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Sphagnum mosses represent a main vegetation component in ombrotrophic wetlands.
They harbor a specific and diverse microbial community with essential functions for the
host. To understand the extend of host specificity and impact of environment, Sphagnum
fallax and Sphagnum angustifolium, two phylogenetically closely related species, which
show distinct habitat preference with respect to the nutrient level, were analyzed by a
multifaceted approach. Microbial fingerprints obtained by PCR-single-strand conformation
polymorphism of 16S rRNA and nitrogenase-encoding (nifH ) genes were highly similar for
both Sphagnum species. Similarity was confirmed for colonization patterns obtained by
fluorescence in situ hybridization (FISH) coupled with confocal laser scanning microscopy
(CLSM): Alphaproteobacteria were the main colonizers inside the hyaline cells of Sphagnum
leaves. A deeper survey of Alphaproteobacteria by 16S rRNA gene amplicon sequencing
reveals a high diversity with Acidocella, Acidisphaera, Rhodopila, and Phenylobacterium as
major genera for both mosses. Nitrogen fixation is an important function of Sphagnum-
associated bacteria, which is fulfilled by microbial communities of Sphagna in a similar
way. NifH libraries of Sphagnum-associated microbial communities were characterized by
high diversity and abundance of Alphaproteobacteria but contained also diverse ampli-
cons of other taxa, e.g., Cyanobacteria and Deltaproteobacteria. Statistically significant
differences between the microbial communities of both Sphagnum species could not be
discovered in any of the experimental approach. Our results show that the same close
relationship, which exists between the physical, morphological, and chemical characteris-
tics of Sphagnum mosses and the ecology and function of bog ecosystems, also connects
moss plantlets with their associated bacterial communities.

Keywords: Sphagnum fallax, Sphagnum angustifolium, SSCP fingerprints, FISH–CLSM, amplicon library,Alphapro-

teobacteria, nitrogenase

INTRODUCTION
Northern wetlands belong to the oldest vegetation forms with
more or less constant conditions for thousands of years. Sphag-
num-dominated peatlands represent one of the most extensive
types of Northern wetlands (Dedysh, 2011). They cover with
4 million km2 approx. 3% of the Earth surface and have a high
value for biodiversity–conservation, as reservoir of fresh water, for
human welfare and our world climate due to its extraordinary
role in carbon sequestration (Gorham, 1991; Clymo et al., 1998).
Despite their age, these long-existing ecosystems are extremely sen-
sitive to changing a-biotic factors connected with climate change
(Belyea and Malmer, 2004; Dise, 2009). As the dominant vegeta-
tion component of the peatlands, Sphagnum moss has been used
globally as an indicator of climate change (Gignac and Vitt, 1994;
Whinam and Copson, 2006; Granath et al., 2009). The ecological
significance of bogs is directly related to the physical, morphologi-
cal, and chemical characteristics of Sphagnum peat mosses; which
set Sphagnum apart from other mosses to practically every stage of
the life cycle (Shaw et al., 2003). Moreover, Sphagnum mosses are

able to change their environments: living Sphagna have extraor-
dinarily high cation exchange capacity and therefore acidify their
environment by exchanging tissue-bound protons for basic cations
in surrounding water (Soudzilovskaia et al., 2010). Interestingly,
Sphagnum leaves are highly specialized: they form a network of liv-
ing, chlorophyll-containing chlorophytes and dead, cell content-
free hyalocytes, which are responsible for their high water holding
capacity. Sphagnum species also produce species specific bioactive
secondary metabolites influencing microbial colonization (Opelt
et al., 2007a).

