CC) as the single source of nutrient.
Bacterial counting and detection of wbe and ctxA genes were done employing culture,
direct fluorescent antibody (DFA) assay, and multiplex-polymerase chain reaction methods.
In MW microcosm, the aqueous phase became clear as the non-culturable cells settled,
whereas the aqueous phase of the MW–CC microcosm became turbid from bacterial
growth stimulated by chitin. Bacterial chitin degradation and biofilm formation proceeded
from an initial steady state to a gradually declining bacterial culturable count. V. cholerae
within the microenvironments of chitin and chitin-associated biofilms remained metabol-
ically active even in a high acidic environment without losing either viability or virulence.
It is concluded that the abundance of chitin that occurs during blooms plays an important
role in the aquatic life cycle of V. cholerae and, ultimately, in the seasonal transmission of
cholera.
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INTRODUCTION
Vibrio cholerae O1 is the causative agent of epidemic cholera,
a severe dehydrating diarrheal disease that kills thousands each
year and remains a serious health threat globally, notably in those
countries where clean drinking water is less accessible to local pop-
ulations. Cholera is an endemic disease in Bangladesh, occurring
twice annually in two defined seasonal peaks, once in the spring
and again in the autumn (Glass et al., 1982; Alam et al., 2006b).
V. cholerae has been established as an autochthonous resident in
the surface water of estuarine regions (Colwell and Spira, 1992;
Lipp et al., 2002), where the bacterium survives in association
with plankton (Huq et al., 1983), as well as in clusters of biofilms
(Alam et al., 2006a,b). Plankton have been documented to play
an important role in the seasonal cycle of V. cholerae by serving
as a reservoir (Brayton and Colwell, 1987; Huq et al., 1990) and
enhancing disease transmission (Colwell, 1996; Huq et al., 2005).
Copepods, in general, Acanthamoeba castellanii (Huq et al., 1984;
Abd et al., 2007), Acartia tonsa, and Eurytemora affinis (Rawlings
et al., 2007), all contain chitin and are colonized by V. cholerae.
Copepods, in particular, occur in the natural aquatic environment

in seasonal blooms (Colwell and Huq, 1994). Attachment of V.
cholerae to the hindgut, not to the midgut or foregut, of blue crab
Callienectes sapidus strongly suggests a need of chitin in the attach-
ment of the this pathogen (Huq et al., 1986), that might have a role
in the transmission of cholera. Chironomid egg masses also have
been shown to harbor high concentrations of non-toxigenic V.
cholerae and have been proposed as a reservoir for the bacterium
but they do not account for spring and autumn peaks in cholera
incidence (Broza and Halpern, 2001).

Chitin is a biopolymer of β-1,4-linked N -acetylglucosamine
(GlcNAc) and is abundant in both fresh and estuarine water sys-
tems where crustaceans are predominant and serve as the primary
source of chitin (Gooday,1990). Chitinous substrates influence the
population dynamics of V. cholerae in a number of ways, including
food availability, adaptation to environmental nutrient gradients,
tolerance to stress, and protection from predators (Pruzzo et al.,
2008). In the aquatic environment, chitin is heavily colonized by
chitinolytic bacteria that are responsible for mineralization of
this insoluble polysaccharide (Gooday et at., 1991). Binding to
chitin in the environment may be either a casual phenomenon or

www.frontiersin.org January 2012 | Volume 2 | Article 260 | 1

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Aquatic_Microbiology/10.3389/fmicb.2011.00260/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=40798&d=1&sname=MarziaSultana&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=41546&d=2&sname=HubertEndtz&name=Medicine
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=41551&d=2&sname=AlejandroCravioto&name=Medicine
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=41541&d=1&sname=NurHasan&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=43288&d=1&sname=MunirulAlam&name=Science
mailto:rcolwell@umiacs.umd.edu
http://www.frontiersin.org
http://www.frontiersin.org/Aquatic_Microbiology/archive


