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Methane is the second most abundant greenhouse gas in the atmosphere. A major part
of the total methane emissions from lake ecosystems is emitted from littoral wetlands.
Methane emissions are significantly reduced by methanotrophs, as they use methane
as their sole energy and carbon source. Methanotrophic activity can be either activated or
inhibited by nitrogen. However, the effects of nitrogen on methanotrophs in littoral wetlands
are unknown. Here we report how nitrogen loading in situ affected the function and diver-
sity of methanotrophs in a boreal littoral wetland. Methanotrophic community composition
and functional diversity were analyzed with a particulate methane monooxygenase (pmoA)
gene targeted microarray. Nitrogen load had no effects on methane oxidation potential and
methane fluxes. Nitrogen load activated pmoA gene transcription of type I (Methylobacter,
Methylomonas, and LW21-freshwater phylotypes) methanotrophs, but decreased the rel-
ative abundance of type II (Methylocystis, Methylosinus trichosporium, and Methylosinus
phylotypes) methanotrophs. Hence, the overall activity of a methanotroph community in
littoral wetlands is not affected by nitrogen leached from the catchment area.

Keywords: methane, littoral wetland, methanotrophs, nitrogen, pmoA gene, pmoA transcript, pmoA microarray

INTRODUCTION
Methane (CH4) is the second most abundant greenhouse gas in
the atmosphere after carbon dioxide. It is 25 times more efficient
(with a time horizon of 100 years) as a greenhouse gas than carbon
dioxide (Denman et al., 2007). It accounts for about 20% of the
radiative forcing (warming effect) of the atmosphere (Denman
et al., 2007). In oxic surface layers of wetlands, methanotrophs,
which are aerobic methane oxidizing bacteria, can consume more
than 90% of the CH4 produced in deeper anoxic layers (Oremland
and Culbertson, 1992), implementing an important ecosystem
service.

Taxonomically, methanotrophs belong to two phyla, Verru-
comicrobia and Proteobacteria (Semrau et al., 2010). Verrucomi-
crobial methanotrophs have been shown to live only in extreme
conditions in geothermal environments (Op den Camp et al.,
2009), so they are not of particular interest to this study. Proteobac-
terial methanotrophs are divided into two classes, Gammapro-
teobacteria and Alphaproteobacteria (often referred to as type I
and type II methanotrophs, respectively) on the basis of phylogeny,
physiology, morphology, and biochemistry (Semrau et al., 2010).
Type I methanotrophs are further divided into type Ia and type Ib
subgroups based on their phylogeny (Bodrossy et al., 2003).

Methane mono-oxygenases (MMO) of methanotrophs are the
key enzymes in the CH4 oxidation process, and the phylogeny of
MMO genes corresponds well with 16S rRNA gene-based phy-
logeny. The gene fragments of the particulate form of MMO,
pmoA, and soluble form of MMO, mmoX, can be used for the
detection of a diversity of methanotrophs and their CH4 oxidation
activity. Almost all methanotrophs possess the pmoA gene, and

strains lacking it can be detected by mmoX -targeted approaches
(Dedysh et al., 2005; Rahman et al., 2011; Vorobev et al., 2011).
Most methanotrophs use only methane as their carbon and energy
source, but some strains of Alphaproteobacteria methanotrophs
have been shown to grow also with C2 substrates (Dedysh et al.,
2005; Dunfield et al., 2010; Belova et al., 2011).

A littoral zone can contribute as much as 70% of the total CH4

emissions of lakes (Juutinen et al., 2003). Nitrogen (N) can either
inhibit (Steudler et al., 1989) or stimulate (Bodelier et al., 2000)
CH4 oxidation and subsequently cause higher or lower CH4 emis-
sions. Both responses are possible in upland and wetland soils but
the mechanisms behind the different effects are not fully under-
stood (Bodelier and Laanbroek, 2004). Littoral wetlands, which
are under the influence of the fluctuating water levels of lakes,
are the target of N leached from the catchment. If N inhibits
CH4 oxidation, the CH4 emissions from littoral wetlands can
increase. However, the effects of nitrogen on the function and
diversity of methanotrophs at the species level in littoral wetlands
are unknown.

We studied the effects of experimental nitrogen loading in situ
on the function and diversity of methanotrophs and fluxes of CH4

in a boreal littoral wetland during a growing season. The relative
abundance of pmoA genes and gene transcripts was examined with
a pmoA targeting diagnostic microarray (Bodrossy et al., 2003).