Sphagnum mosses are colonized by diverse bacterial communi-
ties. Microbial populations involved in CH4 cycling, i.e., methan-
otrophic bacteria (Dedysh et al., 1998; Dedysh, 2002; Raghoebars-
ing et al., 2005; Larmola et al., 2010; rev. in Dedysh, 2011) as well
as methanogens including archaea (Horn et al., 2003; Freitag et al.,
2010) have attracted research interest due to their important func-
tion for methane emission. Recently, we could show that living
Sphagnum mosses are colonized in high abundances with spe-
cific microorganisms, which fulfill other important functions like

www.frontiersin.org January 2012 | Volume 2 | Article 275 | 1

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Terrestrial_Microbiology/10.3389/fmicb.2011.00275/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=43429&d=1&sname=AnastasiaBragina&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=27010&d=1&sname=GabrieleBerg&name=Science
mailto:gabriele.berg@tugraz.at
http://www.frontiersin.org
http://www.frontiersin.org/Terrestrial_Microbiology/archive
http://www.frontiersin.org/people/franzhadacek/45892


Bragina et al. Sphagnum-associated microbial diversity

nutrient supply and pathogen defense for moss growth and health
(Opelt et al., 2007a,b). An extremely high impact of the Sphag-
num species was found on the structure of the microbial diver-
sity, and this diversity is transferred directly from the sporophyte
(within the sporangium capsule) to the gametophyte and vice versa
(Bragina et al., 2011). In the latter, we analyzed bacterial com-
munities of two ubiquitous Sphagnum species, S. magellanicum,
and Sphagnum fallax, in three Alpine bogs in Austria. Extremely
high differences between bacterial communities of both Sphagna
were found by a combination of methods independently from
the site. For example, a discriminative spectrum of bacteria was
identified: while Alpha- and Gamma-proteobacteria dominated S.
magellanicum, S. fallax was mainly colonized by Verrucomicrobia,
Planctomycetes, and Alphaproteobacteria. In addition, bacterial
communities were strongly driven by a-biotic factors (nutrient
richness and pH), and correlated strongly with the composition of
higher plant communities. The specific microbial diversity associ-
ated with the highly diverse Sphagnum genus (Daniels and Eddy,
1985) is largely unknown but important to understand and protect
Sphagnum in bog ecosystems.

The objective of this work was to study the structure and
function of Sphagnum-associated bacteria to understand extend
and degree of host specificity. Therefore, two phylogenetically
closely related and widely distributed species with overlapping
micro-niches but varying trophic specialization were selected:
Sphagnum angustifolium (Warnst.) C. E. O. Jensen and S. fal-
lax H. Klinggr. (Daniels and Eddy, 1985; Flatberg, 1992; Sastad
et al., 1999). Both Sphagnum species were first characterized by
their secondary metabolite profile. A polyphasic approach was
applied to study bacterial communities with a special focus on
Alphaproteobacteria and nitrogen-fixing bacteria: (i) microbial
fingerprints by PCR-single-strand-conformation polymorphism
(SSCP) applying universal and group-specific 16S rRNA gene-
targeting primers and nitrogenase (nifH ) gene-specific primers,
(ii) fluorescent in situ hybridization with universal and group-
specific probes coupled with fluorescence in situ hybridization
confocal laser scanning microscopy (FISH–CLSM) and image
analysis, (iii) deep-sequencing of Alphaproteobacteria, and (iv) a
functional approach to analyses the potential for nitrogen fixation
by nitrogenase (nifH ) genes in amplicon libraries.

MATERIALS AND METHODS
SAMPLING PROCEDURE
Adult gametophytes of S. angustifolium (section Cuspidata)
and S. fallax (section Cuspidata) were sampled from the
bog “Pürgschachen Moor” (Liezen, 1.7 km SW Ardning, N47˚
34.789′E14˚2017′) in Austria in July and November 2010. In this
bog, S. angustifolium has broader ecological amplitude and grow
in mesotrophic wet hollows with some ground water influence
as well as in more ombrotrophic hummocks over ground water
level. S. fallax grow only in wet mesotrophic conditions in which
we collected the samples of both species in comparable ecological
situations. The pH of the surrounding peat water was measured
at all sampling points and showed mean values of 4.00 (SD, 0.15)
for S. fallax and 4.04 (SD, 0.31) for S. angustifolium. Altogether
eight independent replicates per Sphagnum species consisting of
composite samplings of 15–20 plantlets were collected and stored

separately. The approximate length of the sampled plants was
14.5 cm (SD, 2.3 cm) for S. fallax and 15.1 cm (SD, 2.5 cm) for
S. angustifolium. The eight sampling points were situated in a dis-
tance of at least 10 m, while both species had a distance of not more
than 1 m at each single point. The living green parts of the plantlets
were placed into sterile plastic bags and transported cooled to the
laboratory.

