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Microbial heterotrophic activity was investigated in oxic sub-seafloor sediments at North
Pond, a sediment pond situated at 23˚N on the western flank of the Mid-Atlantic Ridge.
The North Pond sediments underlie the oligotrophic North Atlantic Gyre at 4580-m water
depth and cover a 7–8 million-year-old basaltic crust aquifer through which seawater flows.
Discrete samples for experimentation were obtained from up to ∼9 m-long gravity cores
taken at 14 stations in the North Pond area. Potential respiration rates were determined
in sediment slurries incubated under aerobic conditions with 14C-acetate. Microbial het-
erotrophic activity, as defined by oxidation of acetate to CO2 (with O2 as electron acceptor),
was detected in all 14 stations and all depths sampled. Potential respiration rates were
generally low (<0.2 nmol of respired acetate cm−3 d−1) in the sediment, but indicate that
microbial heterotrophic activity occurs in deep-sea, oxic, sub-seafloor sediments. Further-
more, discernable differences in activity existed between sites and within given depth
profiles. At seven stations, activity was increased by several orders of magnitude at depth
(up to ∼12 nmol of acetate respired cm−3 d−1). We attempted to correlate the measures of
activity with high-resolution color and element stratigraphy. Increased activities at certain
depths may be correlated to variations in the sediment geology, i.e., to the presence of dark
clay-rich layers, of sandy layers, or within clay-rich horizons presumably overlying basalts.
This would suggest that the distribution of microbial heterotrophic activity in deeply buried
sediments may be linked to specific lithologies. Nevertheless, high-resolution microbial
examination at the level currently enjoyed by sedimentologists will be required to fully
explore this link.
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INTRODUCTION
The mineralization of organic matter in marine sediments is
governed by microbial metabolism. In the deep subsurface
(>1.5 mbsf) of marine sediments, sulfate reduction, methanogen-
esis, and fermentation are considered to be the main metabolic
activities responsible for the degradation of organic matter to
small organic acids and CO2 (e.g., Parkes et al., 2000; D’hondt
et al., 2002). However, since most sub-seafloor sediments consid-
ered in previous studies underlie productive coastal or upwelling
areas, the microbial processes reflect the consequences of a high
organic carbon flux to the seafloor, in which oxygen is rapidly
depleted (D’hondt et al., 2009). Oligotrophic regions occur in the
subtropical ocean gyres that represent a major part of the world’s
ocean where the organic matter flux to the sediments is low, lead-
ing to deep oxygen penetration depths of tens of centimeters or
more (Murray and Grundmanis, 1980). At the extreme, penetra-
tion depths of dissolved oxygen in the South Pacific Gyre sediments
reached up to 9 m (D’hondt et al., 2009; Fischer et al., 2009).

Deep penetration of oxygen in sediments of the Atlantic Ocean
to ∼9 meters have also been shown in sediments contained in

ponded basins on the flanks of the North Mid-Atlantic Ridge
(MAR), in the so-named North Pond (Cruise report MSM 11/1).
North Pond is an isolated region of ponded sediment situated at
∼100 km west of the rift valley of the MAR and∼110 km south
of the Kane fracture zone (22˚46′N and 46˚06′W; e.g., Hussong
et al., 1979; Purdy et al., 1979). It is a large pond (∼13 km N–S
and ∼7 km E–W) and lies below a low-productivity 4580-m water
column. The sediment at North Pond can reach up to 300 m thick-
ness and overlies a young basaltic active crust (7–8 Ma) through
which vigorous lateral flow of cold seawater has been proposed to
take place (Langseth et al., 1984).

