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Recently, multidrug-resistant pathogens have disseminated widely owing essentially to
their increased multidrug efflux pump activity. Presently, there is a scarcity of new antibac-
terial agents, and hence, inhibitors of multidrug efflux pumps belonging to the resistance–
nodulation–cell division (RND) family appear useful in the treatment of infections by
multidrug-resistant pathogens. Moreover, recent progress in microfabrication technolo-
gies has expanded the application of nano/micro-devices to the field of human healthcare,
such as the detection of infections and diagnosis of diseases. We developed a microflu-
idic channel device for a simple and rapid evaluation of bacterial drug efflux activity.
By combining the microfluidic device with a fluorogenic compound, fluorescein-di-β-D-
galactopyranoside, which is hydrolyzed to a fluorescent dye in the cytoplasm of Escherichia
coli, we successfully evaluated the effects of inhibitors on the RND-type multidrug efflux
pumps MexAB–OprM and MexXY–OprM from Pseudomonas aeruginosa in E. coli. Our new
method successfully detected the MexB-specific inhibitory effect of D13-9001 and revealed
an unexpected membrane-permeabilizing effect of Phe-Arg-β-naphthylamide, which has
long been used as an efflux pump inhibitor.
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INTRODUCTION
Currently, increase in multidrug resistance among clinical iso-
lates is a major problem in infection control. In particular, the
so-called “multidrug-resistant Pseudomonas aeruginosa (MDRP)”
which is resistant to major antipseudomonal agents such as car-
bapenems, quinolones, and aminoglycosides (Sekiguchi et al.,
2007b; Kirikae et al., 2008), has been isolated and identified as
a cause of nosocomial outbreaks in Japan (Sekiguchi et al., 2007a;
Satoh et al., 2008). P. aeruginosa has natural intrinsic resistance
tendencies, and MDRP isolates have variable complex resistance
mechanisms (Livermore, 2002; Lister et al., 2009). In particular,
multidrug efflux pumps, particularly resistance–nodulation–cell
division (RND) family pumps, can decrease the sensitivity of P.
aeruginosa to various compounds (Masuda et al., 2000; Ryan et al.,
2001). The RND-type multidrug efflux systems have extremely
broad substrate specificities and protect the cells from the actions
of antibiotics. They usually function as three-component assem-
blies spanning the outer and cytoplasmic membranes and the
periplasmic space of Gram-negative bacteria. That is, the RND
efflux system consists of three different proteins: a cytoplasmic
membrane protein (such as MexB), a membrane fusion protein
(MexA), and an outer membrane channel (OprM).

Twelve intrinsic efflux systems belonging to the RND family
have been identified from the genomic sequence of P. aeruginosa
(Schweizer, 2003). Among them, MexAB–OprM, MexCD–OprJ,
MexEF–OprN, and MexXY efflux systems are known to have

important roles in multidrug resistance (Morita et al., 2001; Llanes
et al., 2004; Mesaros et al., 2007; Lister et al., 2009). These sys-
tems can increase their resistance levels by acquiring additional
resistance factors (Henrichfreise et al., 2007; Giske et al., 2008).
During the current era of scarcity of new antibacterial agents,
RND pump inhibitors in combination with available antibiotics
could be useful for treating MDRP infections. Although no clin-
ically useful inhibitor is known presently, the enhancing effects
of experimentally available efflux pump inhibitors, namely pyri-
dopyrimidine (D13-9001; Yoshida et al., 2007) and Phe-Arg-β-
naphthylamide (PAβN, MC-207,110; Lomovskaya et al., 2001), on
the antibacterial activities of combined antibiotics have been pub-
lished (Lomovskaya et al., 2001; Mesaros et al., 2007; Tohidpour
et al., 2009). Recently, the 3D structures of AcrB (Murakami et al.,
2002) and MexB (Sennhauser et al., 2009) and co-crystal struc-
tures of AcrB with various substrates were resolved (Murakami
et al., 2006; Nakashima et al., 2011), and much information
regarding their mechanisms of efflux is now available. At present,
rational approaches are being used to develop potent efflux
pump inhibitors. However, there is no satisfactory method to
directly determine the efflux-inhibiting activities of candidate
compounds.

In this review article, we focused on a new technique for
a simple and rapid measurement of the activities of bacter-
ial drug efflux pumps and inhibitors by using a microfluidic
device recently reported by Matsumoto et al. (2011). We utilized
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an appropriate substrate, fluorescein-di-β-d-galactopyranoside
(FDG), for a visual assay. FDG is non-fluorescent until it is hydrol-
ysed by β-galactosidase in the cytoplasm of Escherichia coli to
produce a highly fluorescent dye, fluorescein (Russo-Marie et al.,
1993; Fieldler and Hinz, 1994; Yang and Hu, 2004). We confirmed
that both FDG and fluorescein are substrates of RND pumps in E.
coli. In combination with microfabrication technologies including
soft lithography (Whitesides et al., 2001), we constructed a simple
microfluidic channel device in order to observe several bacterial
cultures simultaneously. By combining FDG and the microflu-
idic device, we developed a novel and highly sensitive method to
evaluate the efflux inhibitory activities of compounds against P.
aeruginosa MexB and MexY in E. coli and clarified the different
action mechanisms of two inhibitors, D13-9001 and PAβN.

MATERIALS AND METHODS
BACTERIAL STRAINS
Escherichia coli MG1655 (wild-type), and its efflux pump
gene deletion mutants – ΔacrB, ΔtolC, and ΔacrBΔtolC
(Nishino et al., 2008) – were used. The vector plasmid
pMMB67HE recombined with efflux pump genes mexAB–
oprM and mexXY–oprM from P. aeruginosa (Mokhonov et al.,
2004) was transformed with E. coli MG1655 ΔacrBΔtolC to
construct ΔacrBΔtolC/pMMB67HE (ΔBC/pV), ΔacrBΔtolC/
pMMB67HE::mexAB–oprM (ΔBC/pABM), and ΔacrBΔtolC/
pMMB67HE::mexXY–oprM (ΔBC/pXYM). For these strains har-
boring a plasmid, ampicillin (Sigma-Aldrich, Tokyo, Japan) was
added to the cultures to ensure retention of the plasmid. Lactose
(Sigma-Aldrich) and isopropyl-β-d-galactopyranoside (IPTG;
Sigma-Aldrich) were added to the medium for β-galactosidase and
plasmid-mediated pump inductions, respectively. P. aeruginosa
IMCJ2.S1 (Sekiguchi et al., 2005) served as the multidrug-resistant
strain, and P. aeruginosa PAO1 served as the standard strain.