MATERIALS AND METHODS
STUDY SITE
The studied littoral wetland of the hypereutrophic Lake
Kevätön is located in Eastern Finland (63˚6′N, 27˚37′E). Since
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spatial variation contributes to the function and diversity of
methanotrophs, six (three for N fertilization and three for control)
study plots of 1.44 m2 were randomly established in the “interme-
diate”area of the wetland, i.e., in the area 7–10 m from the shoreline
(Siljanen et al., 2011). This area has only minor spatial variation in
hydrology and distribution of vegetation. The vegetation consists
mainly of sedges and it did not vary among the study plots (vari-
ances were tested by the Kruskal Wallis rank sum test, P > 0.35).
The water level variation did not differ statistically signifi-
cantly between the control and manipulated plots (Mixed model,
P > 0.124. . . 0.421) although the N-treated plots had a slightly
lower water table than the control plots (Figure A4 in Appendix).

SOIL SAMPLING, NITROGEN LOAD, BIOGEOCHEMICAL ANALYSES, AND
NUCLEIC ACID EXTRACTIONS FROM THE SOILS
Soil samples were taken on June 7, July 7, and August 16, 2007
from triplicate nitrogen and control plots. Nitrogen treatment
(NH4NO3 dissolved in distilled H2O, total dose 10 g N m−2, corre-
sponds with 100 kg N ha−1) was done four times during the 2007
growing season with 1 week intervals (2.5 g N m−2 each dose).
Control plots received similar amounts of water (distilled H2O)
as the nitrogen treated plots. The first soil samples were taken
14 days before the first nitrogen dose. The second soil samples were
taken 14 days after the start of the nitrogen loading, when 50%
(5.0 g N m−2) of the total nitrogen dose was applied (Figure A1
in Appendix). The last soil samples were collected 6 days after
the nitrogen loading. Soil profiles were taken with a box corer
(diameter 8 cm × 8 cm) from the plots and divided into 0–2, 2–
10, and 10–20 cm layers. Methane fluxes, CH4 oxidation potential,
and soil chemical characteristics (nitrate and ammonium con-
centrations) were determined as described previously (Siljanen
et al., 2011). From each soil layer, 15 ml sub-samples were col-
lected for molecular analyses of the methanotrophic community
and were frozen immediately with dry ice at the study site. Soil
was freeze-dried (−50˚C, 48 h). DNA extractions were performed
as described previously (Siljanen et al., 2011). RNA extractions and
clean-up were done according to a protocol described by Steen-
bergh et al. (2010) with minor modifications: contaminating DNA
was removed according to the manufacturer’s instructions with
DNase I and cDNA synthesis with RevertAid MuLV–H reverse
transcriptase, both provided by Fermentas.

MOLECULAR ANALYSES OF METHANOTROPHS
PCR products of pmoA genes for microarray analysis were
amplified with a semi-nested approach with reaction mix-
tures and cycling conditions, as described earlier (Silja-
nen et al., 2011). The primers used for the semi-nested
approach were A189 (5′-GGNGACTGGGACTTCTGG-3′), A682-
T7 (5′-TAATACGACTCACTATAGGAASGCNGAGAAGAASGC-
3′),and mb661-T7 (5′-TAATACGACTCACTATAGCCGGMGCAA
CGTCYTTACC-3′). The relative abundance of pmoA genes and
gene transcripts was examined with a pmoA microarray as
described previously (Bodrossy et al., 2003). The presence of
Methylocella and Methylocella-like methanotrophs was deter-
mined with a PCR method (Rahman et al., 2011). For ampli-
fication, 2 × Premix F (Epicentre), 1 unit of Taq polymerase
(Invitrogen), and 50 ng of template DNA or cDNA were used.