We investigated microbial heterotrophic activity in sediment
cores recovered at North Pond. Studies of microbial life in deep-
oxic sediments are rare (D’hondt et al., 2009), and no measure-
ments of experimentally determined, potential respiration rates
have been reported yet in sub-seafloor sediment in which oxy-
gen is penetrating several meters deep. We used 14C-acetate in the
deep-oxic sediments from North Pond for this purpose as acetate
has been proven to be well-suited to estimate potential respiration
and uptake rates of organic molecules in subsurface environments
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(e.g., Wirsen and Jannasch, 1974; Phelps et al., 1989; Fredrickson
et al., 1997). In the case of anoxic sediments the changes in pore
water chemistry usually help to target the zones where specific
types of microbial activity can be expected (i.e., sulfate–methane
transition zones). At North Pond, the sampled sediments were oxic
throughout, thus the sampling strategy was different. To gain an
overview of the potential respiration rates, which were expected
to be low and decreasing with depth at all stations, we sampled
the oxic sediment with a regular spacing along the length of grav-
ity cores obtained from North Pond. Occasionally, distinct layers,
such as sandy, clay-rich, dark layers, were also sampled.

The goal of the microbial heterotrophic activity measurements
was to compare potential respiration rates at different stations over
a small area and investigate correlations between activity profiles
and geological features. We present profiles of potential microbial
heterotrophic activity in deep-sea, deep-oxic sub-seafloor sedi-
ments, and examine these rates in conjunction with respect to
variations in sediment lithology.

MATERIALS AND METHODS
SEDIMENT COLLECTION
The North Pond area was visited during cruise MSM 11/1 on R/V
Maria S. Merian in February–March 2009. Sediment cores were
taken at 14 stations using a gravity corer (Table 1, Figure 1). Cores
were split in two halves and labeled following the GeoB system
of the University of Bremen. One half was kept intact for scan-
ning analyses (archive half) while the other half was sampled for
multiple purposes (work half). Sediment for activity measure-
ments was sampled aerobically every meter. Additional samples
were taken in specific cores when the sediment showed obvi-
ous lithological samples or color changes. Sediment was stored
and transported at 4˚C. Pore water samples for acetate measure-
ments were taken within hours after core retrieval using Rhizone
soil moisture samplers (Rhizosphere Research Products, Wagenin-
gen, The Netherlands). The Rhizone consists of an inert porous
polymertube with a length of 10 cm and a pore size of 0.1 mm.
Pore fluid is extracted by vacuum created with disposable 10 ml

syringes connected to the Rhizone, frozen and kept at −20˚C until
analysis.

PROKARYOTIC ACTIVITY MEASUREMENTS
Sediment slurries were prepared with 1 volume of sediment for
4 volumes of oxic artificial seawater (ASW; Süß et al., 2004) and
distributed into Eppendorf tubes for incubation (1 ml slurry per
tube). The potential respiration rates were estimated by measur-
ing the production of 14CO2 from the oxidation of 14C-acetate
(sodium 14C-acetate, 5.8 μl, 43 kBq, 20 nmol, GE Healthcare Life
Sciences, UK or sodium 14C-acetate, 1.16 μl, 43 kBq, 20 nmol,
American RadioChemicals, Saint-Louis, MO, USA). Two living
samples and one formaldehyde-treated sample (2% v/v final con-
centration, dead control) were prepared for each of three incuba-
tion periods (3, 8, and 15 days) and amended with the radiotracer.
Samples were incubated at 4˚C (close to the in situ tempera-
ture of 2.5˚C). Incubation was terminated by pouring the 1 ml
slurry into 9 ml of 2.5% NaOH. Measurement of 14CO2 (diffusion
method) was performed as described in Treude et al. (2003) with
slight modifications. Samples in NaOH (5 ml) were transferred to
100-ml glass vials with 5 ml of 2.5% NaOH. A 6-ml scintillation
vial containing 1 ml of beta-phenylethylamine and 1 ml of NaOH
0.5 M was fixed to the rubber stopper that closed the glass vial,
hanging well above the sample to trap the 14CO2 in the headspace.
Samples were then acidified with 6 ml of HCl 6 N to release the CO2

in the headspace and gently shaken (88 rpm) for at least 4 h at room
temperature. A scintillation cocktail (ScintiGold, Perkin Elmer,
USA) was added to the samples. Activity (in DPM) of the trapped
14CO2 was measured using a liquid scintillation counter (Tri-Carb
2500TR or 2900TR, Packard, now Perkin Elmer, USA). Rates of
acetate respiration were calculated using the following equation:

R =
14CO2 × [

14C · acetate
]

14C · acetate × v × t
(1)

where R is the rate of acetate respiration in the sediment (in
nanomole cm−3 d−1), 14CO2 is the activity of the produced carbon

Table 1 | Stations of the MSM 11/1 cruise: sampling positions, water depth, sediment depth recovered, depths of samples for activity

experiments.

Station (GeoB) Latitude (N) Longitude (W) Water depth (m) Total sediment depth (cm) Number of samples for activity

13501 22˚46,62′ 46˚6,42′ 4480 844 9

13502 22˚49,41′ 46˚3,23′ 4250 847 10

13503 22˚49,20′ 46˚3,50′ 4365 689 5

13504 22˚49,89′ 46˚2,78′ 4096 72 4

13505 22˚47,55′ 46˚7,40′ 4402 76 2

13506 22˚48,36′ 46˚7,51′ 4143 574 6

13507 22˚48,04′ 46˚6,30′ 4395 865 11

13508 22˚46,89′ 46˚6,59′ 4475 344 4

13509 22˚47,47′ 46˚6,45′ 4438 267 3

13510 22˚47,35′ 46˚6,44′ 4448 515 6

13511 22˚47,12′ 46˚6,49′ 4445 468 5

13512 22˚49,33′ 46˚6,45′ 4200 516 5

13513 22˚49,00′ 46˚2,64′ 4262 504 5

13514 22˚49,15′ 46˚2,39′ 4040 237 3
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FIGURE 1 | Bathymetric map of North Pond. Stations are indicated
with the white numbers (GeoB 13501–GeoB 13514). GeoB 13501 is
the reference station situated near the center of the pond in the flat,
deep center of the sediment pond. All others cores have been taken

at shallower depths on the edges of the pond where sediment
thicknesses are reduced. The inset shows the situation of North Pond
in the Atlantic Ocean (generated on oceancolor.gsfc.nasa.gov/
SeaWiFS).

dioxide in the living samples (in DPM) corrected by the activity
(in DPM) in the dead samples, [14C-acetate] is the concentration
of acetate added as a tracer (in nmol), 14C-acetate is the activity of
the tracer added (in DPM), v is the volume of sediment (in cm3),
and t is the time of incubation (in d).

MONITORING OF OXYGEN CONCENTRATION DURING SLURRY
INCUBATION
Oxygen concentration was monitored in one sediment sam-
ple to evaluate if the conditions remained oxic throughout the
experiment. The sample was selected from core GeoB 13506

(131.5 cm below the seafloor) and slurry was prepared as described
above and transferred to a borosilicate glass vial without head-
space. Incubation was performed at 4˚C. Non-labeled acetate was
added at the same concentration than in the experiment with
labeled acetate. Oxygen was measured during the incubation with
a needle-type optical oxygen microsensor (PreSens Precision Sens-
ing GmBH, Germany). It consisted of a fiber optic cable mounted
in a needle at the end of a 1-ml syringe. The needle was inserted
into the borosilicate vial through a silicon septum. The sensor was
extended for measurement into the sediment phase of the slurry.
The microsensor readout was made using a Microx TX3 (PreSens
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Precision Sensing GmBH) micro-fiber optic oxygen transmitter. A
two-point calibration using anoxic and air-saturated ASW at 4˚C
was used.