ANTIBACTERIAL AGENTS AND CHEMICALS
The antibacterial agents used were aztreonam (Sigma-Aldrich),
ciprofloxacin (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan),
and erythromycin (Nacalai Tesque, Inc., Kyoto, Japan). D13-9001
(Daiichi Sankyo Co., Tokyo, Japan) and PAβN (Sigma-Aldrich)
were used as efflux pump inhibitors. Polymyxin B (MERCK
KGaA, Darmstadt, Germany) was used as an outer and inner
membrane permeabilizer, and Polymyxin B nonapeptide (PMBN;
Sigma-Aldrich) was used as an outer membrane permeabilizer.

PREPARATION OF MICROFLUIDIC CHANNELS
Microfluidic channels (100 μm width, 17 μm height, 25–33 mm
length; Figure 1B) fabricated in polydimethylsiloxane (Silpot 184,
Dow Corning Toray Co., Ltd., Tokyo, Japan) on a cover glass
(Matsunami Glass Ind., Ltd., Osaka, Japan) were prepared by a
conventional method described in previous studies (Whitesides
et al., 2001; Matsumoto et al., 2011).

EFFLUX PUMP INHIBITION ASSAY
FDG (Marker Gene Technologies, Inc., Eugene, USA), a fluoro-
genic compound, is hydrolyzed byβ-galactosidase in the cytoplasm
of E. coli to produce a fluorescent dye, fluorescein. Both FDG
and fluorescein are substrates of an efflux pump, AcrB, in E. coli.

AcrB effectively prevents FDG influx in wild-type cells, resulting
in no fluorescence. The ΔacrB and ΔtolC strains easily imported
and hydrolyzed FDG to fluorescein, which is exported by residual
pumps in the ΔacrB strain. Consequently, fluorescent medium in
ΔacrB and fluorescent ΔtolC and ΔacrBΔtolC cells were observed
in the microfluidic channels (Figures 1A,B). The induced activities
of β-galactosidase in strains used in this study were compara-
ble after acrB and/or tolC deletion and the plasmid-mediated
introduction of pumps from P. aeruginosa.

The effects of inhibitors on FDG and fluorescein efflux were
observed in the microfluidic channel with a BZ-8000 fluorescence
microscope (Keyence, Osaka, Japan). Overnight Luria–Bertani
(LB) broth (Becton Dickinson and Company, Sparks, USA) cul-
tures were inoculated in fresh LB broth and incubated on a shaker
until the culture reached an OD600 of 0.6–0.8. Lactose (50 mM)
was added to induce β-galactosidase activity in strains harbor-
ing no plasmid. LB medium containing 100 μg/ml ampicillin and
1 mM IPTG was used to grow strains harboring the plasmid in
order to retain plasmid and induce plasmid-mediated pumps and
chromosomal β-galactosidase. The cultures were premixed with
an inhibitor, injected in the microfluidic channels (Figure 1B)
with 100 μg/ml FDG, and observed under the microscope after
incubation for 15 min at 37˚C. Different samples containing mul-
tiple channels were observed simultaneously in a single image field
(Figures 1B–D).

DETERMINATION OF MINIMUM INHIBITORY CONCENTRATION AND
CHECKERBOARD MIC
The minimum inhibitory concentrations (MICs) of the antibac-
terial agents and checkerboard MICs of these agents in com-
bination with the inhibitors or the membrane permeabilizer
were determined using the standard micro dilution method
defined by the Clinical and Laboratory Standards Institute
(Wayne, PA, USA). Strains harboring the plasmid were cul-
tured in LB medium containing 100 μg/ml ampicillin and
1 mM IPTG. The fractional inhibitory concentration (FIC)
indices were calculated as follows: FIC = [MICA in combination/
MICA alone + MICB in combination/MICB alone]. Synergy was defined
as an FIC index of less than 0.5.

RESULTS
EVALUATION OF INHIBITORS BY THE CLASSIC CHECKERBOARD
METHOD
Checkerboard MIC determination is a simple method to evalu-
ate the effects of inhibitors on antibacterial activity. Although the
method can only evaluate the combinatorial effect of an inhibitor
on antimicrobials (synergy, addition, indifference, or antagonism),
it is possible to estimate the action mechanism of an inhibitor
by using different types of antimicrobials and target gene-deleted
or gene-introduced mutants. From the viewpoint of efflux, we
used three different types of antimicrobial agents in this study.
Aztreonam is a substrate of MexB, although ciprofloxacin and
erythromycin are substrates of several pumps. Furthermore, from
the viewpoint of influx, ciprofloxacin easily penetrates the outer
membranes of Gram-negative bacteria, erythromycin hardly pen-
etrates them (Vaara, 1993), while the penetrability of aztreonam
appears to be intermediate of the two. Table 1 shows the MICs
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FIGURE 1 |The micro fluidic device and principle of the efflux pump

inhibition assay used in this study. (A) Mechanism of the inhibition assay
of efflux pumps using FDG as a substrate. (B) Images of the microfluidic
device, and an example of the assay: bright-field (top) and fluorescence
images (bottom) of the E. coli wild-type, ΔacrB (ΔB), ΔtolC (ΔC), and

ΔacrBΔtolC (ΔBC) cells. (C) Fuorescence images of the
ΔacrBΔtolC /pABM (ΔBC/pABM), ΔacrBΔtolC /pXYM (ΔBC/pXYM) cells
treated with different concentrations of D13-9001. (D) Fluorescence images
of the E. coli ΔtolC cells treated with different concentrations of D13-9001,
PAβN, PMBN, and polymyxin B. Modified from Matsumoto et al. (2011).
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Table 1 | Minimum inhibitory concentrations of agents against tested strains.