For amplification of pmoA genes 25 pmol of each primer was
used, and 40 pmol of each primer was used for mmoX genes.
Reactions were carried out in 50 μl volume. The PCR cycling
conditions for Methylocella primers were the following: denatu-
ration 95˚C, 15 s, annealing 68˚C, 1 min, elongation 72˚C, 1 min
for 45 cycles. The primers used for Methylocella PCR were
mmoXLF (5′-GAAGATTGGGGCGGCATCTG-3′) and mmoXLR
(5′-CCCAATCATCGCTGAAGGAGT-3′; Rahman et al., 2011).
Cloned fragments of mmoX genes of Methylocella palustris were
used as a positive control for the assay. For analysis of the diver-
sity of Methylocella methanotrophs, PCR products were ligated
to a pDRIVE vector and cloned, as described previously (Silja-
nen et al., 2011). Clones were subjected to restriction fragment
length polymorphism (RFLP). In RFLP analysis, DNA of clones
was digested with SalI and BamHI restriction enzymes and restric-
tion patterns were visualized with electrophoresis in a 2.5% (w/v)
agarose gel. Clones displaying identical restriction patterns were
grouped into operational taxonomical units (OTUs). One to two
clones per OTUs were sequenced. DNA sequencing was performed
at the University of Eastern Finland Sequencing Laboratory with
the MegaBACE 750 analysis system with a DYEnamic™ET Dye
Terminator Cycle Sequencing Kit. The identity of clones was exam-
ined by BLASTn searches of the GenBank database (Altschul et al.,
1990).

STATISTICAL ANALYSIS
The effects of the manipulation on CH4 fluxes, CH4 oxidation,
and on the responses of community composition and functional
diversity of methanotrophs at the species level were analyzed with a
mixed-effect model (proportional to a repeated measure ANOVA;
Laird and Ware, 1982). Amplification of pmoA genes for four
cDNA replicates (10–20 cm layer, mainly clay with negligible CH4

oxidation potential) did not succeed even though re-extraction
was performed. In these cases, duplicates instead of triplicates
were used for the analysis. For evaluating the effect of nitrogen
at the species level of methanotrophs, 1020 mixed-effect mod-
els were calculated, one model for both manipulated and control
plots and for each of 85 microarray probes showing positive sig-
nals. Prior to the analysis, the microarray data were square-root
transformed. The effects of nitrogen loading were evaluated with
the difference between the models of the manipulated and control
plots (see example of model results in Figure A3 in Appendix).
The normality of residuals was tested for each variable group to
fulfill the requirements of the analysis set-up. Mixed-effect model
tests were done with the statistical program SPSS 17.0 (SPSS Inc.,
USA). The relation between the change in the methanotroph com-
munity (both community composition and functional diversity),
CH4 oxidation and nitrogen load was studied with constrained
correspondence analysis (CCA). CCA analyses were performed for
those microarray probes showing change. The analysis included
the probes Mb271, Mb C11-403, Mm531, MmES546, Ia 193,
Ia 575, LW21-374, LW21-391, Ib453, Mcy233, Mcy413, Mcy264,
Mcy459, Mcy255, McyM309, MsT214, Msi269, MsS314, Msi423,
Msi294, and NMsiT-271. The probes targeting the RA14 group
(probe RA14-591) and Methycapsa (probes B2all343, B2all341)
were omitted from the analysis because of lack of hybridiza-
tion to species-specific probes (RA14-594, B2-400). Constrained
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FIGURE 1 | Methane oxidation potential. N denotes nitrogen loading plots and NC control plots. Fixed effect of nitrogen load: F 0–2 cm layer = 0.105, P = 0.762;
F 2–10 cm layer = 0.821, P = 0.416; F 10–20 cm layer = 2.035, P = 0.227.

correspondence analyses were conducted with the VEGAN (Oksa-
nen et al., 2010) add-on package in the R 2.12.0 statistical program
(R Development Core Team, 2010). The Pearson correlation co-
efficients between nitrate and ammonium concentrations, CH4

oxidation potential, and microarray data were also calculated with
the R program.

RESULTS
EFFECTS OF NITROGEN ON CH4 OXIDATION AND CH4 FLUXES
Nitrogen loading increased nitrate (F nitrate = 12.792, P < 0.005,
maximum in loaded plots was 6 μg NO−

3 − N cm−3) concen-
tration in the 0- to 2-cm soil layer (Figure A2 in Appen-
dix). Ammonium concentration increased also slightly in this
layer (F ammonium = 4.366, P = 0.059, the maximum in the loaded
plots was 25 μg NH+

4 − N cm−3) as well as in the deeper lay-
ers (2–10 cm layer F ammonium = 3.409, P = 0.090; 10–20 cm layer
F ammonium = 3.825, P = 0.076; Figure A2 in Appendix). Nitrogen
load did not affect CH4 oxidation potential statistically signif-
icantly but CH4 oxidation increased during the experimental
season in the 0- to 2-cm layer in both control and manipulated
plots (Figure 1) as a result of changing environmental conditions
(natural lowering in water table, Figure A4 in Appendix). Nitro-
gen loading had no significant effect also on the CH4 fluxes which
decreased in both control and manipulated plots toward autumn
as a result of the decrease in water level (Figure A4 in Appendix).
The relative decrease in methane fluxes was higher in the N-treated
plots (Figure 2) also indicating that nitrogen load did not inhibit
methane oxidation.

