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The study of antibiotic resistance has been 
historically concentrated on the analysis 
of bacterial pathogens and on the conse-
quences of acquiring resistance for human 
health. The development of antibiotic 
resistance is of course extremely relevant 
from the clinical point of view, because it 
can compromise the treatment of infec-
tious diseases as well as other advanced 
therapeutic procedures as transplantation 
or anticancer therapy that involve immu-
nosuppression and thus require robust anti-
infective preventive therapies. Nevertheless, 
the studies on antibiotic resistance should 
not be confined to clinical-associated eco-
systems. It was evident soon after intro-
ducing antibiotics for human therapy, that 
bacteria were able to develop resistance, 
not just as the consequence of mutations 
in the targets of antibiotics, but by acquir-
ing genes conferring resistance to antimi-
crobials (Abraham and Chain, 1940). Since 
those genes were not present before in the 
human bacterial pathogens, the only suit-
able source for them was the environmen-
tal microbiota, and indeed the presence of 
R-factors (resistance plasmids) in pristine 
environments without any record of contact 
with antibiotics was described in the first 
studies of antibiotic resistance in the field 
(Gardner et al., 1969).

Given that the origin of antibiotic resist-
ance is the environmental microbiota, it 
would be necessary to study resistance in 
natural, non-clinical habitats in order to 
fully understand the cycle of acquisition of 
resistance by human pathogens. However, 
until recently the studies on antibiotic resist-
ance in natural ecosystems have been frag-
mentary. The availability of metagenomic 
tools as well as high-throughput sequencing 
techniques is allowing describing in depth 
the presence of resistance genes in different 
ecosystems. Indeed, the use of functional 
genomic and metagenomic techniques has 
served to show that natural ecosystems, 

evolved for detoxifying the original host 
from the antibiotic it produces, although 
a role in the biosynthesis of the antibiotic 
itself has been proposed as well for some of 
them (Benveniste and Davies, 1973; Doyle 
et al., 1991). Others, as beta-lactamases 
might be involved in the biosynthesis of 
the cell wall (Jacobs et al., 1994; Massova 
and Mobashery, 1998), whereas others as 
multidrug efflux pumps might serve for 
different purposes including the traffick-
ing of signaling molecules, detoxification 
of metabolic intermediates, or extrusion of 
plant-produced compounds among others 
(Martinez et al., 2009b). Like in the case of 
antibiotics, which do not necessarily have 
an inhibitory function at the concentrations 
in which they are present in natural ecosys-
tems (Linares et al., 2006; Yim et al., 2007; 
Fajardo and Martinez, 2008), the fact that 
a plasmid-encoded gene produces resist-
ance to antibiotics upon its expression in a 
new host, is not an unequivocal prove that 
it confers resistance as well in its original 
host. This reflection serves to show the rel-
evance of the second age in the evolution of 
antibiotic resistance determinants. Once a 
gene is introduced in a new host in which 
it lacks its original biochemical and genetic 
context, its function is limited to antibi-
otic resistance (Baquero et al., 2009). This 
change of function without changing the 
sequence of the gene itself, has been named 
as exaptation (Gould and Vrba, 1982), and 
is the consequence of the strong selective 
pressure exerted by antibiotics in the last 
decades from the time they were introduced 
for therapy.

Two important aspects are emerging 
from the studies of natural resistome. First, 
the environmental microbiota contains a 
much larger number of resistance genes 
than those seen to be acquired by bacte-
rial pathogens (Wright, 2007; Davies and 
Davies, 2010). Furthermore, different eco-
systems contain different resistance genes, 

including not just soils but human gut as 
well, contain a large number of elements 
that, upon transfer to a new host, can con-
fer resistance to any type of antimicrobial 
(D’Costa et al., 2006; Sommer et al., 2009). 
These include natural antibiotics, which are 
produced by the environmental microbiota, 
and synthetic antimicrobials, as quinolones.