Agents MIC (μg/ml)

E. coli MG1655 P. aeruginosa

Wild ΔacrB ΔtolC ΔacrBΔtolC/pV ΔacrB ΔtolC/pABM ΔacrB ΔtolC/pXYM PAO1 IMCJ2.S1 (MDR)

ATM 0.125 0.063 0.125 0.125 1 0.125 2 64

CIP 0.016 0.004 0.002 0.002 0.016 0.031 0.063 32

ERY 32 2 1 1 16 32 256 256

D13-9001 >64 >64 >64 >64 >64 >64 >64 >64

PAβN 256 64 64 32 256 128 512 512

PMB 2 2 2 2 2 2 2 2

PMBN >64 64 64 >8 >8 >8 >8 >8

ATM, aztreonam; CIP, ciprofloxacin; ERY, erythromycin; D13-9001, pyridopyrimidine; PAβN, Phe-Arg-β-naphthylamide; PMB, polymyxin B; PMBN, polymyxin B

nonapeptide. Table based on the results from Matsumoto et al. (2011).

of agents against strains of E. coli and P. aeruginosa used in this
study. The MIC of aztreonam against E. coli was not influenced by
acrB and tolC deletion or plasmid-mediated mexXY–oprM intro-
duction. However, plasmid-mediated mexAB–oprM introduction
decreased the sensitivity of ΔacrBΔtolC to aztreonam by eight-
fold. By contrast, the MICs of ciprofloxacin and erythromycin
against E. coli were decreased by acrB and/or tolC deletion and
increased by plasmid-mediated pseudomonal efflux pump gene
(mexAB–oprM or mexXY–oprM ) introduction.

There are two famous efflux pump inhibitors: D13-9001 and
PAβN. The former is specific for MexB, whereas the latter is non-
specific. PAβN had weak antibacterial activity against these E. coli
and P. aeruginosa strains, and its MIC was changed by the deletion
or introduction of pump genes, which revealed that pump deletion
mutants had higher sensitivity to PAβN than the wild-type strain.
The results indicate that PAβN is a substrate of RND pumps. D13-
9001 had no antibacterial activity against these strains at concen-
trations less than 64 μg/ml. Inhibitor’s concentration-dependent
changes in the MICs of antimicrobial agents were compared
(Figure 2). Data obtained from ΔtolC, ΔacrBΔtolC, and ΔBC/pV
were similar for all antimicrobial agents used in this study, and
thus, we presented the data forΔBC/pV as a representative full
RND pump deletion mutant in Figure 2.

In E. coli MG1655, D13-9001 acted synergistically with
ciprofloxacin and erythromycin against the wild-type strain and
had no effect with either agents against ΔacrB, ΔtolC, or ΔBC/pV
(Figures 2A,D,G). In P. aeruginosa, D13-9001 acted synergis-
tically with aztreonam and ciprofloxacin but not with ery-
thromycin, which had a higher affinity for MexY than for MexB
(Table 1), against both sensitive and multidrug-resistant strains,
and the synergy between D13-9001 and aztreonam was remark-
able in these strains. D13-9001 increased the susceptibilities of
E. coliΔBC/pABM to all three agents and had no effect on the
susceptibilities of ΔBC/pV and ΔBC/pXYM (Figures 2A,D,G).

In contrast, PAβN significantly increased erythromycin activ-
ity against all strains including ΔacrB and ΔBC/pV (Figure 2H),
although the effect of PAβN on ciprofloxacin activity remained
additive against all E. coli strains (Figure 2B). However, PAβN
exhibited remarkable synergy against MDRP IMCJ2.S1 with all of

the three agents (Figures 2B,E,H),and the FIC indices of PAβN
were 0.016, 0.031, and 0.063 with ciprofloxacin, aztreonam, and
erythromycin, respectively. The effect of PAβN was less strong
on PAO1 than on MDRP with ciprofloxacin or aztreonam. Fur-
thermore, PAβN acted synergistically with aztreonam in ΔBC/pV,
although this combination was additive in ΔBC/pABM and the
wild-type. Synergy between PAβN and these antimicrobial agents
could not be explained by efflux pump inhibition by PAβN.

Other than efflux pump inhibitors, outer membrane permeabi-
lizers have also been used for enhancing the activity of antimicro-
bial agents (Vaara, 1992; Vaara and Porro, 1996; Vaara et al., 2010;
Vingsbo Lundberg et al., 2010). Among them, PMBN is known to
permeabilize only the outer membrane of Gram-negative bac-
teria, whereas polymyxin B permeabilizes both the outer and
inner membranes (Vaara and Vaara, 1983a,b; Viljanen and Vaara,
1984). PMBN had also weak antimicrobial activities against pump-
deleted strains, and it appeared to be a substrate of pumps. The
effect of PMBN on ciprofloxacin activity was additive against the
E. coli strains and PAO1 and was synergistic against IMCJ2.S1. By
contrast, PMBN increased erythromycin activity against all strains
including pump deletion mutants ΔacrB, ΔtolC, and ΔBC/pV.
These results obtained for PMBN were comparable to and stronger
than the results for PAβN. PMBN also increased aztreonam activity
against all strains.

EFFLUX PUMP INHIBITION OBSERVED BY THE NEW DEVICE
AcrAB–TolC and the analogous RND pumps effectively prevented
FDG influx in E. coli wild-type cells, resulting in no fluorescence
(Figures 1A,B). By contrast, ΔacrB and ΔtolC easily accumulated
and hydrolyzed FDG to fluorescein, which accumulated in ΔtolC
cells but not in ΔacrB cells. Consequently, we observed fluores-
cent medium in ΔacrB experiments and fluorescent cells in ΔtolC
experiments. Images of these strains in the microfluidic channels
are shown in Figure 1B. Fluorescence was highly accumulated
only in tolC-deleted strains. We also evaluated the inhibitors in
relation to the MexAB–OprM and MexXY–OprM pumps from
P. aeruginosa in E. coli. Fluorescent medium was observed in
ΔBC/pABM and ΔBC/pXYM (Figure 1C), whereas fluorescent
cells were observed in ΔBC/pV like in ΔtolC (Figure 1D). Thus,
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FIGURE 2 | Effect of D13-9001, PAβN, and PMBN on ciprofloxacin,

aztreonam, and erythromycin activity. E. coli MG1655 wild, ΔacrB,
ΔacrBΔtolC /pMMB67HE (ΔBC/pV), ΔacrBΔtolC /pABM (ΔBC/pABM),
ΔacrBΔtolC /pXYM (ΔBC/pXYM), P. aeruginosa PAO1, and MDRP