EFFECTS OF NITROGEN ON THE METHANOTROPHIC COMMUNITY
The methanotrophic community structure was close the same
in the manipulated and control plots before nitrogen loading,
only a few phylotypes showed some variation (14 days before
fertilization started; Figure 3A). Nitrogen loading changed the
community structure and functional diversity of methanotrophs
as revealed by mixed-effect models (Figure 3A) and CCA analy-
sis (Figures 3B–D). When the site had received 50% of the total

FIGURE 2 | Methane fluxes. N denotes nitrogen loading plots and NC
control plots. Fixed effect of nitrogen load: F = 2.3, P = 0.204. Significant
differences in fluxes are marked with letters (P < 0.05). The ratio of
methane fluxes in the nitrogen loaded plots to those in the control plots are
shown by numbers on top of the figure.

nitrogen load there was a decrease in the relative abundance of
pmoA genes of type II (Methylocystis, Methylosinus trichosporium,
and Methylosinus phylotypes, P < 0.05) methanotrophs in the 0-
to 10-cm soil layers (Figure 3A; Figure A3A in Appendix). There
was also an increase in the relative abundance of pmoA transcripts
of type I (Methylobacter, Methylomonas, and LW21-freshwater
phylotypes, P < 0.05) methanotrophs in the 2- to 10-cm soil layer
(Figure 3A; Figure A3B in Appendix). CCA multivariate ordi-
nation analysis revealed a correlation between the concentrations
of ammonium and nitrate and microarray data measured dur-
ing nitrogen loading in affected soil layers and gene pools, as
samples during the experiment are clustered together with the
ordinated arrows for ammonium and nitrate (Figures 3B–D).
Manipulation had the strongest effect on the community in the
2- to 10-cm soil layer (Figures 3C,D), and nitrate also had an
effect on functional diversity after the experiment (Figure 3D).
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FIGURE 3 |The effect of nitrogen loading on methanotrophs. The
species level effects of nitrogen loading on relative abundance of pmoA
genes (DNA) and relative abundance of pmoA transcripts (RNA) of
methanotrophs. (A) The table summarizes the mixed-effect model tests
between manipulated and control plots. Soil samples were taken from
control and manipulated plots before, during and after the nitrogen loading
for methanotroph community analysis, and the effects of manipulation
were evaluated with mixed-effect models. Only probes with signals are
shown.Table A2 in Appendix shows complete list of microarray probes
used and specificity of them. Effects of nitrogen load on microarray probes

in manipulated plots compared with control plots (df1 = 1, df2 = 12,
P < 0.05) are marked at the each time point. Probe intensity inhibitions
compared to control plots, are marked with red and stimulations with
green. Yellow color means that probe is positive (but not affected by
nitrogen) and blue that probe is negative. (B) Constrained correspondence
analysis of nitrogen affected community, nitrogen content and CH4

oxidation in the 0- to 2-cm layer, and (C) in the 2- to 10-cm layer of DNA
and (D) in the 2- to 10-cm layer of RNA samples. The percentages at the
axes shows the proportion of constrained inertia explained by the
constrained axis and inertia explained by unconstrained axis, respectively.

However, methanotrophic community also shows seasonal varia-
tion in the littoral wetland (Siljanen et al., 2012), and this variation
was taken into account by comparing the nitrogen loading plots
with non-treated control plots.

The effects of nitrogen loading on the methanotrophic com-
munity were also examined more deeply with correlation analysis
for the relative abundance of pmoA genes and gene transcripts
(Table A1 in Appendix). The relative abundance of the pmoA genes
and gene transcripts of type I methanotrophs correlated positively
with the content of ammonium and nitrate, while pmoA tran-
scripts of type II methanotrophs correlated negatively with ammo-
nium (Table A1 in Appendix). Across the experiment, type I and
type II methanotrophs had opposite correlations with CH4 oxi-
dation, suggesting differences in the reactions of the taxonomical
groups to nitrogen (Table A1 in Appendix).