ACETATE MEASUREMENTS
Concentrations of acetate (and other volatile fatty acids) were
determined in pore water samples by high-performance liquid
chromatography (HPLC) using the method of Albert and Martens
(1997), as adapted by Finke and Jorgensen (2008). Pore water
samples (1 ml) were transferred into borosilicate glass vials (pre-
viously combusted at 480˚C for 4 h). Acids were derivatized with
p-nitrophenyl hydrazine, eluted with ion-pairing solvents and sep-
arated by HPLC using a LiChrosphere 80/100 column (Knauer,
Berlin, Germany) at 25˚C. The presence of acids was determined
by UV absorption at 400 nm with a UV/VIS detector (Linear). The
chromatograms were analyzed using the commercially available
software Chromstar (Bechenheim, Germany). Standard solutions
containing known concentrations of lactate, acetate, formate, pro-
pionate, isobutyrate, and butyrate were used. The detection limit
for acetate was at 3 μM.

CORE ANALYSES
Undisturbed, archive halves of the gravity core sections were stored
at 4˚C at the core repository of the University of Bremen (Ger-
many) until analyzed in 2011. Nine sediment cores chosen for
detailed core analysis were prepared for non-destructive high-
resolution digital, light, and x-ray fluorescence scanning using
stainless steel or glass blades to provide a smooth and regular
surface.

Digital imaging
High-resolution digital images of the split cores were taken using
the GEOTEK Geoscan-III color line scan camera (3 CCD device
using 3 × 1024 pixel CCD arrays, RGB detectors) mounted on the
rack of the GEOTEK Multi-Sensor Core Logger (MSCL) at the
University of Bremen.

Light reflectance
The light reflectance (L∗) was measured at the surface of the split
cores (covered with a thin film) using a Konica Minolta portable
color spectrophotometer CM-2600d with diffuse illumination and
8˚ viewing angle (University of Bremen). Measurements were done
every 2 cm on an 8-mm diameter area. The wavelength range of
the instrument was 360–740 nm. The instrument was calibrated
using a white-calibration plate and a zero-calibration box.

X-ray Fluorescence scanning
X-ray fluorescence (XRF) core scanner data were collected every
2 cm down-core (except for core 13504, every 1 cm down-core)
over a 120 mm2 area and with a sampling time of 20 s directly at
the split core surface of the archive half with the Avaatech XRF Core
Scanner II at MARUM-University of Bremen. The split core sur-
face was covered with a 4 μm thin SPEX CertiPrepUltralene® foil
to avoid contamination of the XRF measurement and desiccation
of the sediment. The X-ray generator was an Oxford Instruments
XTF5011 Rhodium X-ray tube 93057 set at an energy of 10 keV and
at a current of 0.2 mA. The XRF data were acquired by a Canberra

X-PIPS Silicon Drift Detector (SDD, model SXD 15C-150-500)
with 150 eV X-ray resolution with a Canberra digital spectrum
analyzer DAS 1000 as interface. Raw XRF spectra were processed
using the WIN AXIL (Analysis of X-ray spectra by Iterative Least
square) package from Canberra Eurisys.

RESULTS
SITE DESCRIPTION AND SEDIMENT CHARACTERISTICS
Fourteen gravity cores were taken during MSM 11/1 in water
depths between 4040 and 4480 m (Table 1; Figure 1). Station
13501 is near the center of the pond at a water depth of 4480 m
and served as a reference since it is in the deep, flat part of the pond
with the greatest sediment thickness. Other stations were sampled
where sediment thicknesses are reduced, at the N–E edge of the
pond (GeoB13502, 13503, 13504, 13513, and 13514), at the N–W
edge of the pond (GeoB13505, 13506, 13507, and 13512), and on
a crest directed toward the center of the pond (GeoB13508, 13509,
13510, and 13511). Slumps of sediments occur on the slopes, thus
the sedimentary pile is reduced. We targeted the sediment–basalt
interface at these stations.