IMCJ2.S1 were used. Changes in the MICs of ciprofloxacin [CIP: (A-C)],
aztreonam [ATM: (D-F)], and erythromycin [ERY: (G-I)] induced by
D13-9001 (A,D,G), PAβN (B,E,H), or PMBN (C,F,I) were determined by
checkerboard method. Modified from Matsumoto et al. (2011).
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these RND pumps from P. aeruginosa appeared to be functional
in E. coli ΔacrBΔtolC.

The effect of D13-9001 was not significant in wild-type E.
coli in the new method (Matsumoto et al., 2011). Fluorescence
in the device was decreased to a minor level by D13-9001 in a
concentration-dependent manner in ΔacrB and ΔtolC, and the
possibility of FDG influx-blocking activity of D13-9001 was sug-
gested. However, D13-9001 clearly increased the accumulation of
fluorescein in ΔBC/pABM cells, and the number of fluorescent
cells was increased by D13-9001 in a concentration-dependent
manner in ΔBC/pABM, although it had almost no effect in
ΔBC/pXYM (Figure 1C). Conversely, PAβN increased the flu-
orescence in the medium of all strains, particularly for ΔtolC
(Matsumoto et al., 2011), and the accumulation of fluorescein
in the cells of ΔtolC disappeared (Figure 1D). PAβN appeared to
have membrane-permeabilizing activities.

MEMBRANE-PERMEABILIZING ACTIVITY ESTIMATED BY THE NEW
DEVICE
We further evaluated the effect of PAβN in comparison with
those of polymyxin B and PMBN in ΔtolC by the device.
The membrane-permeabilizing activities of PAβN, PMBN, and
polymyxin Bwere visualized by this new method using the pump-
deficient strain ΔtolC. The MexB inhibitor D13-9001 had almost
no effect on fluorescein distribution in ΔtolC (Figure 1D).
By contrast, fluorescein accumulation in ΔtolC cells was dis-
appeared by 4 μg/ml PAβN or by 4 μg/ml PMBN. Polymyxin
B increased the fluorescence in the medium at concentrations
exceeding 1 μg/ml, but fluorescein accumulation was observed
in the presence of 1 μg/ml polymyxin B also. The disappeared
accumulation of fluorescein in ΔtolC cells and increased fluores-
cence in the medium of ΔtolC appears to correspond with the
outer and inner membrane permeabilization of E. coli, respec-
tively. The effect of PAβN was similar to that of PMBN at lower
concentrations and was similar to that of polymyxin B at higher
concentrations (Figure 1D). The effect of outer membrane perme-
abilizers is significant with antibacterial agents that are effectively
excluded by the intact outer membrane. The synergistic action of
PAβN in combination with erythromycin appeared to arise from
the outer membrane-permeabilizing activity of PAβN. In E. coli,
the outer membrane-permeabilizing activity of PAβN was con-
firmed by the increased hydrolysis of nitrocefin, and the inner
membrane-permeabilizing activity of PAβN was confirmed by
the increased accumulation of SYTOX Green (Matsumoto et al.,
2011).

DISCUSSION
FEATURES OF THE NEW METHOD TO DETERMINE EFFLUX PUMP
INHIBITORY ACTIVITIES AND MEMBRANE-PERMEABILIZING
ACTIVITIES
FDG was defined as a substrate of RND pumps because it was
more easily hydrolyzed in pump deletion mutants than in wild-
type cells. Fluorescein was also defined as a substrate of pumps
based on its accumulation in ΔtolC cells. Furthermore, from the
results of the complete blockage of FDG hydrolysis by the addition
of a protonophore, carbonyl cyanide m-chlorophenylhydrazone
(CCCP), in all of the strains including ΔtolC (data not shown),

FDG was confirmed to be actively imported into the cytoplasm. If
CCCP only blocks efflux pumps, increased fluorescence would be
observed in wild-type cells. The lactose permease LacY is not an
FDG permease because lacY deletion in ΔlacI mutants (consti-
tutive β-galactosidase producer) had no effect on FDG hydrolysis
in the mutants (data not shown), and we have yet to identify an
FDG permease. In wild-type cells, FDG is hardly imported into the
cytoplasm because FDG is exported by AcrB from the periplasm
before it is trapped by permease. The rate of FDG influx will
increase in relation to the concentration of FDG in the periplasm
until it reaches its maximum rate. Moderate inhibition of the
pumps causes FDG influx and an efflux of fluorescein from the
cells by the remaining activity of the pumps, and full inhibition
of the pumps results in fluorescein accumulation in cells, sim-
ilar to what is observed in ΔtolC cells. A real pump inhibitor
without any effect on the bacterial membrane will increase fluo-
rescence in wild-type cells in a concentration-dependent manner
and will increase the accumulation of fluorescence in the cells.
The microfluidic channel allowed these discriminations to be
monitored using fluorescence microscopy. In fact, we detected
moderately increasing fluorescence and increased accumulation
of fluorescence in ΔBC/pABM in relation to the increasing con-
centration of D13-9001 (Figure 1C) which is known as a specific
inhibiter of the MexAB–OprM pump. D13-9001 had no effect
on the MexXY–OprM pump producing E. coli. The combinato-
rial effects of D13-9001 with the antimicrobials assessed by the
checkerboard method are easily understandable by the inhibitory
effect of D13-9001 on the AcrB or MexB pump in all of the tested
strains of E. coli and P. aeruginosa.