Nahar et al. Shrimp chitin in the ecology of Vibrio cholerae

promoted by chitin and/or chitin oligomers (Pruzzo et al., 2008).
In this regard, chemotaxis of V. cholerae toward chitin oligosac-
charides has been reported by Li and Roseman (2004) and the
chitinase enzymes produced by V. cholerae have been proposed to
assist in the degradation and utilization of the crustacean chitin
colonized by these bacteria (Xibing et al., 2007). V. cholerae asso-
ciated with crustaceans have been found to occur predominantly
in a non-culturable state (Roszak and Colwell, 1987). Although
non-culturability has long been proposed as a survival strategy for
cholera bacteria in the aquatic environment between epidemics,
the reservoir and mechanism by which these non-culturable cells
regain culturability to initiate seasonal cholera are not fully under-
stood. Despite the rate of isolation of V. cholerae O1 from fresh
water being very low (Huq et al., 2005), recent epidemiological and
ecological surveys carried out in Bangladesh provide firm evidence
for an estuarine niche for V. cholerae because it has been shown
to be present in biofilms in high abundance throughout the year
(Colwell, 1996; Alam et al., 2006a). The question remains, never-
theless, what factor or factors influence activation of V. cholerae
to the culturable state. It has been reported previously that salin-
ity changes may trigger epidemics of cholera (Kaper et al., 1979).
Correlation of sea surface temperature and plankton blooms in the
Bay of Bengal with occurrence of cholera in Bangladesh has been
established (Colwell, 1996) and a coastal connection of cholera
has also been well documented for Bangladesh (Colwell, 1996;
Huq et al., 2005), with cholera first striking coastal villages before
cases occur inland (Siddique et al., 1991; Ramamurthy et al., 1993).
Although the precise mechanism of how plankton populations in
a bloom stimulate active growth of dormant, i.e., non-culturable,
V. cholerae is not known, zooplankton serving as reservoir of V.
cholerae constitute an important component of the food chain,
in which larger crustaceans, such as shrimp, occupy the imme-
diate upper trophic level. In the study reported here, the shrimp
chitin that is present in abundance in the natural estuarine ecosys-
tem of Bangladesh was used as nutrient in laboratory microcosms
prepared with estuarine water to determine how shrimp chitin
influences both the natural life cycle of V. cholerae and seasonal
occurrence of cholera in the Sundarban region of Bangladesh.

MATERIALS AND METHODS
PREPARATION OF LABORATORY MICROCOSMS
Estuarine microcosms
Microcosms were prepared with water collected from a pond in
Mathbaria that serves as a drinking water source for villagers and
had been tested positive for V. cholerae O1 by culture, DFA, and
PCR (Alam et al., 2006a,b). Water for the microcosms (1 l in each
2.5 l conical flask) was filtered using 0.22 μm membrane filtration
to eliminate particulate matter (both biotic and abiotic) and auto-
claved. V. cholerae O1 biotype El Tor N-16961 cells in exponential
phase were harvested from Luria–Bertani (LB) broth incubated
at 37˚C for 18 h, washed with phosphate buffered saline (PBS)
at pH 7.0, and inoculated to a final concentration of 107 cfu/ml
into microcosm flasks designated Mathbaria water (MW). The
mouth of each of the flasks was sealed aseptically and incubated
at room temperature (25–33˚C). Samples from the microcosms
were collected aseptically at selected time intervals and examined
by plating on thiosulfate citrate bile-salts sucrose (TCBS) and

LB agar media; serogroup was confirmed using polyvalent and
monoclonal antiserum specific for V. cholerae O1 (Nandi et al.,
2000). Aliquots of the samples were examined by direct fluores-
cent monoclonal antibody (DFA) staining (Brayton and Colwell,
1987; Hasan et. al., 1994) and multiplex-polymerase chain reaction
(M-PCR) to detect toxigenic V. cholerae O1, following methods
described elsewhere (Hoshino et al., 1998).