CHEMICAL ANALYSIS OF SPHAGNUM SECONDARY METABOLITES
Spectra of secondary metabolites of Sphagnum samples were ana-
lyzed using high-performance liquid chromatography with UV
photodiode array detection (HPLC-PDA) as described previously
(Opelt et al., 2007a).

TOTAL-COMMUNITY DNA ISOLATION
The bacterial fraction associated with gametophytes was extracted
according to the modified protocol of Opelt and Berg (2004).
Briefly, 5 g of plant material were physically disrupted with ster-
ile pestle and mortar and re-suspended in 10 ml of 0.85% NaCl.
Two milliliter of the suspension was centrifuged at 13000 rpm for
20 min at 4˚C and the pellet was used for isolation of the total-
community DNA. For mechanical lysis, the cells were homoge-
nized twice in a FastPrep® FP120 Instrument (MP Biomedicals)
for 30 s at speed 5.0. The obtained DNA was purified using the
FastDNA® SPIN Kit for Soil (MP Biomedicals) according to the
manufacturer’s protocol. Final aliquots of the total-community
DNA were further applied in PCR-based approaches.

MICROBIAL FINGERPRINTING BY PCR-SSCP
Fingerprinting of the moss-associated bacterial communities was
carried out by PCR-based SSCP described by Schwieger and Tebbe
(1998). 16S rRNA genes of Bacteria were amplified with universal
bacterial primers Com1/Unibac-II-927rP (Schwieger and Tebbe,
1998; Zachow et al., 2008). A set of Alphaproteobacteria-specific
primers ADF681F/1492r, followed by ADF681F/927rP, was applied
using a semi-nested protocol (Blackwood et al., 2005). Bacter-
ial nitrogenase gene (nifH ) fragments were amplified in a nested
approach with nifH3/19F, nifH11/nifH22P primers (Yeager et al.,
2004). The amplicons were separated using the TGGE Maxi system
(Biometra) at 400 V and 26˚C in acrylamide gel followed by silver
staining.

Strand conformation polymorphism is based on the differ-
ences in the conformation of single-stranded DNA fragments. The
electrophoretic mobility of the single-stranded DNA fragments
depends on their three-dimensional conformation. Each of the
amplification products was identified by its electrophoretic dis-
tance on SSCP gel and the number of DNA fragments. According
to the distance of the bands, the SSCP gels were virtually divided
into operational taxonomic units (OTUs). The presence or absence
of individual amplified product DNA bands in each group was
scored. The obtained matrix was used to compare statistically (see
statistics).

FLUORESCENT IN SITU HYBRIDIZATION AND CONFOCAL LASER
SCANNING MICROSCOPY
Single gametophytes of S. angustifolium and S. fallax were fixed
with 4% paraformaldehyde/phosphate buffered salt (3:1, v/v).
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Separated leaves were stained by in-tube FISH (Grube et al.,
2009). Fluorescently labeled rRNA-targeting probe ALF968 spe-
cific for Alphaproteobacteria (Loy et al., 2007) was applied
in combination with equimolar mixture of universal bacter-
ial probes EUB338, EUB338II, EUB338III (Amann et al., 1990;
Daims et al., 1999). Sphagnum samples were consequently
hybridized with ALF968 (41˚C, 45% formamide) followed by
EUB338/EUB338II/EUB338III (41˚C, 15% formamide). Negative
control was hybridized with non-target NON-EUB probe (Amann
et al., 1990) at the same stringency conditions applied for the
positive FISH probes.