While evaluating the activity of PAβN, we found that our
method is also valuable for evaluation of the outer and inner
membrane-permeabilizing activities of compounds. Outer mem-
brane permeabilization causes the leakage of fluorescein from
ΔtolC cells, and inner membrane permeabilization efficiently
increases FDG influx and fluorescein production, resulting in fluo-
rescein release from cells with or without pumps. By the FDG assay,
it is easy to detect outer membrane permeabilization by the dis-
appearance of fluorescein accumulation in ΔtolC cells and inner
membrane permeabilization based on increases in fluorescence,
particularly in the medium of pump deletion mutants.

COMPARISON OF OUR NEW METHOD WITH OTHER AVAILABLE
METHODS FOR DETERMINING EFFLUX PUMP-INHIBITORY ACTIVITIES
Several fluorometric methods for evaluating efflux pump
inhibitors have been published using substrates of these pumps
such as alanine β-naphthylamide (Lomovskaya et al., 2001), N -
phenylnaphthylamine (Lomovskaya et al., 2001), ethidium bro-
mide (Lomovskaya et al., 2001), and pyronin Y (Kaatz et al.,
2003). However, the inhibitory activities of PAβN itself could not
be determined by the methods utilizing alanine β-naphthylamide
or N -phenylnaphthylamine due to the high background fluores-
cence (Lomovskaya et al., 2001). Furthermore, PAβN has been
reported to have no inhibitory effect on the efflux of ethid-
ium bromide (Lomovskaya et al., 2001; Schumacher et al., 2006;
Viveiros et al., 2008), which is also a known substrate of ABC-
type transporters (Martins et al., 2009). The fluorescence of these
compounds was less strong than that of fluorescein, and thus, they
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are not considered suitable for visualization in the microfluidic
channel.

The determination of efflux pump inhibition activity via the
typical methods of measuring the influx or efflux of some sub-
strates by their fluorescence with a plate reader makes it difficult
to exclude the effect of outer membrane-permeabilizing activity.
In addition, accurate estimation of FDG hydrolysis by monitoring
fluorescence with a plate reader is impractical, because the total
fluorescence of fluorescein determined by a plate reader is higher
when it diffused in the medium than when it is accumulated into
cells; fluorescence determined by a plate reader in this study was
generally higher in ΔacrB than in ΔtolC (data not shown). There-
fore, fluorescence determined by a plate reader does not accurately
correlate with the amount of fluorescein produced, and it is dif-
ficult to estimate the inhibitory effect on pumps with FDG by
using a plate reader. The microfluidic channel method enables the
discrimination of pure efflux pump inhibition from membrane
permeabilization. However, when more than two different pumps
are present in a cell, it may be difficult to detect the effect of a
specific inhibitor on either pump. To overcome this problem, we
need a mutant lacking all RND pumps and producing TolC that
accumulates fluorescein. Deletions of acrB, acrD, acrEF, mdtABC,
and mdtEF were not sufficient to ensure the accumulation of flu-
orescein in a manner similar to that in ΔtolC (data not shown).
The effect of D13-9001 on E. coli AcrAB–TolC can be detected
by this method for a strain that produces only AcrAB–TolC. We
would be able to apply this method for evaluation of the efflux
pump inhibitors against RND pumps in P. aeruginosa when we
construct a strain of P. aeruginosa producing both β-galactosidase
and FDG permease. In addition, the microfluidic channels are use-
ful for comparative observation of multiple samples at the same
time and easy to tailor-make. We are expanding application of
these micro-devices for other microbiological assays.

SUSPICION OF THE EFFLUX PUMP INHIBITORY ACTIVITY OF PAβN
Throughout this study, we could not definitively determine
whether PAβN actually inhibits efflux pumps. Using our new
method, we observed that PAβN increased FDG hydrolysis and
fluorescein leakage in all strains (Matsumoto et al., 2011), par-
ticularly in pump deletion mutants (Figure 1D). Because PAβN
was reported first, it has been universally recognized as an efflux
pump inhibitor (Lomovskaya et al., 2001; Mesaros et al., 2007).
The effect of PAβN on MDRP IMCJ2.S1 was remarkably synergis-
tic with all the agents examined in the present study (Figure 2).
However, PAβN increased the susceptibilities of pump deletion
mutants of E. coli especially to erythromycin, although it had
almost no effect on ciprofloxacin in E. coli expressing MexAB–
OprM or MexXY–OprM (Figure 2); this suggests that PAβN could
not inhibit the efflux of ciprofloxacin by MexB or MexY. These
actions of PAβN do not correlate with efflux pumps and are sim-
ilar to those of the outer membrane permeabilizer PMBN. The
effect of PAβN on the outer membrane was already known when
it was discovered (Lomovskaya et al., 2001). Previous authors used
a nitrocefin hydrolysis assay with intact cells to evaluate the outer
membrane-permeabilizing activity of PAβN in P. aeruginosa, and
permeabilizing activity was visible at PAβN concentrations lower
than 16 μg/ml on the outer membranes of pump-deficient or

CCCP-applied strains. Nitrocefin is a substrate of efflux pumps
(Nagano and Nikaido, 2009), and thus, the permeabilizing activity
of agents should be evaluated in the pump-deficient condition.
The permeabilizing activity of PAβN on the outer membrane of
E. coli by nitrocefin hydrolysis assay was comparable to the activ-
ity obtained in the FDG assay (Matsumoto et al., 2011) and was
higher than that reported previously for the outer membrane of
P. aeruginosa (Lomovskaya et al., 2001). The outer membrane-
permeabilizing activity of PAβN has also been published by other
researchers using resazurin as a substrate (Vidal-Aroca et al., 2009).
In the FDG assay, the effect of PAβN on the outer membrane of
E. coli was visible at 4 μg/ml (Figure 1D). LB was used for the
FDG assay and the results were easy to compare with the results
of synergy in MICs with antimicrobial agents in which the effect
of PAβN was also detected in concentrations higher than 4 μg/ml.
Outer membrane-permeabilizing activity is known to increase the
sensitivity of bacteria to antimicrobial agents such as erythromycin
that are excluded by an intact outer membrane (Vaara, 2009; Vaara
et al., 2010) as well as efflux pump inhibitors, and we could obtain
similar results using PMBN. The effect of PAβN on antimicrobial
agents (Figure 2) appears to be due to its activity on the E. coli
cell membranes. We could not obtain any clear evidence of the
inhibitory activity of PAβN on the efflux pump itself. The pos-
sibility that PAβN competes with a substrate for binding to the
efflux pump cannot be excluded completely, although competitive
inhibition of efflux pumps by another substrate was not proven
in E. coli by Elkins and Mullis (2007). The precise mechanism of
synergy between PAβN and antimicrobial agents needs to be eluci-
dated in future. Based on our findings using this new method, we
concluded that PAβN appears to be a substrate of the pumps and
permeabilizes the membranes of E. coli in contrast to D13-9001,
which specifically inhibits MexB.