MW microcosms supplemented with shrimp chitin chips
Chitin was extracted from the carapaces of a large crustacean,
the “golda” shrimp (Macrobrachium rosenbergii), collected from
an estuary geographically adjacent to the coastal village of Math-
baria, Bangladesh following procedures described elsewhere (Sen,
2005). The chitin shells were washed, autoclaved, and dried at 60˚C
overnight and cut aseptically into small pieces. A microcosm was
constructed using 1 l filtered (0.22 μm membrane) and autoclaved
MW in 2.5 l sterile conical flask, as described above. V. cholerae O1
biotype El Tor N-16961 cells in exponential phase, collected after
growth in LB broth at 37˚C and washed with PBS (pH 7.0), were
inoculated to a final concentration of 107 cfu/ml into MW micro-
cosms supplemented with shrimp chitin chips (CC 0.3%; w/v) as
sole source of nutrient. The microcosm amended with CC, des-
ignated MW–CC, was sealed aseptically and incubated at room
temperature, as above. Samples were collected from the micro-
cosms at selected time intervals and plated on TCBS and LB agar.
Simple staining, DFA staining, and M-PCR were also performed to
detect and enumerate V. cholerae O1. When culturable cell counts
in the aqueous phase of the microcosm had declined to <10 on
all culture media, the chitin residue at the bottom of the flask
was treated with concentrated HCl (pH 1.6–1.8) for 30 min to kill
loosely attached bacteria, alkalinized with NaOH (pH 7.0–9.0) for
30 min, and the residue collected as a pellet by centrifugation. The
pellet was washed with PBS several times and homogenized in PBS
using a sterilized glass homogenizer (Elberbach Corp., Ann Arbor,
MI, USA) to dislodge firmly attached bacteria. This homogenate
was enriched in alkaline peptone water (APW) at 37˚C for 24 h,
as described previously (Huq et al., 1990), plated on TCBS and
LB agar, and analyzed by DFA and M-PCR to detect and enumer-
ate V. cholerae O1 (Brayton and Colwell, 1987; Hasan et al., 1994;
Hoshino et al., 1998; Nandi et al., 2000; Alam et al., 2006b).

Simple staining
Chitin chips from the microcosms were aseptically collected and
placed on clean glass slides, air-dried, stained with 0.4% crystal
violet (Sigma, St. Louis, MO, USA), washed, and visualized using
a light microscope (Axioskop 40; Carl Zeiss AG, Gottingen, Ger-
many). Images were recorded with a digital camera attachment
(AxioCam MRc; Carl Zeiss AG, Gottingen, Germany).

DFA
Samples from MW and MW–CC microcosms were collected asep-
tically using wide-mouthed tips or sterile forceps and placed on
a glass slide and stained with cholera DFA reagent (New Hori-
zon Diagnostics, Columbia, MD, USA) following the methods, as
described earlier (Brayton and Colwell, 1987; Hasan et al., 1994).
At the initial stage, the intact CC from MW–CC microcosms were
collected with sterile forceps. But, later on, the decaying CC were
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collected with wide-mouthed tips without disturbing the attached
V. cholerae cells and the clusters of biofilm. Finally, the stained
preparations were observed using an epifluorescence microscope
(Axioskop 40; Carl Zeiss AG, Gottingen, Germany). Images were
recorded with a digital camera attachment (AxioCam MRc; Carl
Zeiss AG, Gottingen, Germany).

M-PCR
Vibrio cholerae O1 serotype specific wbe genes encoding O-antigen
biosynthesis pathway and ctxA gene encoding subunit A of cholera
toxin (CT) were amplified using M-PCR, details of which are
provided elsewhere (Hoshino et al., 1998).

RESULTS
The MW and MW–CC microcosms inoculated with V. cholerae
O1 yielded initial counts of 107 cfu/ml on LB agar and counts
of 106 cfu/ml on TCBS agar (Table 1). The initial DFA counts
(day 1) for MW and MW–CC microcosms were 3.8 × 108 and
3.5 × 108 cells/ml, respectively. M-PCR employing template DNA
prepared from the two microcosms at day 1 amplified primers
for V. cholerae O1 specific wbe and ctxA (Table 1). Bacterial plate
counts for both microcosms, MW and MW–CC, declined to 104

and 103 cfu/ml on LB agar and TCBS agar, respectively, at day 7 and
remained essentially stable until day 28. Subsequently, a gradual
reduction in plate count occurred in both microcosms, although
cell counts were higher by one log in the MW–CC microcosm,
compared to the MW microcosm (Table 1). In MW microcosm,
plate counts declined to <10 on TCBS agar after 35 days and on LB
agar after 49 days (Table 1). In contrast, the MW–CC microcosm,
in which culturable cells were detected for a longer period of time,
cell counts declined to <10 on TCBS agar after 76 days, whereas V.
cholerae O1 produced colonies on LB agar until day 174 (Table 1)
but not longer, as the cell count declined to <10 at day 189.