DISCUSSION
Methane fluxes declined similarly in the control and manip-
ulated plots over the study period because of the decrease in
water level toward autumn. Nitrogen load had no statistically
significant effects on either CH4 oxidation potential or CH4

fluxes in the littoral wetland, suggesting that the overall activity

of methanotrophic communities there was not disturbed by
nitrogen, although the methanotrophic community structure was
affected. Similar observations on the tolerance of methane oxi-
dation against nitrogen have been made previously in other soil
types (Dunfield et al., 1995; Delgado and Mosier, 1996; Cai and
Yan, 1999; Bykova et al., 2007).

As in our littoral wetland, nitrogen has been reported to
inhibit type II methanotrophs in forest (Mohanty et al., 2006)
and field soils (Cébron et al., 2007). The activity of type I
methanotrophs was stimulated by nitrogen load in the present
study as has been found in rice field soil (Bodelier et al., 2000;
Mohanty et al., 2006; Noll et al., 2008; Shrestha et al., 2010)
and in forest soil at high methane concentrations (Mohanty
et al., 2006). Nitrogen leached from agricultural soils (Riley
et al., 2001; Pare et al., 2006) to littoral wetlands evidently does
not inhibit CH4 oxidation because methanotrophic communi-
ties there are dominated by type I methanotrophs (Siljanen et al.,
2011).

In the littoral wetland, pmoA gene transcription of type
I methanotrophs was stimulated but not the relative abun-
dance of these methanotrophs, indicating the existence of fac-
tors limiting the increase in their number. It can be that type I
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methanotrophs are nitrogen limited in the littoral wetland and
subsequently stimulated by nitrogen load (see later) similarly to
the rhizosphere of rice (Bodelier et al., 2000). Selective grazing
by protists on type I methanotrophs (Murase and Frenzel, 2008)
may be another reason for the lack of increase in their relative
abundance.

It has been suggested that the inhibition of type II methan-
otrophs by nitrogen is due to competition between different types
of methanotrophs (Cébron et al., 2007). In nitrogen-rich condi-
tions, type I methanotrophs could outcompete type II methan-
otrophs. This can be associated to the better ability of type II
methanotrophs to fix molecular nitrogen, which lowers their
need for ammonium and nitrate (Murrell and Dalton, 1983).
Thus, type I methanotrophs can increase their CH4 oxidation
activity by nitrogen addition in nitrogen-limited environments.
Biomass production of wetland plants in the littoral wetland
studied is high (Larmola et al., 2003) causing high demand for
nitrogen, and nitrogen can also be efficiently removed by den-
itrification in wetland. Competition for nitrogen there is thus
high.

A similar inhibitory effect of nitrogen on type II methan-
otrophs, as in the littoral wetland here, has been detected among
Methylocystis methanotrophs (Mohanty et al., 2006; Cébron et al.,
2007). In the littoral wetland, Methylosinus and M. trichosporium
methanotrophs were also inhibited (Figure 3A). However, nitro-
gen loading increased the relative abundance of pmoA transcripts
of one Methylosinus phylotype (Msi294). The results of the present
study support the findings that nitrogen can reduce CH4 oxi-
dation if type II methanotrophs dominate the methanotrophic
community (Mohanty et al., 2006).

Since the microarray method depicts the relative abundance
in methanotrophic communities, a change in the relative abun-
dance of type II methanotrophs could be a result either of
an increase in the relative abundance of type I methanotrophs
over type II methanotrophs, or a decrease in the relative abun-
dance of type II methanotrophs. However, microarray data indi-
cated no distinctive co-increase of type I methanotrophs dur-
ing the experiment when inhibition of type II methanotrophs
took place (Figure A3A in Appendix), suggesting that type II
methanotrophs have been inhibited by nitrogen load as such,
not through competition between type I and type II methan-
otrophs. However, it is important to note that the methan-
otrophic community of the littoral wetland reacted rapidly
to nitrogen load and acclimated to the prevailing conditions.
The shift in the methanotroph community took place within
14 days after the start of the nitrogen loading, and the com-
munity recovered soon after the loading ended (Figure 3A).
This reveals the ability of methanotrophic community in the
littoral wetland to withstand environmental changes and pertur-
bations.