AVAILABILITY OF EFFLUX PUMP INHIBITORS AND MEMBRANE
PERMEABILIZERS
The effect of D13-9001 is simple and specific to strains expressing
AcrB or MexB pumps. D13-9001 exhibits maximum synergistic
effect with aztreonam, a substrate preferred only by MexB. How-
ever, D13-9001 was not completely synergistic with ciprofloxacin,
which is a substrate of MexB, MexY, and other pumps. Because var-
ious pump structures exist, it may be difficult to develop a super
inhibitor that can inhibit all major pumps in P. aeruginosa. Match-
ing an inhibitor with combined antimicrobial agents is essential.
Susceptibility augmenting agents such as PAβN may be useful
when used in combination with a substrate of multiple efflux
pumps such as erythromycin and ciprofloxacin. Considerably,
membrane permeabilizers can enhance activities of antimicrobial
agents against efflux pump deficient strains, enabling expansion
of the spectrum from targeting anti-Gram positives to anti-Gram
negatives. These features can transform old antimicrobial agents
to newer and improved ones, and these activities can be evaluated
by our new method all together. Discovery of a clinically useful
agent augmenting antipseudomonal activities is anticipated.

ACKNOWLEDGMENTS
This study was supported by the Grant for Promotion of Fun-
damental Studies in Health Sciences of the National Institute

www.frontiersin.org February 2012 | Volume 3 | Article 40 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/archive


Iino et al. Visualization of efflux pump activity

of Biomedical Innovation (Project ID 07-03), Grants from the
Japan Society for the Promotion of Science, and the Min-
istry of Education, Culture, Sports, Science, and Technology

of Japan. We are grateful to Dr. Taiji Nakae for provid-
ing plasmids and to Dr. Kirikae for providing P. aeruginosa
IMCJ2.S1.

REFERENCES
Elkins, C. A., and Mullis, L. B. (2007).

Substrate competition studies using
whole-cell accumulation assays
with the major tripartite multidrug
efflux pumps of Escherichia coli.
Antimicrob. Agents Chemother. 51,
923–929.

Fieldler, F., and Hinz, H. (1994). No
intermediate channelling in stepwise
hydrolysis of fluorescein di-beta-
D-galactoside by beta-galactosidase.
Eur. J. Biochem. 222, 75–81.

Giske, C. G., Buaro, L., Sunds-
fjord, A., and Wretlind, B. (2008).
Alterations of porin, pumps, and
penicillin-binding proteins in car-
bapenem resistant clinical isolates
of Pseudomonas aeruginosa. Microb.
Drug Resist. 14, 23–30.

Henrichfreise, B., Wiegand, I., Pfister,
W., and Wiedemann, B. (2007).
Resistance mechanisms of mul-
tiresistant Pseudomonas aeruginosa
strains from Germany and cor-
relation with hypermutation.
Antimicrob. Agents Chemother. 51,
4062–4070.

Kaatz, G. W., Moudgal, V. V., Seo, S.
M., and Kristiansen, J. E. (2003).
Phenothiazines and thioxanthenes
inhibit multidrug efflux pump activ-
ity in Staphylococcus aureus. Antimi-
crob. Agents Chemother. 47, 719–726.

Kirikae, T., Mizuguchi, Y., and Arakawa,
Y. (2008). Investigation of isola-
tion rates of Pseudomonas aerug-
inosa with and without mul-
tidrug resistance in medical facil-
ities and clinical laboratories in
Japan. J. Antimicrob. Chemother. 61,
612–615.

Lister, P. D., Wolter, D. J., and Han-
son, N. D. (2009). Antibacterial-
resistant Pseudomonas aeruginosa:
clinical impact and complex regu-
lation of chromosomally encoded
resistance mechanisms. Clin. Micro-
biol. Rev. 22, 582–610.

Livermore, D. M. (2002). Multiple
mechanisms of antimicrobial resis-
tance in Pseudomonas aeruginosa:
our worst nightmare? Clin. Infect.
Dis. 34, 634–640.

Llanes, C., Hocquet, D., Vogne, C.,
Benali-Baitich, D., Neuwirth, C.,
and Plesiat, P. (2004). Clinical
strains of Pseudomonas aeruginosa
overproducing MexAB-OprM and
MexXY efflux pumps simultane-
ously. Antimicrob. Agents Chemother.
48, 1797–1802.

Lomovskaya, O., Warren, M. S., Lee,
A., Galazzo, J., Fronko, R., Lee, M.,
Blais, J., Cho, D., Chamberland, S.,
Renau, T., Leger, R., Hecker, S.,
Watkins, W., Hoshino, K., Ishida, H.,
and Lee, V. J. (2001). Identification
and characterization of inhibitors of
multidrug resistance efflux pumps
in Pseudomonas aeruginosa: novel
agents for combination therapy.
Antimicrob. Agents Chemother. 45,
105–116.

Martins, A., Spengler, G., Rodrigues,
L., Viveiros, M., Ramos, J., Martins,
M., Couto, I., Fanning, S., Pages,
J. M., Bolla, J. M., Molnar, J., and
Amaral, L. (2009). pH Modulation
of efflux pump activity of multi-
drug resistant Escherichia coli: pro-
tection during its passage and even-
tual colonization of the colon. PLoS
ONE 4, e6656. doi:10.1371/jour-
nal.pone.0006656

Masuda, N., Sakagawa, E., Ohya, S.,
Gotoh, N., Tsujimoto, H., and
Nishino, T. (2000). Substrate speci-
ficities of MexAB-OprM, MexCD-
OprJ, and MexXY-oprM efflux
pumps in Pseudomonas aeruginosa.
Antimicrob. Agents Chemother. 44,
3322–3327.