In the MW microcosm, the wbe and ctxA genes were amplified
up to day 49 (Table 1), whereas DNA templates prepared from
V. cholerae O1 cells inoculated and maintained in the MW–CC
microcosm supported amplification of wbe and ctxA genes by M-
PCR up to 174 days, confirming presence of toxigenic V. cholerae
O1 (Table 1).

The physical appearance of the MW–CC microcosm, in which
V. cholerae O1 was maintained in autoclaved estuarine water sup-
plemented with shrimp chitin as sole nutrient, was essentially clear
and the CC were visible as intact pieces at day 1 (Figure 1A). Unlike
the MW microcosm in which the aqueous phase was clear with the
non-culturable cells settled to the bottom of the flask, the aqueous
phase of the MW–CC microcosm became turbid with bacterial
growth supported by chitin (Figure 1B). The process of chitin
degradation continued up to 6 months, after which degraded
chitin and bacteria comprised dense sediment at the bottom of
the flask.

The shrimp CC in the MW–CC microcosm had the morphol-
ogy of complex hexagonal structural units, i.e., “building blocks”
of chitin, when viewed under the compound (light) microscope
(Figure 2A). Crystal violet staining of the shrimp CC collected
from the MW–CC microcosm at day 1 showed no sign of bacte-
rial colonization (Figure 2A). However, at day 7, the shrimp CC
clearly had been colonized by V. cholerae on the smooth surface

of the CC (Figure 2B). With passage of time, the chitin surface
was further colonized by V. cholerae, with a larger number of cells
appearing in clusters of biofilm, coupled with apparent signs of
chitin degradation (Figure 2C). Finally, the hexagonal structures
of chitin disappeared and a smaller, degraded residue was detected
that was heavily colonized by V. cholerae O1 (Figure 2D). Although
degradation of chitin continued, V. cholerae O1 cells were seen
mostly coccoid and embedded within biofilm clusters.

Vibrio cholerae DFA counts did not change in the MW micro-
cosm until day 14 and cells in the MW microcosm could not
be counted at day 21 because of transformation of the cells into
large biofilm harboring mostly coccoid cells. Although initial DFA
counts of V. cholerae O1 in the MW–CC microcosm were much
the same as that of the MW microcosm, counting by DFA was not
continued (Table 1) because of the clustering of cells and forma-
tion of micro-colonies that eventually turned into large biofilm
clusters on the chitin (Figure 3A). At day 28, chitin degradation
and biofilm formation had progressed (Figure 3B) simultaneously
and the various sizes of degraded residues of the chitin were heav-
ily colonized by V. cholerae O1 cells, mostly of coccoid morphology
up to day 70 (Figures 2D and 3C).

In the MW–CC microcosm, V. cholerae O1 showed active
growth up to day 174, after which the cells became completely non-
culturable (<10 cfu) by day 189. Although microscopic obser-
vation of the MW–CC microcosm revealed large clusters of a
biofilm that contained coccoid cells at day 189, a few rods were also
detected. To examine whether the chitin biofilm serves as shelter
for toxigenic V. cholerae O1, contents of the MW–CC microcosm
were treated with concentrated HCl (pH 1.7) for 30 min, neu-
tralized, and examined (see Materials and Methods), revealing
the HCl-treated homogenate of the chitin biofilm preparation
(Figure 3D) indeed contained 104 cfu/ml of culturable V. cholerae
O1 after enrichment in APW for 24 h. This observation suggests
that culturable V. cholerae O1 cells persist within chitin-induced
biofilms and withstand adverse environmental conditions, in this
case high acidity. DNA templates prepared from these V. cholerae
O1 cells at day 189 amplified primers for wbe and ctxA by M-PCR
(Table 1), providing evidence that toxigenic V. cholerae prevailed.