The principal lithology at North Pond is yellowish-brown to
brownish-yellow pelagic sediment, ranging from nannofossil ooze
with variable amounts of clay and foraminifers to foraminifer rich
sand to clay (Timofeev et al., 1979; Cruise report MSM 11/1).
The presence of sharp, irregular bottom contacts, and normal
graded bedding indicates that the sandy coarse-grained intervals
are the result of gravity flows supplied from the surrounding slopes
(e.g., in GeoB 13501, Figure 2). Sand layers are found only in
cores retrieved from depths >4300 m below sea level. At two sites,
GeoB13504 (Figure 3) and GeoB13505, dense yellow to ochre clay
was recovered. This clay ostensibly overlies basalt (Timofeev et al.,
1979). The lower clay layer at GeoB13504 contained micrometer-
sized fragments of basalt and glass. Mn micronodules within the
nannofossil ooze, ranging from <1 to 3 mm in diameter, were
identified in many cores.

Visible-light reflectance was measured at the surface of the
archive core halves of nine selected stations and correlates well with
the carbonate content of the sediment as established previously
(Giosan et al., 2002; Rogerson et al., 2006). XRF provided semi-
quantitative measurements of light elements (Al, Si, K, Ca, Ti, Mn,
and Fe) that can be used to evaluate their relative abundance along
the cores. Ca is used to record carbonate content; Ca/Al is used
as an indicator of fine-grained sediments vs. coarse-grained sedi-
ments, thus the higher the ratio the coarser the grain size (Richter
et al., 2006). GeoB13501 (Figure 2) and 13504 (Figure 3) contain
the principal lithological features observed at North Pond during
MSM 11/1 cruise and are therefore described here in details. Values
of L∗ ranged from 40.27 to 64.25 in Core GeoB13501 (Figure 2);
foraminifer sand layers at 257–261, 264–271, 538–546, 644–653,
702–713, 742–764, and 777–781 cm (yellow lines in Figure 2) cor-
respond to L∗ maxima and are further highlighted by peaks in the
Ca/Al ratio. The high L∗ values are generally correlated with high
Ca counts, which, in turn, correspond to a high carbonate content.
The lowest L∗ values at 444 and 518 cm in GeoB13501 occur at dark
layers richer in clay than the surrounding nannofossil ooze and
correspond to low Ca/Al ratios (gray lines in Figure 2). The pres-
ence of Mn micronodules at ∼440, ∼580, ∼675, and ∼800 cm is

Frontiers in Microbiology | Extreme Microbiology December 2011 | Volume 2 | Article 263 | 4

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Extreme_Microbiology
http://www.frontiersin.org/Extreme_Microbiology/archive


Picard and Ferdelman The deep aerobic biosphere

FIGURE 2 | GeoB 13501 activity rates (at 42.5, 105.5, 201.5, 301.5, 401.5,

501.5, 601.5, 701.5, 801.5 cm) and detailed lithological features (L*, Ca, Fe,

Mn, and Ca/Al). GeoB 13501 presents several sand layers (yellow lines) and
two clay-rich layers (gray lines). Mn micronodules occur at the Mn peaks.

FIGURE 3 | GeoB 13504 activity rates (at 11, 36, 56, and 63 cm) and

detailed lithological features (L*, Ca, Fe, Mn, and Ca/Al). GeoB 13504 is
characteristic of the sediment–basalt transition beginning at ∼52 cm.
Micro-fragments of basalt are present in the lower clay-rich layer.

confirmed by Mn and Fe maxima. In GeoB13504, L∗ ranged from
47.86 to 63.41 (Figure 3). L∗ increased abruptly at the transition
(∼55 cm) between the nannofossil ooze and the putative dense clay
layer. Ca and thus carbonate content increased while Fe and Mn
decreased. However the Ca/Al ratio decreased significantly at the
transition, confirming the presence of very fine-grained sediment
which may overlie basalt.