Matsumoto, Y., Hayama, K., Sakaki-
hara, S., Nishino, K., Noji, H., Iino,
R., and Yamaguchi, A. (2011). Eval-
uation of multidrug efflux pump
inhibitors by a new method using
microfluidic channels. PLoS ONE 6,
e18547. doi:10.1371/journal.pone.
0018547

Mesaros, N., Glupczynski, Y., Avrain, L.,
Caceres, N. E., Tulkens, P. M., and
Van Bambeke, F. (2007). A com-
bined phenotypic and genotypic
method for the detection of Mex
efflux pumps in Pseudomonas aerug-
inosa. J. Antimicrob. Chemother. 59,
378–386.

Mokhonov, V. V., Mokhonova, E. I.,
Akama, H., and Nakae, T. (2004).
Role of the membrane fusion pro-
tein in the assembly of resistance-
nodulation-cell division multidrug
efflux pump in Pseudomonas aerug-
inosa. Biochem. Biophys. Res. Com-
mun. 322, 483–489.

Morita, Y., Kimura, N., Mima, T.,
Mizushima, T., and Tsuchiya, T.
(2001). Roles of MexXY- and
MexAB-multidrug efflux pumps in
intrinsic multidrug resistance of
Pseudomonas aeruginosa PAO1. J.
Gen. Appl. Microbiol. 47, 27–32.

Murakami, S., Nakashima, R.,
Yamashita, E., Matsumoto, T.,
and Yamaguchi, A. (2006). Crystal
structures of a multidrug trans-
porter reveal a functionally rotating
mechanism. Nature 443, 173–179.

Murakami, S., Nakashima, R.,
Yamashita, E., and Yamaguchi,
A. (2002). Crystal structure of bac-
terial multidrug efflux transporter
AcrB. Nature 419, 587–593.

Nagano, K., and Nikaido, H. (2009).
Kinetic behavior of the major
multidrug efflux pump AcrB of
Escherichia coli. Proc. Natl. Acad. Sci.
U.S.A. 106, 5854–5858.

Nakashima, R., Sakurai, K., Yamasaki,
S., Nishino, K., and Yamaguchi,
A. (2011). Structures of the mul-
tidrug exporter AcrB reveal a prox-
imal multisite drug-binding pocket.
Nature 480, 565–569.

Nishino, K., Senda, Y., and Yamaguchi,
A. (2008). The AraC-family regula-
tor GadX enhances multidrug resis-
tance in Escherichia coli by activat-
ing expression of mdtEF multidrug
efflux genes. J. Infect. Chemother. 14,
23–29.

Russo-Marie, F., Roederer, M., Sager,
B., Herzenberg, L. A., and Kaiser,
D. (1993). Beta-galactosidase activ-
ity in single differentiating bacterial
cells. Proc. Natl. Acad. Sci. U.S.A. 90,
8194–8198.

Ryan, B. M., Dougherty, T. J., Beaulieu,
D., Chuang, J., Dougherty, B. A., and
Barrett, J. F. (2001). Efflux in bacte-
ria: what do we really know about
it? Expert Opin. Investig. Drugs 10,
1409–1422.

Satoh, R., Tsukada, H., Tanabe, Y.,
Tamura, Y., Yamamoto, T., Takano,
M., Ozaki, K., Tamura, T., and Gejyo,
F. (2008). An outbreak and isola-
tion of drug-resistant Pseudomonas
aeruginosa at Niigata University
Hospital, Japan. J. Infect. Chemother.
14, 325–329.

Schumacher, A., Steinke, P., Bohn-
ert, J. A., Akova, M., Jonas, D.,
and Kern, W. V. (2006). Effect of
1-(1-naphthylmethyl)-piperazine, a
novel putative efflux pump inhibitor,
on antimicrobial drug susceptibil-
ity in clinical isolates of Enter-
obacteriaceae other than Escherichia
coli. J. Antimicrob. Chemother. 57,
344–348.

Schweizer, H. P. (2003). Efflux as a
mechanism of resistance to antimi-
crobials in Pseudomonas aeruginosa

and related bacteria: unanswered
questions. Genet. Mol. Res. 2, 48–62.

Sekiguchi, J., Asagi, T., Miyoshi-
Akiyama, T., Fujino, T., Kobayashi,
I., Morita, K., Kikuchi, Y., Kurat-
suji, T., and Kirikae, T. (2005).
Multidrug-resistant Pseudomonas
aeruginosa strain that caused an
outbreak in a neurosurgery ward
and its aac(6′)-Iae gene cassette
encoding a novel aminoglycoside
acetyltransferase. Antimicrob. Agents
Chemother. 49, 3734–3742.

Sekiguchi, J., Asagi, T., Miyoshi-
Akiyama, T., Kasai, A., Mizuguchi,
Y., Araake, M., Fujino, T., Kikuchi,
H., Sasaki, S., Watari, H., Kojima,
T., Miki, H., Kanemitsu, K., Kun-
ishima, H., Kikuchi, Y., Kaku,
M., Yoshikura, H., Kuratsuji, T.,
and Kirikae, T. (2007a). Outbreaks
of multidrug-resistant Pseudomonas
aeruginosa in community hospi-
tals in Japan. J. Clin. Microbiol. 45,
979–989.

Sekiguchi, J., Teruya, K., Horii,
K., Kuroda, E., Konosaki, H.,
Mizuguchi, Y., Araake, M., Kawana,
A., Yoshikura, H., Kuratsuji, T.,
Miyazaki, H., and Kirikae, T.
(2007b). Molecular epidemiology
of outbreaks and containment
of drug-resistant Pseudomonas
aeruginosa in a Tokyo hospi-
tal. J. Infect. Chemother. 13,
418–422.

Sennhauser, G., Bukowska, M. A.,
Briand, C., and Grutter, M. G.
(2009). Crystal structure of the
multidrug exporter MexB from
Pseudomonas aeruginosa. J. Mol.
Biol. 389, 134–145.