DISCUSSION
During its aquatic life cycle in nature,V. cholerae has been shown to
persist between epidemic periods, predominately in the dormant
(non-culturable) stage, in association with plankton (Brayton and
Colwell, 1987; Huq et al., 1990). Although correlation of seasonal
plankton blooms in the Bay of Bengal and occurrence of cholera
has been shown for Bangladesh (Colwell, 1996), the precise mech-
anism of how plankton blooms contribute to the life cycle of V.
cholerae in the aquatic environment is not fully understood. In the
present study, shrimp chitin, that occurs in abundance during sea-
sonal plankton blooms in the estuarine ecosystem of Bangladesh,
was found to play an important role for toxigenic V. cholerae O1
by serving both as food and shelter, thereby, allowing biofilm for-
mation and the cells to remain in an active growth stage for an
extended period of time.

As has been demonstrated for V. parahemolyticus (Kaneko and
Colwell, 1973), and V. cholerae O1 and non-O1 (Colwell et al.,
1977), pandemic strains of V. cholerae adsorb and multiply on
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Table 1 | Comparison of V. cholerae O1 counts in Mathbaria pond water (MW) microcosms with and without chitina,b.

Day Type of microcosm Plate count (cfu/ml) AgglutinateC DFA Multiplex-PCR

TCBS LBA Cells/ml O1 wbe ctxA

1 V. cholerae O1 in microcosm MW–CC 2.0 × 106 3.8 × 107 + 3.8 × 108 + +
V. cholerae O1 in microcosm MW 2.0 × 106 3.8 × 107 + 3.8 × 108 + +

7 V. cholerae O1 in microcosm MW–CC 2.1 × 103 1.1 × 104 + +d + +
V. cholerae O1 in microcosm MW 2.8 × 103 3.8 × 104 + 1.8 × 108 + +

14 V. cholerae O1 in microcosm MW–CC 1.4 × 103 1.9 × 104 + BFd + +
V. cholerae O1 in microcosm MW 1.9 × 103 1.7 × 104 + 1.8 × 108 + +

21 V. cholerae O1 in microcosm MW–CC 2.0 × 103 2.4 × 104 + BFd + +
V. cholerae O1 in microcosm MW 1.6 × 103 2.8 × 104 + BF + +

28 V. cholerae O1 in microcosm MW–CC 1.9 × 103 1.3 × 104 + BFd + +
V. cholerae O1 in microcosm MW 1.1 × 103 4.8 × 104 + BF + +

35 V. cholerae O1 in microcosm MW–CC 1.6 × 102 1.1 × 103 + BFd + +
V. cholerae O1 in microcosm MW 1.7 × 101 2.4 × 102 + BF + +