POTENTIAL RESPIRATION RATES IN DEEP-OXIC SUB-SEAFLOOR
SEDIMENTS
Acetate concentrations were below the detection limit (3 μM).
However, potential microbial heterotrophic activity (as measured
by the oxidation of 14C-acetate to 14CO2) was detected in sedi-
ment samples recovered from all 14 stations. In all of the samples,

the highest rate was measured after the shortest incubation time
(3 days) except in samples from GeoB13502 and 13510. A sample
from core GeoB 13506 was selected to monitor the oxygen concen-
tration in the slurry as a function of time. In this sample, in which
the maximal rate was at 0.41 nmol cm−3 d−1, oxygen was com-
pletely depleted only after 20 days. We therefore assumed that most
of the slurries remained oxic throughout the experiment. Thus, a
switchover to anaerobic respiration after 3 days can be excluded.
Overall, most of the experiments yielded low rates of potential
activity (<0.2 nmol cm−3 d−1), consistent with the expected low
fluxes of organic matter to the sediments at North Pond.

At three stations, rates of activity were greatest in the sam-
ples taken in the upper 80 cm: 0.21 nmol cm−3 d−1 at 57.5 cm in
GeoB13511, up to 1.46 nmol cm−3 d−1 at 6 cm in GeoB13510,
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and 10.62 nmol cm−3 d−1 at 75.5 cm in GeoB 13512. In contrast,
enhanced rates of potential acetate turnover were not restricted to
just near the surface at the other seven stations. At GeoB13506
(131.5 cm), rates reached 0.41 nmol cm−3 d−1 in a layer that
presented subtle color mottling (presumably associated with pre-
served bioturbation structures). At GeoB13508, peaks in activ-
ity were present at depth with rates of up to 0.17 (281.5 cm)
and 0.21 nmol cm−3 d−1 (331.5 cm). Higher rates of potential
acetate turnover were located just below and near sandy layers,
which are present at 264–265 cm and 326–344 cm. Another exam-
ple of increased activity in sandy layer is present in GeoB13507
(Figure 4), where in the sample taken at 718 cm in the mid-
dle of a sand layer (713–722 cm) activity was up to 7.52 nmol
cm−3 d−1. The increase in activity is even more remarkable in
the sample taken at 723.5 cm just below the sandy layer (up to
12.10 nmol cm−3 d−1). The deepest sample investigated in GeoB
13507 (822.5 cm), which is also situated below a sand layer at
812–814 cm, also showed high rates of potential activity (up to
4.63 nmol cm−3 d−1). At GeoB 13513, the highest rate (up to
1.01 nmol cm−3 d−1) occurred in the sample taken at 159.5 cm,
which, as shown in Figure 5, correlated with a relatively distinct
peaks in L∗, Ca counts and Ca/Al. In GeoB 13502, the peaks in
potential acetate turnover occurred at three layers at depth: 104.5,
604.5, and 804.5 cm (Figure 6).

Conversely, enhanced rates of acetate turnover at 104.5 cm cor-
respond to low L∗, and low Ca/Al values. Likewise, a slight increase
of activity in GeoB13507 (up to 0.99 nmol cm−3 d−1) at 300.5 cm,
occurs in one of the darkest layers of the core (L∗ at 302 cm is
at 41.31). This layer is also associated with the lowest intensity
of Ca and a low Ca/Al ratio. This dark layer is also characterized
by the presence of Mn micronodules, as confirmed by high Mn
contents (data not shown). Finally, at GeoB 13504 (Figure 3) and
GeoB13514 (Figure 7),activity peaks occurred in the deepest layers
recovered, 56 and 63 cm and 205.5 cm, respectively. The presence
of clay and basalt micro-fragments at the bottom of core 13504
suggests proximity to the basalt. The clay was very light in color
and thus the L∗ value is the highest zone. The high L∗ matches a
high Ca content up to 60 cm.