Confocal laser scanning microscopy was performed using a
confocal microscope Leica TCS SPE (Leica Microsystems). Flu-
orescent dyes Cy3 and Cy5 labeled to the FISH probes were
sequentially excited with 532 and 635 nm laser beams, respectively;
the emitted light was detected in the range of 556–607 and 657–
709 nm, respectively. An additional channel (excitation at 488 nm;
emission range 508–556 nm) was used for acquiring the autoflu-
orescence of the moss cells. Photomultiplier gain and offset were
individually optimized for every channel and every field of view,
in order to improve the signal/noise ratio. Confocal stacks were
acquired with a Leica ACS APO 40X OIL CS objective (NA: 1.15)
and a Leica ACS APO 63X OIL CS objective (NA: 1.30) by applying
a Z-step of 0.4–0.8 μm. Three-dimensional reconstructions were
created with the software Imaris 7.0 (Bitplane).

DEEP-SEQUENCING AND BIOINFORMATIC ANALYSIS
Diversity of Alphaproteobacteria and nitrogen-fixing bacteria
associated with Sphagnum species was deeply investigated by bar-
coded pyrosequencing approach. The total-community DNA was
amplified with the set of Alphaproteobacteria-specific primers
ADF681F/Unibac-II-927r (Blackwood et al., 2005; Zachow et al.,
2008) and nifH gene-specific primers nifH3/nifH4, nifH1/nifH2
in the nested approach (Zehr and Turner, 2001) using Taq-
&Go™Ready-to-use PCR Mix (MP Biomedicals). Duplicate PCR
products from all templates were purified with Wizard® SV Gel
and PCR Clean-Up System (Promega). Amplicons of each Sphag-
num sp. were pooled together and subjected to the pyrosequencing
using the Roche/454 GS FLX+ Titanium platform executed by
GATC Biotech (Konstanz, Germany).

The 16S rRNA gene amplicon libraries specific for Alphapro-
teobacteria were analyzed as specified by Bragina et al. (2011).
Shortly, raw sequencing reads were quality and length filtered
(≥150 bp). Rarefaction analysis was performed for phylotype clus-
ters of 97, 95, and 90% similarity by using the tools of the RDP’s
Pyrosequencing Pipeline (Cole et al., 2009). Datasets were nor-
malized to the same number of sequences. Richness estimates
and diversity indices were calculated in the open source software
package QIIME (Caporaso et al., 2010). Classification of the reads
was performed using the BLAT pipeline within the web interface
SnoWMAn version 1.111 with 80% confidence threshold.

Amplicon libraries of the nitrogenase gene (nifH ) were
explored using the FunGene Pipeline of RDP server2 with para-
meters stated by Farnelid et al. (2011). Primer sequences were

1https://epona.genome.tugraz.at/snowman/
2http://fungene.cme.msu.edu/FunGenePipeline/

trimmed and reads of a low quality and shorter 200 bp were
removed. Filtered reads were translated into amino acid sequences
and clipped at 60 aa. Further analyses were carried out on amino
acid sequences. For the rarefaction, datasets were clustered with
100, 96, and 92% similarity cut-offs. Richness estimates and diver-
sity indices were calculated for the subsets normalized to the same
number of sequences by QIIME software. Compositional diversity
was compared by Sørensen (C s) and Shannon (H ′) indices at 96%
similarity level. Phylogenetic analysis was performed for the clus-
ters of 92% similarity with ≥10 sequences. Reference sequences
were obtained using the NCBI algorithm TBLASTN and a phy-
logenetic tree was constructed as described previously (Bragina
et al., 2011).

STATISTICS
Computer-assisted analysis of SSCP profiles was performed using
the GelCompare II version 5.1 software package (Applied Maths).
Similarity matrices were constructed based on Pearson’s corre-
lation coefficients (r) and cluster analyses were done by the
unweighted pair group method with average linkages (UPGMA).
SSCP profiles of the microbial communities generated with uni-
versal bacterial and nifH gene-specific primers were further
applied for the multivariate analysis. Single DNA bands, char-
acterized by the relative position and abundance on the gel, were
defined as OTUs and used as response variables for detrended cor-
respondence analyses (DCA) by Canoco 4.5 for Windows (Lepš
and Smilauer, 2003).