42 V. cholerae O1 in microcosm MW–CC 1.6 × 101 2.4 × 103 + BFd + +
V. cholerae O1 in microcosm MW <10 1.0 × 102 + BF + +

49 V. cholerae O1 in microcosm MW–CC 7.7 × 101 2.4 × 102 + BFd + +
V. cholerae O1 in microcosm MW <10 6.8 × 101 + BF + +

56 V. cholerae O1 in microcosm MW–CC 6.7 × 101 1.4 × 102 + BFd + +
V. cholerae O1 in microcosm MW <10 <10 NG BF ND ND

63 V. cholerae O1 in microcosm MW–CC 6.5 × 101 1.2 × 102 + BFd + +
V. cholerae O1 in microcosm MW <10 <10 NG BF ND ND

70 V. cholerae O1 in microcosm MW–CC 6.4 × 101 1.0 × 102 + BFd + +
V. cholerae O1 in microcosm MW <10 <10 NG BF ND ND

76 V. cholerae O1 in microcosm MW–CC 4.0 × 101 5.0 × 101 + BFd + +
V. cholerae O1 in microcosm MW ND ND NG ND ND ND

92 V. cholerae O1 in microcosm MW–CC <10 1.1 × 101 + ND + +
V. cholerae O1 in microcosm MW ND ND NG ND ND ND

99 V. cholerae O1 in microcosm MW–CC <10 2.5 × 101 + ND + +
V. cholerae O1 in microcosm MW ND ND NG ND ND ND

113 V. cholerae O1 in microcosm MW–CC ND 2.1 × 101 + ND + +
V. cholerae O1 in microcosm MW ND ND NG ND ND ND

132 V. cholerae O1 in microcosm MW–CC ND 2.0 × 101 + ND + +
V. cholerae O1 in microcosm MW ND ND NG ND ND ND

146 V. cholerae O1 in microcosm MW–CC ND 2.1 × 101 + ND + +
V. cholerae O1 in microcosm MW ND ND NG ND ND ND

160 V. cholerae O1 in microcosm MW–CC ND 2.1 × 101 + ND + +
V. cholerae O1 in microcosm MW ND ND NG ND ND ND

174 V. cholerae O1 in microcosm MW–CC ND 1.0 × 101 + ND + +
V. cholerae O1 in microcosm MW ND ND NG ND ND ND

189 V. cholerae O1 in microcosm MW–CC ND <10 NG BFd +e +e

V. cholerae O1 in microcosm MW ND ND NG ND ND ND

aMicrocosm was constructed using Mathbaria pond water, a known reservoir of V. cholerae (Alam et al., 2006a).
bMicrocosm was constructed using Mathbaria pond water, a known reservoir of V. cholerae O1 (Alam et al., 2006a) and chitin chips.
cVibrio cholerae O1 polyvalent and monoclonal antisera.
dAttachment of V. cholerae O1 cells on chitin chip.
eVibrio cholerae O1 cells from enrichment of HCl-treated homogenized chitin residues.

Mathbaria water, Mathbaria pond water microcosm, inoculated with V. cholerae O1 grown on Luria–Bertani broth and maintained at room temperature; MW–CC,

Mathbaria pond water microcosm with chitin chips, inoculated with V. cholerae O1 grown on Luria–Bertani broth and maintained at room temperature; ND, not done;

NG, no growth; BF, biofilms; CFU, colony forming unit; DFA, direct fluorescent antibody; TCBS, thiosulfate citrate bile sucrose agar; LB, Luria–Bertani agar.

chitinous fauna, including crabs, shrimp, and zooplankton (Nalin
et al., 1979). Attachment to the chitinous layer of zooplankton

enhances environmental fitness of Vibrio spp. by providing both
an abundant source of carbon and nitrogen and protection from
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FIGURE 1 | External observation of the utilization of shrimp chitin in

the MW–CC microcosm at room temperature (A) intact chitin chips at

day 1 and (B) degraded chitin chips at day 189.

FIGURE 2 | Micrographs showing attachment and utilization of shrimp

chitin by V. cholerae O1 in MW–CC microcosm. Samples were stained
with 0.4% crystal violet. The stained samples were visualized using a light
microscope (Carl Zeiss model Axioskop 40). Microscope images were
captured digitally (AxioCam MRc) and processed using Adobe Photoshop
(version 5). (A) Hexagonal structure of intact chitin chip at day 1 (B)

attachment and colonization of the chitin chip by V. cholerae O1 cells at day
7; (C) aggregates of biofilm of V. cholerae O1 cells on decaying chitin chips
at day 28; (D) thick biofilm and chitin residues colonized by V. cholerae O1
cells showing utilization of chitin (higher magnification in inset) at day 70.
(Scale bars in red indicate 10 μm).

environmental challenges (Huq et al., 1984). Furthermore, par-
ticulate chitin and its soluble derivatives were shown to protect
V. cholerae O1 against killing at low temperature (Amako et al.,
1987). In this study, V. cholerae O1 colonizing shrimp chitin in
the form of biofilm in microcosms prepared with water collected
from Mathbaria, a cholera endemic estuarine area of Bangladesh,
degraded chitin and remained in an active growth phase for up to
6 months, with strong evidence of utilization of the chitin as the

FIGURE 3 | Epifluorescent micrographs of attachment and utilization

of shrimp chitin by V. cholerae O1 in the MW–CC microcosm.

Fluorescent monoclonal antibody (DFA) specific for V. cholerae O1 obtained
from New Horizon Diagnostics, were used and the stained cells were
visualized using an epifluorescence microscope (Carl Zeiss model Axioskop
40). Microscopic images were captured digitally (AxioCam MRc) and
processed using Adobe Photoshop (version 5). (A) Attachment and
colonization of V. cholerae O1 on a chitin chip at day 7; (B) clusters of
biofilm bound cells on a decaying chitin chip at day 28; (C) thick biofilm and
small residues of chitin chips colonized by V. cholerae O1 (utilization of
chitin) at day 70; (D) typical cells, dividing cells, together with mostly
coccoid cells of V. cholerae O1 in the homogenate of HCl-treated chitin
residue at day 189. (Scale bars in red indicate 10 μm).