Samples taken at 604.5 in GeoB 13514 and at 804.5 cm in GeoB
13502, high L∗ (as well as high Ca/Fe ratio) was coincident with
enhanced rates of acetate turnover. In the lower parts of cores
13502 and 13514, the sediment became dense and light-colored.
Cores 13504, 13514, and 13502 have in common their location at
the top of the north–east edge of the pond, the two first being at a
water depth of 4096 and 4040 m, respectively, while the latter is at
4250 m water depth.

DISCUSSION
North Pond sediments are oligotrophic, nonetheless, our exper-
iments indicate that microbial heterotrophic communities con-
tinue to be active in these deeply buried sediments. The com-
munities react immediately to the supply of acetate as substrate,
as no lag phase was observed before the oxidation of acetate to
carbon dioxide. In our experiments, we added labeled acetate to
concentrations of 20 μmol l−1. Growth of a specific aerobic ace-
totrophic (acetate-oxidizing) community can be excluded with a
reasonable probability. More likely,heterotrophic communities are

present and potentially active at all depths of the sediments sam-
pled. Moreover, the range of potential activities is highly variable
on both depth and lateral scales.

Such heterogeneity in potential activity rates over a small area
is remarkable in such an oligotrophic environment, where one
would expect low activity rates throughout the cores without much
variation. Conversely, nitrate and oxygen fluxes at the surface sed-
iment – water interface appear to be similar across all sites (Cruise
report MSM 11/1). Some of this variability in potential activ-
ity may be linked to the location and water depth of the sites
sampled. In three cores, the activity maxima occurred near the
surface, where organic matter is younger and expectedly more
accessible toward microbial degradation. The location in the pond
might thus influence the magnitude of the increase in activity.
For example, the three stations with greater near-surface acetate
turnover rates follow a crest directed toward the center of the pond.
GeoB13511 is at the bottom of the slope at 4445 m water depth;
GeoB13510 is a bit further north on the slope at 4448 m water
depth and GeoB13512 is northern at 4200 m water depth at the
top of the edge. However, these three stations were the only ones
where potential activity was greatest near the surface observed
in the upper core; otherwise, peaks in potential acetate turnover
could be observed at various depths.

While microbial cell counts and activities tend to decrease with
increasing depth in the deep anaerobic sub-seafloor (Parkes et al.,
1994, 2000), occurrences of enhanced activity in deep anoxic sub-
seafloor layers have been attributed to geochemical reaction zones,
e.g., at sulfate–methane transition zones; at fluid or gas-venting
sites; or due to thermally driven alteration of organic matter to
form acetate or methane (Cragg et al., 1992, 1995; Wellsbury et al.,
1997; Parkes et al., 2005). Remarkable case of increases in sub-
seafloor microbial population abundances and activities have also
been observed in gas hydrate associated sediments (Cragg et al.,
1995, 1996; Wellsbury et al., 2000).

On the other hand, down-core variability in microbial pop-
ulations and enhanced microbial activities may be more closely
related to changes in the lithology. At an open-ocean site of
the Equatorial Pacific (site 1226, ODP Leg 201), prokaryotic
activity was stimulated within Miocene age diatomaceous-rich
layers (Parkes et al., 2005). At this same site, fluctuations in
microbial populations have been related to depositional cycles
of high organic carbon content linked to Milankovitch cycles
(Aiello and Bekins, 2010). The stimulation of microbial activ-
ity at interfaces has also been studied in subsurface consoli-
dated sedimentary structures. For example, increased microbial
activity was observed in permeable sandstone layers adjacent to
low-permeability organic-rich shales (Fredrickson et al., 1997;
Krumholz et al., 1997) and was fueled by excess organic acids
produced in the shales which diffused into the adjacent sandstone
sediments (McMahon and Chapelle, 1991; McMahon et al., 1992;
Fredrickson et al., 1997; Krumholz et al., 1997; Fry et al., 2009).