RESULTS
PROFILING OF THE SPHAGNUM SECONDARY METABOLITES
High-performance liquid chromatography-PDA profiling of plant
extracts yielded notably similar chromatograms and spectra of the
prevailing peaks of the secondary metabolites for both Sphag-
num species. The UV spectra suggested various phenols and
indol derivatives including sphagnic acid (peak 7; Figure 1). The
only noteworthy difference was the more pronounced accumu-
lation of flavonoid conjugates (naringenin and apigenin) in S.
angustifolium. The late retention time precluded glycosides but
more lipophilic molecules. The result testified common chemical
basis for establishment of the similar microbial diversity of the
compared moss species.

MOLECULAR FINGERPRINTING OF MICROBIAL COMMUNITIES
In the molecular fingerprinting approach we used a specific
set of primers: universal primers to get an overview about the
whole bacterial community associated with Sphagnum, primers
for Alphaproteobacteria because this is a ubiquitous and cos-
mopolitan phylogenetic class associated with Sphagnum (Bragina
et al., 2011), and nifH primers to detect nitrogen-fixing bacteria as
important functional group (Opelt et al., 2007a). All SSCP finger-
prints obtained with universal and group-specific primers revealed
high similarity of the microbial communities associated with S.
fallax and S. angustifolium (Figure 2). UPGMA analysis of the
Bacteria profiles resulted in a minimum similarity level of 95.5% of
bryophyte-associated communities. Alphaproteobacteria patterns
formed a common cluster at 87.1% similarity. Fingerprints of the
nifH gene clustered into two groups at 41.2% similarity. Within
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FIGURE 1 | High-performance liquid chromatography -UV secondary metabolite profiles of S. angustifolium and S. fallax at 229 nm (UV spectra

(200–400 nm; 1, phenol; 2, 5, 6, indole derivative; 3, 4, phenols; 7, 9, sphagnic acid; 8, phenol; 10, naringenin type flavonoid; 11, 12, apigenin flavonoids.

each cluster, samples of both Sphagna grouped together. This over-
lap of the microbial communities was confirmed statistically by a
detrended correspondence analysis (Figure 3).

MICROBIAL COLONIZATION PATTERNS
Sphagnum gametophytes characterized by the unique morphology
were studied for microbial colonization patterns by FISH. Again,
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FIGURE 2 | Unweighted pair group method with average linkages

dendrograms of bacterial communities associated with

S. angustifolium (SA, squares) and S. fallax (SF, circles). The
dendrograms were generated from the PCR-SSCP profiles of Bacteria (A),

Alphaproteobacteria (B), and bacterial nifH genes (C) using unweighted pair
group method with average linkages (UPGMA). Numbers in round brackets
indicate replicates. Double-headed vertical arrows indicate the similarity for
the groupings.

we applied universal and Alphaproteobacteria-specific probes
according to the above mentioned reasons. The stem and branch
leaves are usually differentiated in size and shape, but equally

are formed by dimorphic leaf cells in which large, empty hyaline
cells perforated by pores are enclosed in a network of narrower,
chlorophyllose cells (Figures 4A,D). CLSM observation of both
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FIGURE 3 | Detrended correspondence analysis (DCA, indirect

unimodal gradient analysis) of operational taxonomic units (OTUs)

identified by SSCP community fingerprints. Eigenvalues of first and
second axis are 0.244 and 0.141, respectively; sum of all eigenvalues

1.715. Black stars and diamonds show the location of the 16 samples,
colored circles the location of the 111 OTUs in the biplot. The colors
indicate its preference to Sphagnum angustifolium (ang) or S. fallax,
respectively.

leave types showed dense colonization by bacterial colonies of the
internal space of the gametophytes as shown for branch leaves
in Figures 4B,E. Alphaproteobacterial cells presented up to 50%
of the detected bacterial colonies. Three-dimensional reconstruc-
tion of the acquired images supported that bacteria primarily
occupied dead hyaline cells Figures 4C,F. In conclusion, FISH–
CLSM approach displayed similar colonization patterns for S.
angustifolium and S. fallax by the bacterial communities.