source of nutrient (Xibing et al., 2007). In contrast, V. cholerae O1
was active for only ca. 49 days in the same water but without chitin.
V. cholerae O1 in fresh water microcosms had previously been
reported to be culturable for only up to 15 days (Huq et al., 1983;
Islam et al., 1997), whereas in a recent study (Alam et al., 2007)
V. cholerae O1 was found to be actively growing up to 40 days in
estuarine water collected from Mathbaria. Thus, for survival and
growth of V. cholerae, brackish, and estuarine water are concluded
to be more supportive than fresh water (Alam et al., 2006a,b), pre-
sumably because of salinity and/or trace of soluble derivatives of
chitin. More to the point, V. cholerae O1 in MW–CC was active
for an extended period of time when chitin from shrimp, which
occurs in abundance along with other crustaceans in the estuar-
ine ecosystem of Mathbaria, was added to the microcosm water.
Thus, the combination of estuarine water and chitinous fauna,
including zooplankton, shrimp, and crabs, can explain, in part,
why toxigenic V. cholerae is found for extended period of time
in actively growing state in the estuarine ecosystem (Alam et al.,
2006a,b, 2007), but less as in fresh water habitats where chitinous
fauna are less abundant, but not absent (Huq et al., 1983, 2005;
Islam et al., 1997).

Chitinase, an enzyme secreted by V. cholerae, is employed by the
bacterium to colonize and degrade the insoluble polysaccharide
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component of chitin comprising the exoskeleton of fauna in the
aquatic ecosystem (Gooday et al., 1991). Tamplin et al. (1990) had
reported earlier that the chitinous surface of plankton served to
concentrate V. cholerae O1, increasing the number of V. cholerae
in a given unit of water. The strong affinity of V. cholerae for chitin
was demonstrated by V. cholerae cells colonizing shrimp chitin
extensively along the chitin surface, suggesting that chitin plays an
important role in the aquatic life cycle of V. cholerae.

The ctxA and ctxB genes that encode CT subunits A and B,
respectively, are constituents of a lysogenic bacteriophage CTXφ,
whose genome consists of a core region encoding the CT respon-
sible for the severity of the illness of cholera and other genes that
code for virion morphogenesis (Waldor and Mekalanos, 1996;
Alam et al., 2007). V. cholerae strains isolated from the natural
aquatic environment are usually non-toxigenic (WHO, 2008) and
toxigenic V. cholerae O1 maintained in estuarine microcosms lose
CTX φ becoming non-toxigenic (Alam et al., 2007). A recent
study demonstrated that chitin-induced competence of V. cholerae
can lead to the emergence of genetic variants among toxigenic V.
cholerae strains (Udden et al., 2008). Results presented in this study
suggest that chitin can serve as food and reservoir for toxigenic V.
cholerae in the estuarine environment.

Vibrio cholerae has been shown to be adapted to natural estu-
arine habitat, close to the mangrove forest of Bay of Bengal (Alam
et al., 2006a,b, 2007), where crustaceans, namely shrimps, occur
in abundance. Furthermore, toxigenic V. cholerae maintains itself
during the interepidemic periods, between plankton blooms, with-
out losing viability or virulence potential. The environment as a
reservoir for toxigenic V. cholerae O1 and O139 in water and plank-
ton has been well documented in earlier studies conducted in the
USA (Rivera et al., 2003) and in Bangladesh (Alam et al., 2006a,b,
2007). The ability of V. cholerae to degrade chitin, previously doc-
umented by Colwell (1970) and observed in the present study,
is characteristic of vibrios as well as many other marine bacteria
(Keyhani and Roseman, 1999). Degradation of chitin involves four
main steps: (i) sensing chitin; (ii) attachment to chitin; (iii) enzy-
matic degradation; and (iv) utilization of carbon and nitrogen-
containing breakdown products (Somerville et al., 1989; Keyhani
and Roseman,1999). Chitin was shown to serve in the formation of
surface-attached communities or biofilms by Watnick et al. (1999).
In the present study, planktonic V. cholerae O1 colonized on the
surface of the shrimp chitin, gradually increased the number by
degrading chitin, and formed clusters of biofilms. The chitin par-
ticles and residues were heavily colonized by V. cholerae, the cells of
which were embedded in a structured matrix. It may be concluded
that chitin utilization supports V. cholerae to remain actively grow-
ing while biofilm formation is a simultaneous process that helps
them remain together forming consortia.