The North Pond sedimentary ecosystem is, at first glance, dif-
ferent from the systems described above. Specifically geochemical
measurements indicate the presence of only one electron acceptor,
i.e., oxygen (Cruise report MSM 11/1). In such an oligotrophic
environment one would assume low rates of activity that decrease
with increasing depth. Nevertheless, lithologic variability on a
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FIGURE 4 | GeoB 13507 linked activities and lithological features. Yellow lines denote sandy layers; purple lines denote depths of greater potential acetate
turnover. Samples were taken at 47.5, 125.5, 225.5, 300.5, 325.5, 425.5, 522.5, 622.5, 718, 722.5, and 822.5 cm.

FIGURE 5 | GeoB 13513 linked activities and lithological features. Purple line denotes depth of greater potential acetate turnover. Samples were taken at
depths 57.5, 159.5, 259.5, 359.5, and 459.5 cm.
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FIGURE 6 | GeoB 13502 linked activities (at 27.5, 104.5, 157, 204.5, 304.5, 404.5, 504.5, 604.5, 704.5, and 804.5 cm) and lithological features (L∗, Ca, and

Ca/Al). Yellow lines denote sandy layers; purple lines denote depths of greater potential acetate turnover.

FIGURE 7 | GeoB 13514 linked activities (at 32.5, 103.5, and 205.5 cm) and lithological features (L∗, Ca, and Ca/Al). Purple line denotes depths of greater
potential acetate turnover.
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centimeter- to decimeter-scale can be seen throughout all of the
examined cores (e.g., color scan figures in Figures 2–7). A link
between sediment lithology and potential activity might therefore
dictate the variability in the observed rates of potential activity.

We can associate the peaks in potential acetate turnover with
three different types of lithology, but no one single lithological type
appears to dominate. (1) In cores GeoB13507 and GeoB13508
increased microbial heterotrophic activity can be observed near
sandy layers, which are characterized by a high L∗ value, a high
Ca content and a high Ca/Al ratio. Due to a different permeabil-
ity, sand layers may be a source of dissolved organic matter that
diffuses into the adjacent clay layers, for example as described
by Fredrickson et al. (1997) and Krumholz et al. (1997). (2)
Other carbonate-rich layers also seem to influence microbial het-
erotrophic activity in several of the sites cores. In GeoB13506,
13513, 13502, 13514, and 13504, increases in activity are also
related to relatively high L∗ value, Ca content and Ca/Al ratio.
At GeoB 13504 the presence of clay indicates the proximity to the
basaltic basement. Based on increases with depth of dissolved oxy-
gen (Cruise report MSM 11/1), it is inferred that the basalt is in
near proximity at GeoB13514, GeoB 13504, and GeoB13502. Even
without the presence of clay at GeoB 13514 and GeoB 13502, it is
probable that the basal part of the retrieved sediment section repre-
sents the transition to the clay overlying the basaltic basement. (3)
Finally there are occurrences of increased activity in cores 13502
and 13507 at dark layers, presumably containing more clay than
the surrounding nannofossil ooze.

The experiments show that heterotrophic microbial communi-
ties are active in deeply buried sediments, even in oligotrophic,
low-organic carbon flux conditions. Most of the highest rates
could be partially correlated with the presence of basalt nearby
or directly associated with the presence of sandy layers. This sug-
gests that microbial populations are stimulated near/at geological

layers where lateral transport of fluids can occur and potential sub-
strates can be provided to the microbes residing in the sediments.
Nevertheless, we also detected potential rates of acetate turnover
in other distinctly different lithological layers.

Thus, while we can not link increased microbial heterotrophic
activity to a single, distinct lithological type, this study highlights
the importance of a sampling strategy following the basic charac-
teristics of the sediment, such as the color or the light reflectance,
in the absence of strong pore water chemical gradients. A high-
resolution study of the interfaces foraminifer sand/nannofossil
ooze and basalt/clay would be of great interest. In the case of deep-
oxic sediments, in which exposure to the atmosphere is not as crit-
ical, the sampling procedure could be dictated by non-destructive
core analysis such as those employed in this study.
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