DEEP-SEQUENCING OF ALPHAPROTEOBACTERIA AND NIFH GENES
Alphaproteobacteria and nitrogen-fixing bacteria were selected to
get a deeper insight by a pyrosequencing approach. The 16S rRNA
gene amplicon libraries specific for Alphaproteobacteria were rar-
efied as shown in Figure 5. Richness estimation of the normalized
datasets revealed that pyrosequencing effort reached 66.0–74.2%
of estimated richness for the clusters of 90% similarity (Table 1).
The clusters of 95 and 97% similarity reflected 49.3–51.2 and
45.4–46.2% of estimated richness, respectively.

Taxonomic composition of alphaproteobacterial populations,
compared at the ranks of families and genera, was substantially
similar among Sphagnum spp. (Figure 6). Dominant Acetobacter-
aceae family was prevailed by genera Acidocella, Acidisphaera, and
Rhodopila. Within families Sphingomonadaceae and Rhodospiril-
laceae, the most members belonged to Novosphingobium spp. and
Magnetospirillum spp., correspondingly. Withal, composition and
ratio of subdominant Caulobacteraceae varied between mosses.
The family was more abundant in S. fallax sample and consisted of
genus Phenylobacterium (detected all over) and genus Caulobacter

(unique for S. fallax). Diversity of species was accessed by Shannon
diversity index (H ′) for clusters of 97% similarity. Comparison of
the index values revealed a slightly higher diversity of Alphapro-
teobacteria for S. fallax (4.60) than for S. angustifolium (4.18).

According to the NCBI database, identified alphaproteobac-
terial genera comprise bacteria known for the nitrogen fixation.
Particularly, genera Bradyrhizobium, Acetobacter, and Beijerinckia
were found in both libraries, while genera Gluconacetobacter,
Methylocystis, Methylosinus, and Rhizobium were solely detected
in the S. fallax library.

Rarefaction analysis of the nitrogenase gene libraries resulted
in similar saturation profiles of the Sphagnum samples (Figure 5).
Normalized datasets represented 61.0–62.7% of estimated rich-
ness at 92% similarity (Table 1). The clusters of 96% similarity
covered 55.2–66.6%, while unique clusters reflected 19.8–22.1%
of estimated richness, correspondingly. Compositional diversity
was assessed applying 96% similarity cut-off to confine the clus-
ters. The Sørensen similarity index indicated that samples featured
53% identity. Nitrogenase diversity estimated by Shannon was
again slightly higher for S. fallax (7.59), than for S. angustifolium
(7.20; Table 1).

Phylogenetic analysis of the NifH composition revealed that
retrieved sequences, 60 amino acids in length, were distributed
among canonical Clusters I, III, and Sub-cluster IA (Figure 7).
The most abundant Cluster I, comprising sequences of Pro-
teobacteria and Cyanobacteria, was dominated by Alphapro-
teobacteria. According to the BLAST analysis, the most preva-
lent alphaproteobacterial amplicons were ≥95% similar to
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FIGURE 4 | Localization of bacteria in moss gametophytes. Fluorescent
in situ hybridization of S. angustifolium (A–C) and S. fallax (D–F) leaves
showed colonization of hyaline cells by Alphaproteobacteria. Images acquired
by confocal laser scanning microscopy (CLSM) (A,B,D,E): violet – cell walls of

Sphagnum cells; green – chlorophyll-containing Sphagnum chlorocytes;
yellow – Alphaproteobacteria; red – other bacteria. 3D computer
reconstructions of CLSM images using Imaris7.0 (C,F): blue – moss tissue;
red: Alphaproteobacteria; green: other bacteria. Scale bar = 20 μm.