In Bangladesh, cholera occurs seasonally, with two distinct sea-
sonal peaks (epidemics), one before and the other after the annual
monsoon (Glass et al., 1982). Toxigenic strains are isolated infre-
quently from surface waters by culture methods (Colwell and
Huq, 1994) and very rarely during interepidemic periods (Huq
et al., 1995). Because toxigenic V. cholerae is isolated only infre-
quently from surface water samples (Huq et al., 2005), this leaves its
interepidemic aquatic reservoir an enigma. The estuarine ecosys-
tem of Bangladesh is a natural habitat of toxigenic V. cholerae

(Siddique et al., 1991). Actively growing V. cholerae occurs pre-
dominantly during seasonal epidemics, and as aggregates of struc-
tured biofilms during interepidemic periods when they are found
mostly as non-culturable cells (Alam et al., 2006a,b). The chitinous
materials that occur in abundance in the estuarine water during
seasonal plankton bloom, before and after the annual monsoon
(Glass et al., 1982), likely play a role in the natural lifecycle of V.
cholerae.

Attachment, survival, and proliferation of vibrios on surfaces
of small crustaceans have been documented and the adhering
bacteria have also been shown to be dormant, i.e., viable but
non-culturable (Roszak and Colwell, 1987; Colwell, 1996). In the
present study, DFA detection of V. cholerae O1 cells in chitin-
bound biofilms revealed the presence of mostly atypical and coc-
coid cells, together with a few typical curved rods. Culturable V.
cholerae were isolated after prolonged treatment of the CC with
HCl, the significance being that HCl treatment killed planktonic
or free swimming cells but not cells bound within the consortium
of a biofilm. Ingested, biofilm bound cells in drinking water over-
come the gastric acid barrier of the human stomach and reach the
small intestine where conditions are alkaline (Colwell et al., 1996).
Since chitin resists digestion by acid, vibrios can survive gastric
transit if adherent to chitin ingested during a crab meal (Nalin
et al., 1979).

In an estuarine ecosystem, crustaceans, namely shrimp, occupy
the upper trophic level of the food chain and shrimp depend on
zooplankton as food. Zooplankton is a well-established reservoir
for V. cholerae (Huq et al., 1984; Colwell and Spira, 1992), depend-
ing, in turn, on phytoplankton as their primary food source. The
brackish water habitat of the Sundarban, serves as an impor-
tant niche for the V. cholerae that cause cholera epidemics in
Bangladesh (Siddique et al., 1991; Alam et al., 2006a,b), but is
also an ideal breeding ground for tiger shrimp, a popular food
worldwide. This, taken with the epidemiological data showing
that cholera emerges first in coastal villages (Siddique et al., 1991;
Ramamurthy et al., 1993) may explain, in part, the cholera that
subsequently occurs inland.

Previous studies showed V. cholerae, in the presence of chitin
from plankton, grows actively up to 14 days, after which it became
non-culturable (Huq et al., 1983). Because of the abundance and
nutrient availability of shrimp chitin, toxigenic V. cholerae cells are
maintained in an active growth phase for a relatively long time, i.e.,
months, accounting for its persistence in the environment between
epidemics and in a dormant, i.e., viable but non-culturable state.
A pre-epidemic enrichment of non-culturable V. cholerae in the
human host has been proposed as an alternative method of ampli-
fication of an epidemic clone immediately before onset of an
epidemic (Faruque et al., 2005). Given that actively growing cells
of toxigenic V. cholerae can persist within chitin-induced biofilms
in the natural estuarine ecosystem, as shown here, it is more likely
that in situ enrichment of cholera bacteria occurs prior to human
exposure, that is, during and following seasonal plankton blooms,
when crustaceans containing V. cholerae serve as food for the
shrimp population. Shrimp chitin and its chitin-related biofilm
contain pathogenic V. cholerae, providing it with nutrient and shel-
ter, thereby playing a significant role in the life cycle of V. cholerae
and contributing to human disease transmission.
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