One important question from an evo-
lutionary point of view is the function of 
these resistance genes in their natural envi-
ronmental hosts (Davies and Davies, 2010). 
Whereas for naturally produced antibiotics 
a protective role for resistance genes in the 
producers organisms (or those coexisting 
with producers Laskaris et al., 2010) might 
be foreseen (Benveniste and Davies, 1973), 
this explanation is not suitable for syn-
thetic antibiotics as quinolones. Indeed, it 
has been described that the origin of the 
quinolone resistance gene QnrA, which 
is now widespread in plasmids present in 
human pathogens is the environmental 
non-antibiotic producer Shewanella algae 
(Poirel et al., 2005). This means that a gene 
that confers resistance in a human patho-
gen does not necessary play the same role 
in its original host (Martinez et al., 2009a). 
The finding that several proteins, involved 
in basic processes of the bacterial physiol-
ogy, contribute to intrinsic resistance to 
antibiotics (Fajardo et al., 2008; Laskaris 
et al., 2010; Linares et al., 2010), further 
supports the concept that resistance genes, 
acquired through horizontal gene transfer 
by human pathogens, might have evolved 
in their original host to play a different role 
than resisting the activity of antimicrobials 
in natural ecosystems.

We can thus distinguish two ages in the 
evolution of antibiotic resistance genes. For 
billions of years (until the use of antibiotics 
by humans), these genes have been usually 
chromosomally encoded and had evolved 
for different purposes. Some of them, as 
those found in antibiotic producers, likely 
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2011; Sommer et al., 2009). These studies 
are useful for defining novel mechanisms 
of resistance, but making risks assessments 
on whether those novel antibiotic resist-
ance genes will be transferred to new hosts 
is likely unsuitable (Martinez et al., 2007). 
On the other hand tracking the source of 
currently known resistance gene has dem-
onstrated to be a very difficult task. We 
have to be extremely careful for assign-
ing the origin of resistance determinants. 
Only when the genes are nearly identical 
(as QnrA) and the gene is present in several 
strains of the original host, with the same 
synteny and without any sign of a recent 
acquisition event, we can firmly establish 
this host being the origin. The report of 
genes that are highly similar (even above 
90%) to antibiotic resistance genes dem-
onstrate their belonging to the same phy-
logenetic group, not that one is the origin 
of the other. Does it mean that we will be 
unable of tracking the source of resistance 
genes and to propose from this information 
valuable strategies for reducing antibiotic 
resistance? I do not believe that. It has been 
already determined that QnrA was origi-
nated in S. algae (Poirel et al., 2005) and 
that chromosomally encoded qnr genes 
are mainly present in water-dwelling bac-
teria (Sanchez et al., 2008). This suggests 
that the source of transferrable quinolone 
resistance is the water microbiota and puts 
a focus on the effect that the use of qui-
nolones in aquaculture might have had for 
the emergence and dissemination of these 
resistance elements (Cabello, 2006).

The study on antibiotic resistance in 
natural ecosystems and its role on the 
maintenance and spread of clinically rel-
evant resistance determinants is still in its 
infancy. It is surprising that large efforts 
have been used to study the risks for the 
dissemination of resistance that may have 
the release of genetic modified organisms 
containing resistance genes in their chro-
mosomes, whereas the study of the effect 
of the discharge of human wastes, which 
contain bacterial pathogens harboring the 
resistance genes that have demonstrated 
to be really relevant, in the elements that 
are important for their dissemination has 
received few attention if any. Studies in this 
new field are needed in order to understand 
the mechanisms involved in the emergence, 
spread, maintenance, and evolution of anti-
biotic resistance.

which means that we are still far away to 
have a consistent estimation on the number 
of potential resistance genes present in nat-
ural ecosystems. Finally, the origin of most 
resistance genes currently found in transfer-
rable elements is still ignored, despite genes 
(and genetic structures) belonging to the 
same families are regularly found in differ-
ent ecosystems, including deep terrestrial 
subsurface (Brown and Balkwill, 2009), ice 
(Miteva et al., 2004), and even the perma-
frost (D’Costa et al., 2011), which have not 
been in contact with human contaminants. 
Second, those genes present in mobile ele-
ments in human bacterial pathogens can be 
found nearly everywhere, including pristine 
ecosystems or wild animals not supposed 
to be in contact with antibiotics (Martinez, 
2009). This indicates that pollution with 
antibiotic resistance genes is widely spread 
and that resistance genes can persist even in 
the absence of a positive selection pressure. 
The analysis of historical soil archives has 
shown a consistent increase on the pres-
ence of antibiotic resistance genes since 
1940 (Knapp et al., 2010), which is a clear 
prove of the contamination by antibiotic 
resistance elements of natural ecosystems 
and the resilience of those elements for their 
elimination.

In this situation, which type of studies 
are needed to analyze in depth the role that 
natural ecosystems may have on the devel-
opment of resistance in human bacterial 
pathogens? In my opinion, these studies 
have two faces (Martinez, 2008). One con-
sists on the analysis of the genes already 
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tional assays, of novel resistance genes in 
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