The semi-nested PCR approach and microarray probe set-up
targeted type I and type II methanotrophs as well as RA14 mem-
bers of upland soil cluster α (USCα) methanotrophs and Methy-
locapsa methanotrophs but excluded Crenothrix, Methylocella,
and Verrucomicrobia methanotrophs. However, it was proven by
analysis of A682 PCR products with the pmoA microarray (detects
Crenothrix, Siljanen et al., 2011) that Crenothrix methanotrophs
were not present in that part of the wetland studied here (data
not shown). Thus, Crenothrix may play a role in littoral wetlands
but only in the areas with a higher water table than that in the
area used in this study (Siljanen et al., 2011). Methylocella specific
primers mmoXLF/R (Rahman et al., 2011) showed only a few neg-
ligible and very faint products from DNA samples and none from
RNA samples. Therefore, although Methylocella methanotrophs
are found in the littoral wetland, they play only a limited role in
the CH4 oxidation.

The studied littoral wetland has a moderately high diversity
of methanotrophs: 47 OTUs with 93% similarity (Siljanen et al.,
2011), compared with other environments: 26 OTUs in temperate
forest soils, 93% similarity (Degelmann et al., 2010), and about 35
OTUs, 90% similarity, in rice field soils (Lüke et al., 2010). Since
the sub-communities of this diverse community in the littoral wet-
land react differently to nitrogen load, the overall effect of nitrogen
loading was neutral, causing no change in CH4 oxidation potential
or CH4 fluxes.

There are only a few studies where the effects of nitrogen
on CH4 fluxes and the methanotrophic community composi-
tion in situ have been studied simultaneously. Previous studies
have investigated the effects of nitrogen load on the functioning
and diversity of methanotrophs using microcosms and incuba-
tion experiments (Bodelier et al., 2000; Mohanty et al., 2006;
Cébron et al., 2007; Noll et al., 2008; Shrestha et al., 2010). Here
we provide new insights into how the nitrogen load affects the
methanotrophic community and its functioning in situ.

In conclusion, methane oxidation in boreal littoral wetland
tolerates nitrogen load as a result of diverse methanotrophic com-
munity. Although some methanotrophs are suffered by nitrogen,
there are methanotrophs responding positively to extra nitrogen.
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APPENDIX

Table A1 | Pearson correlation co-efficients across the experiment between methanotroph relative abundance of pmoA genes/pmoA

transcripts, CH4 oxidation potential, and concentration of nitrate/ammonium (n = 18).

CH4 oxidation [NO−
3 ] [NH+

4
]

DNA: 0–2 cm layer Type I probes:

Mb_C11-403, r = 0.70, P < 0.01

Type I probes:

BB51-299, Mb_SL#3-300, DS3-446,

r = 0.77. . . 0.89, P < 0.001

DNA: 2–10 cm layer Type I probes:

fw1-641, P_LW21-391, LK580,

Ib453. r = −0.54. . . −0.63, P < 0.05

Type I probe:

Mb_SL#3-300, r = 0. 71, P < 0.01

Type II probes:

Mcy_264, Msi_294, II509,

r = −0.51. . . −0.57, P < 0.05

RNA: 0–2 cm layer Type I probes:

Mm451, 501-375, fw1-641,

r = 0.63. . . 0.89, P < 0.05

Type II probes:

Mcy413, Mcy522, Mcy459, Msi232,

Peat264, r = −0.49. . . −0.53, P < 0.05

RNA: 2–10 cm layer Type I probes:

Mb282, Mb_C11-403, Mm275,

r = 0.50. . . 0.52, P < 0.05

Type I probe:

Mmb303, r = 0.57, P < 0.05

Type I probes:

Mb282, b_C11-403, Mm275, r = 0.70. . .

0.78, P < 0.01

Only significant correlations are shown.
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Table A2 |The microarray probe set used in the study and probe

specificity.

Name Intended specificity

BB51-302 Methylobacter

Mb292 Methylobacter

Mb282 Methylobacter

Mb_URC278 Methylobacter

Mb267 Methylobacter

511-436 Methylobacter

MbA486 Methylobacter

MbA557 Methylobacter

Mb_SL#3-300 Methylobacter

Mb460 Methylobacter

Mb_LW12-211 Methylobacter

Mb_C11-403 Methylobacter

Mb271 Methylobacter

PS80-291 Clone PS80

Est514 Methylomicrobium-related clones

Mm_pel467 Methylomicrobium pelagicum

Mb_SL-299 Soda lake Methylobacter isolates and clones

Mb_SL#1-418 Soda lake Methylobacter isolates and clones

DS1_401 Deep sea cluster #1

Mm531 Methylomonas

Mm_ES294 Methylomonas

Mm_ES543 Methylomonas

Mm_ES546 Methylomonas

Mm_M430 Methylomonas

Mm_MV421 Methylomonas

Mm275 Methylomonas

Mm451 Methylomonas

peat_1_3-287 Methylomonas-related peat clones

Jpn284 Clone Jpn 07061

Mmb303 Methylomicrobium album

Mmb259 Methylomicrobium album + Landfill M. microbia

Mmb562 Mmb. album and Methylosarcina

LP20-644 Methylomicrobium-related clones

Ia193 Type I a (M. bacter–M. monas–M. microbium)