Tohidpour, A., Peerayeh, S. N.,
Mehrabadi, J. F., and Yazdi, H. R.
(2009). Determination of the efflux
pump-mediated resistance preva-
lence in Pseudomonas aeruginosa,
using an efflux pump inhibitor.
Curr. Microbiol. 59, 352–355.

Vaara, M. (1992). Agents that increase
the permeability of the outer
membrane. Microbiol. Rev. 56,
395–411.

Vaara, M. (1993). Outer membrane per-
meability barrier to azithromycin,
clarithromycin, and roxithromycin
in gram-negative enteric bacteria.
Antimicrob. Agents Chemother. 37,
354–356.

Vaara, M. (2009). New approaches
in peptide antibiotics. Curr. Opin.
Pharmacol. 9, 571–576.

Frontiers in Microbiology | Antimicrobials, Resistance and Chemotherapy February 2012 | Volume 3 | Article 40 | 8

http://dx.doi.org/10.1371/journal.pone.0006656
http://dx.doi.org/10.1371/journal.pone.{\penalty -\@M }0018547
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/archive


Iino et al. Visualization of efflux pump activity

Vaara, M., and Porro, M. (1996).
Group of peptides that act synergis-
tically with hydrophobic antibiotics
against gram-negative enteric bac-
teria. Antimicrob. Agents Chemother.
40, 1801–1805.

Vaara, M., Siikanen, O., Apajalahti, J.,
Fox, J., Frimodt-Moller, N., He,
H., Poudyal, A., Li, J., Nation, R.
L., and Vaara, T. (2010). A novel
polymyxin derivative that lacks the
fatty acid tail and carries only
three positive charges has strong
synergism with agents excluded
by the intact outer membrane.
Antimicrob. Agents Chemother. 54,
3341–3346.

Vaara, M., and Vaara, T. (1983a).
Polycations as outer membrane-
disorganizing agents. Antimicrob.
Agents Chemother. 24, 114–122.

Vaara, M., and Vaara, T. (1983b).
Polycations sensitize enteric bacte-
ria to antibiotics. Antimicrob. Agents
Chemother. 24, 107–113.

Vidal-Aroca, F., Meng, A., Minz, T.,
Page, M. G. P., and Dreier, J. (2009).

Use of resazurin to detect meflo-
quine as an efflux-pump inhibitor
in Pseudomonas aeruginosa and
Escherichia coli. J. Microbiol. Methods
79, 232–237.

Viljanen, P., and Vaara, M. (1984). Sus-
ceptibility of gram-negative bacte-
ria to polymyxin B nonapeptide.
Antimicrob. Agents Chemother. 25,
701–705.

Vingsbo Lundberg, C., Vaara, T.,
Frimodt-Moller, N., and Vaara, M.
(2010). Novel polymyxin derivatives
are effective in treating experimental
Escherichia coli peritoneal infection
in mice. J. Antimicrob. Chemother.
65, 981–985.

Viveiros, M., Martins, A., Paixao, L.,
Rodrigues, L., Martins, M., Couto,
I., Fahnrich, E., Kern, W. V., and
Amaral, L. (2008). Demonstration of
intrinsic efflux activity of Escherichia
coli K-12 AG100 by an automated
ethidium bromide method. Int. J.
Antimicrob. Agents 31, 458–462.

Whitesides, G. M., Ostuni, E., Takayama,
S., Jiang, X. Y., and Ingber, D. E.

(2001). Soft lithography in biology
and biochemistry. Annu. Rev. Bio-
med. Eng. 3, 335–373.

Yang, N. C., and Hu, M. L. (2004). A
fluorimetric method using fluores-
cein di-beta-D-galactopyranoside
for quantifying the senescence-
associated beta-galactosidase
activity in human foreskin fibroblast
Hs68 cells. Anal. Biochem. 325,
337–343.

Yoshida, K., Nakayama, K., Ohtsuka, M.,
Kuru, N., Yokomizo, Y., Sakamoto,
A., Takemura, M., Hoshino, K.,
Kanda, H., Nitanai, H., Namba,
K., Imamura, Y., Zhang, J. Z., Lee,
V. J., and Watkins, W. J. (2007).
MexAB-OprM specific efflux pump
inhibitors in Pseudomonas aerugi-
nosa. Part 7: highly soluble and
in vivo active quaternary ammo-
nium analogue D13-9001, a poten-
tial preclinical candidate. Bioorg.
Med. Chem. 15, 7087–7097.

Conflict of Interest Statement: The
authors declare that the research was

conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 31 October 2011; accepted: 26
January 2012; published online: 08 Feb-
ruary 2012.
Citation: Iino R, Nishino K, Noji H, Yam-
aguchi A and Matsumoto Y (2012) A
microfluidic device for simple and rapid
evaluation of multidrug efflux pump
inhibitors. Front. Microbio. 3:40. doi:
10.3389/fmicb.2012.00040
This article was submitted to Fron-
tiers in Antimicrobials, Resistance and
Chemotherapy, a specialty of Frontiers in
Microbiology.
Copyright © 2012 Iino, Nishino, Noji,
Yamaguchi and Matsumoto. This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion Non Commercial License, which per-
mits non-commercial use, distribution,
and reproduction in other forums, pro-
vided the original authors and source are
credited.

www.frontiersin.org February 2012 | Volume 3 | Article 40 | 9

http://dx.doi.org/10.3389/fmicb.2012.00040
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/archive

	A microfluidic device for simple and rapid evaluation of multidrug efflux pump inhibitors
	Introduction
	Materials and Methods
	Bacterial strains
	Antibacterial agents and chemicals
	Preparation of microfluidic channels
	Efflux pump inhibition assay
	Determination of Minimum Inhibitory Concentration and checkerboard MIC

	Results
	Evaluation of inhibitors by the classic checkerboard method
	Efflux pump inhibition observed by the new device
	Membrane-permeabilizing activity estimated by the new device

	Discussion
	Features of the new method to determine efflux pump inhibitory activities and membrane-permeabilizing activities
	Comparison of our new method with other available methods for determining efflux pump-inhibitory activities
	Suspicion of the efflux pump inhibitory activity of PAβN
	Availability of efflux pump inhibitors and membrane permeabilizers

	Acknowledgments
	References