Bradyrhizobium, Azorhizobium, Rhizobium, Methylobacterium,
Rhodocista, and Acetobacter species. Considerable proportion of
amplicons showed 96–100% identity with Methylocella, Methy-
locapsa, and Beijerinckia reference sequences. Detected Betapro-
teobacteria were prevailed by Burkholderia spp. (≥95% similar-
ity). Minor portion of Cluster I amplicons was affiliated with
cyanobacterial genera Anabaena and Tolypotrix (100% similar-
ity). Sub-cluster IA contained sequences 96–100% similar to
Geobacter sp. Within the Cluster III amplicons grouped with ref-
erence Spirochaeta and Thermincola species (82–93% similarity).

In conclusion, nifH amplicon libraries of Sphagnum-associated
microbial communities were characterized by high diversity and
abundance of alphaproteobacterial amplicons.

DISCUSSION
Sphagnum mosses form an outstanding group of Bryophyta; they
are unique in their morphological and developmental features
at every stage of the life cycle (Shaw et al., 2003). More than
for other plants, physical and chemical characteristics of Sphag-
num mosses are related to the ecology and function of Northern
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FIGURE 5 | Rarefaction curves for amplicon libraries of Sphagnum samples. Saturation curves are presented for samples of S. angustifolium (SA) and S.
fallax (SF). Alphaproteobacteria (A) and nifH datasets (B) were clustered with similarity cut-offs defined.

Table 1 | Richness estimates and diversity indices for amplicon libraries of Sphagnum samplesa.

Sphagnum species Indices

Index Clusters Chao1 Coverage (%) Shannon (H ′)

ALPHAPROTEOBACTERIA

Similarity cut-offsb 97% 95% 90% 97% 95% 90% 97% 95% 90% 97% 95% 90%

S. angustifolium 41 26 14 91 52 22 45.4 49.3 66.0 4.18 3.23 2.08

S. fallax 42 27 13 91 53 17 46.2 51.2 74.2 4.60 3.72 2.55

NIFH

Similarity cut-offsc 100% 96% 92% 100% 96% 92% 100% 96% 92% 100% 96% 92%

S. angustifolium 1644 655 263 7447 983 420 22.1 66.6 62.7 8.76 7.20 5.72

S. fallax 1646 848 343 8301 1536 562 19.8 55.2 61.0 8.68 7.59 6.15

aThe number of sequences of each sample was normalized to 131 (Alphaproteobacteria) and 3601 (NifH).
bSimilarity cut-offs applied for clustering of the nucleotide sequences.
cSimilarity cut-offs applied for clustering of the amino acid sequences.

FIGURE 6 |Taxonomic classification of Alphaproteobacteria associated with S. angustifolium and S. fallax. Pyrosequencing reads are classified at family
(A) and genus level (B) with a confidence threshold of 80%. Groups below 1% of relative abundance are included in Other. Multi-colored charts at the legend
are shown for each sample correspondingly.
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FIGURE 7 | Phylogenetic composition of the nitrogenase gene (nifH )

amplicon libraries of S. angustifolium (SA, circles) and S. fallax (SF,

squares). Neighbor-joining phylogenetic tree was constructed with both
one representative sequence per NifH cluster (92% similarity) and the
nearest reference sequences (accession numbers in brackets). A partial
sequence of the light-independent photochlorophyllide reductase subunit L
(BchL) from Chlorobaculum tepidum (Acc. Nr. AAG12203) was used as
out-group. Reliability of the tree topology was evaluated by 100 bootstrap
resamplings (bootstrap values not shown). Abundance and phylogenetic
affiliation of the clusters are indicated at the legend. Scale bar = 0.1
substitutions per site.

peatlands. In this study we have shown the same deep relationship
between moss plantlets and their associated bacterial communi-
ties. In the multifaceted approach applied to study the structure
and function of bacteria, only minor but not statistically signifi-
cant differences were found between S. angustifolium and S. fallax,
two peat mosses which shared similar ecological conditions inside
the bog ecosystem.