Ia575 Type I a (M. bacter–M. monas–M. microbium–M.

sarcina)

JRC4-432 Japanese rice cluster #4

MclT272 Methylocaldum tepidum

MclG281 Methylocaldum gracile

MclE302 Methylocaldum E10

MclS402 Methylocaldum szegediense

Mcl408 Methylocaldum

501-375 Methylococcus-related marine and freshwater sed-

iment clones

501-286 Methylococcus-related marine and freshwater sed-

iment clones

USC3-305 Upland soil cluster #3

Mc396 Methylococcus

fw1-639 fw1 group: M. coccus–M. caldum related marine

and freshwater sediment clones

fw1-641 fw1 group: M. coccus–M. caldum related marine

and freshwater sediment clones

Name Intended specificity

fw1-286 fw1 group: M. coccus–M. caldum related marine

and freshwater sediment clones

LW21-374 LW21 group

LW21-391 LW21 group

OSC220 Finnish organic soil clones and related

OSC300 Finnish organic soil clones and related

JRC3-535 Japanese Rice Cluster #3

LK580 fw1 group + Lake Konstanz sediment cluster

JRC2-447 Japanese Rice Cluster #2

M90-574 M. coccus–M. caldum related marine and freshwa-

ter sediment clones

M90-253 M. coccus–M. caldum related marine and freshwa-

ter sediment clones

Mth413 Methylothermus

Ib453 Type I b (M. thermus–M. coccus–M. caldum and

related)

Ib559 Type I b (M. thermus–M. coccus–M. caldum and

related)

DS3-446 Deep sea cluster #3

JR2-409 JR cluster #2 (California upland grassland soil)

JR2-468 JR cluster #2 (California upland grassland soil)

JR3-505 JR cluster #3 (California upland grassland soil)

JR3-593 JR cluster #3 (California upland grassland soil)

Nc_oce4 26 Nitrosococcus oceani

USCG-225 Upland soil cluster Gamma

USCG-225b Upland soil cluster Gamma

Mcy233 Methylocystis

Mcy413 Methylocystis

Mcy522 Methylocystis A + peat clones

Mcy264 Methylocystis

Mcy270 Methylocystis

Mcy459 Methylocystis

Mcy255 M. cystis B (parvus/echinoides/ strain M)

McyM309 M. cystis strain M and related

McyB304 M. cystis B (parvus/echinoides/ strain M)

MsT214 Methylosinus trichosporium OB3b and rel.

Msi520 M. trichosporium

Msi269 M. trichosporium

MsS314 Methylosinus sporium

MsS475 Methylosinus sporium

Msi263 Methylosinus sporium + 1 Msi. trichosporium sub-

claster

Msi423 Methylosinus

Msi294 Methylosinus

Msi232 M. sinus + most M. cystis-considered as additional

type II probe

Peat264 Peat clones

II509 Type II

II630 Type II

xb6-539 Novel pmoA copy of type II and related environmen-

tal clones

(Continued)
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Table A2 | Continued

Name Intended specificity

LP21-190 Novel pmoA copy of type II and related environmen-

tal clones

LP21-260 Novel pmoA copy of type II and related environmen-

tal clones

NMcy1-247 Novel pmoA copy of M. cystis #1 (*)

NMcy2-262 Novel pmoA copy of M. cystis #2 (*)

NMsiT-271 Novel pmoA copy of M. sinus trichpsporium (*)

LP21-232 Novel pmoA copy of type II and related environmen-

tal clones

RA14-594 RA14 related clones

RA14-591 RA14 related clones

Wsh1-566 Watershed + flooded upland cluster 1

Wsh2-491 Watershed + flooded upland cluster 2

Wsh2-450 Watershed + flooded upland cluster 2

B2rel251 Methylocapsa-related clones

B2-400 Methylocapsa

B2all343 Methylocapsa and related clones

B2all341 Methylocapsa and related clones

pmoAMO3-400 Clone pmoA-MO3

ESR-579 ESR (Eastern Snake River) cluster

TUSC409 Tropical upland soil cluster #2

TUSC502 Tropical upland soil cluster #2

mtrof173 Universal

mtrof362-I Methanotrophs

mtrof661 Methanotrophs

mtrof662-I Methanotrophs

mtrof656 Methanotrophs

NmNc53 3 Nitrosomonas–Nitrosococcus

Nsm_eut 381 Nitrosomonas eutropha

PS5-226 Nitrosomonas–Nitrosococcus related clones

Pl6-306 Nitrosomonas–Nitrosococcus related clones

NsNv207 Nitrosospira–Nitrosovibrio

NsNv363 Nitrosospira–Nitrosovibrio

Nit_rel47 1 AOB related clones/probably methanotrophs

Nit_rel22 3 AOB related clones/probably methanotrophs

ARC529 AOB related clones/probably methanotrophs

Nit_rel47 0 AOB related clones/probably methanotrophs

Nit_rel35 1 AOB related clones/probably methanotrophs

Nit_rel30 4 Crenothrix and related

M84P105-451 Environmental clones of uncertain identity

WC306_54-385 Environmental clones of uncertain identity

M84P22-514 Environmental clones of uncertain identity

gp23-454 Environmental clones of uncertain identity

MR1-348 Environmental clones of uncertain identity

gp619 Environmental clones of uncertain identity

gp391 Environmental clones of uncertain identity

gp2-581 Environmental clones of uncertain identity

RA21-466 Clone RA21 – environmental clone of uncertain

identity

*Assignment based on limited information from cultivated methanotrophs.
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2

Nitrogen loading:
       - 2.5 g N m²־ (NH4NO3) dose 

loaded four times in growing season.

at the same time to control plots.

Soil sampling before Soil sampling during Soil sampling 
after manipulation:
Aug 16th 

manipulation: Jun 7th manipulation: Jul 17th

- Equal volume of H2O loaded

Soil sampling from control and manipulated plots:

26 days  7  days   6 days 15 days   8 days   7 days

FIGURE A1 | (A) The littoral wetland of Lake Kevätön in July 2007. For
experiment, three control and three manipulated plots of 1.44 m2 were
established to area having equal water level and vegetation. The chambers
for measurements of in situ CH4 fluxes were inserted into study plots
2 weeks before the experiment. Soil sampling and in situ CH4 flux
measurements were taken from boardwalks to omit disturbance of the

soil. (B) Soil sampling and nitrogen loading scheme. Time points of soil
samplings and nitrogen/water loading are colored with brown and blue
respectively. Methane fluxes were measured three times before, during
and after the nitrogen loading (with 1–2 week intervals). During the N
loading period, fluxes were measured before addition of NH4NO3 solution
or distilled water.

Frontiers in Microbiology | Terrestrial Microbiology February 2012 | Volume 3 | Article 39 | 10

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Siljanen et al. Nitrogen affecting on littoral methanotrophs

FIGURE A2 | Nitrogen content of soil. Means and SDs of triplicates are shown. The asterisk indicates the difference between control and manipulation
(P < 0.01).
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FIGURE A3 | Microarray results of community composition [(A), DNA]

and functional diversity [(B), RNA] of methanotrophs before, during, and

after nitrogen loading. Averages of triplicate plots are shown. A value of 100
(purple) indicates the maximum and a value of 0 (yellow) indicates the

minimum signal intensity of a probe against reference hybridizations
determined for each probe individually (Bodrossy et al., 2003). Only probes
having positive hybridization are shown. N denotes nitrogen loading plots, NC
control plots, L1 0–2 cm layer, L2 2–10 cm layer, and L3 10–20 cm layer.
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FIGURE A4 |The water table in the study plots. The water table was measured from perforated plastic tubes inserted in soil inside the study plots. The ratio
of mean water level of nitrogen loaded and control plots is marked on bottom of the figure.

FIGURE A5 | Example of a mixed-effect model result for the microarray probe Mb271 (RNA samples, 2–10 cm). Mixed-effect model comparison evaluated
the difference between two fitted models, the control and the manipulation model. In Figure 3A, the result of each comparison is shown in color, thus, no effect
on studied microarray probe by nitrogen = yellow, stimulated effect = green, inhibited effect = red, and for negative probes = blue.
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