This high similarity is in contrast to former studies of Sphag-
num-associated bacteria of different ecological amplitudes (Opelt
et al., 2007c; Bragina et al., 2011). The main difference between the
former studies and the present study is the close taxonomic and
ecological relationship of the investigated S. angustifolium and S.
fallax unlike S. magellanicum. S. magellanicum belongs to another
section within the genus Sphagnum (section Sphagnum) and is
typical for strong acidic, oligotrophic, and ombrotrophic habi-
tats, whereas S. angustifolium and S. fallax (section Cuspidata)
grow in weakly acid, more mesotrophic situations influenced by
minerotrophic groundwater (Daniels and Eddy, 1985). Also from
the morphological point of view, S. angustifolium and S. fallax are
difficult to distinguish, and in former times both taxa were con-
sidered as varieties of one species S. recurvum P. Beauv (Smith,
1978). In contrast to S. magellanicum (Opelt et al., 2007a), S.
angustifolium, and S. fallax are characterized by similar secondary
metabolites. The overlap of common properties for the mosses
was also found for the bacterial community. Figure 3 not only

shows a high degree of similarity between the microbial com-
munities also a differentiation in more S. fallax (negative along
the first axis) and more S. angustifolium (positive along the first
axis) preferring bacteria. So, the situation shown exemplarily in
Figure 3 could be interpreted as an early state of specification
of bacterial communities correspondent with an early state of
host species differentiation. Interestingly, our results also explain
differences between the theory of Sphagnum species specific com-
munities established by Opelt et al. (2007c) and Bragina et al.
(2011) and results obtained by Larmola et al. (2010) who iden-
tified only a-biotic drivers. For methanotrophs, they found for
transplanted Sphagnum species bacterial pattern and activity typ-
ical for the a-biotic parameters of the destination site. However,
this was an artificial experiment; the majority of the approx. 300
Sphagnum species has very narrow ecological amplitudes and
would not grow in nature under different conditions (Daniels
and Eddy, 1985). In Northern wetlands, which belong to an old
vegetation type with more or less extreme but constant condi-
tions for thousands of years, Sphagnum mosses have established
a highly specific and adapted symbiosis with their associated
microbes.

What are the ecological consequences of this specificity of
the microbial community? Well-adapted to a-biotic parameters
to the place where they live, Sphagnum mosses together with
their microbiome as so called “meta-organisms” fulfill impor-
tant functions for ecosystem services. These functions can only
fulfilled in cooperation with the associated microbial commu-
nity. The latter is responsible to fix nitrogen for the host plant,
to solubilize phosphor but also to provide carbon from peat-
delivered methane (Raghoebarsing et al., 2005; Opelt et al., 2007a).
Studies have shown that oxidation of CH4 by methanotrophic
microbes residing in the Sphagnum layer is controlled by envi-
ronmental factors, i.e., water table and temperature (Larmola
et al., 2010) but beside this the rate was specific for Sphagnum
species (Gifford et al., 2011). Taken together, the specificity of
the microbial community is essential to live under the extreme
and highly varying ecological gradients within the bog ecosys-
tem and to fulfill the ecological functions. The bog ecosystem
is more complex than previously thought but this is impor-
tant to know to maintain bog ecosystems in Northern wetlands.
The high specificity, narrow ecological amplitude and closed
relationship can be one reason that Sphagnum is highly sen-
sitive to changing a-biotic parameters connected with climate
change.

Little is known about the specific ecology of Sphagnum-
associated bacteria which are to a high degree still not culturable
(Dedysh, 2011). Dominant alphaproteobacterial taxa associated
with Sphagna are known as acidophilic or acidotolerant bacteria
able to grow chemo-organotrophically or phototrophically and
to survive under oligotrophic conditions. Sphagnum-associated
microbial communities should be included in biodiversity–
conservation agenda and used for predictive microbial ecology
as requested by Bodelier (2011).
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