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INTRODUCTION

In the absence of O, and other electron acceptors, the Gram-negative bacterium
Shewanella oneidensis MR-1 can use ferric [Fe(lll)] (oxy)(hydr)oxide minerals as the ter
minal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence
of strong complexing ligands, Fe(lll) oxides are relatively insoluble and thus are external to
the bacterial cells. S. oneidensis MR-1 and related strains of metal-reducing Shewanella
have evolved machinery (i.e., metal-reducing or Mtr pathway) for transferring electrons from
the inne-membrane, through the periplasm and across the outermembrane to the surface
of extracellular Fe(lll) oxides. The protein components identified to date for the Mtr path-
way include CymA, MtrA, MtrB, MtrC, and OmcA. CymA is an innermembrane tetraheme
c-type cytochrome (c-Cyt) that belongs to the NapC/NrfH family of quinol dehydrogenases.
It is proposed that CymA oxidizes the quinol in the innermembrane and transfers the
released electrons to MtrA either directly or indirectly through other periplasmic proteins.
Adecaheme c-Cyt, MitrA is thought to be embedded in the trans outer-membrane and porin-
like protein MtrB. Together, MtrAB deliver the electrons through the outerr-membrane to the
MtrC and OmcA on the outmost bacterial surface. MtrC and OmcA are the outermembrane
decaheme c-Cyts that are translocated across the outermembrane by the bacterial type Il
secretion system. Functioning as terminal reductases, MtrC and OmcA can bind the surface
of Fe(lll) oxides and transfer electrons directly to these minerals via their solvent-exposed
hemes. To increase their reaction rates, MtrC and OmcA can use the flavins secreted by
S. oneidensis MR-1 cells as diffusible co-factors for reduction of Fe(lll) oxides. Because
of their extracellular location and broad redox potentials, MtrC and OmcA can also serve
as the terminal reductases for soluble forms of Fe(lll). In addition to Fe(lll) oxides, Mtr
pathway is also involved in reduction of manganese oxides and other metals. Although our
understanding of the Mtr pathway is still far from complete, it is the best characterized
microbial pathway used for extracellular electron exchange. Characterizations of the Mtr
pathway have made significant contributions to the molecular understanding of microbial
reduction of Fe(lll) oxides.

Keywords: dissimilatory Fe(lll) oxide reduction, Shewanella oneidensis MR-1, extracellular electron transfer
pathway, c-type cytochromes with multiple hemes, molecular biology

this physical barrier, S. oneidensis MR-1 and other metal-reducing

The Gram-negative bacterium Shewanella oneidensis MR-1 can
use ferric [Fe(IIT)] (oxy)(hydr)oxide minerals as the terminal elec-
tron acceptors for anaerobic respiration [i.e., dissimilatory Fe(III)
reduction] (Myers and Nealson, 1990). Dissimilatory reduction
of Fe(IIl) oxides by microorganisms plays a critical role in the
biogeochemical cycle of Fe (Weber et al., 2006). At circumneu-
tral pH and in the absence of strong complexing ligands, Fe(III)
oxides are usually sparingly soluble in water and their redox poten-
tials vary, which depend on their phases and range from —300 to
0mV (Thamdrup, 2000). Because of their insolubility in water,
Fe(I1I) oxides are unable to cross the bacterial outer-membrane
to the periplasm and the cytoplasmic or inner-membrane where
the bacterial terminal reductases are usually located. To overcome

Shewanella have developed the ability to transfer electrons from
the inner-membrane where electrons are accumulated from bacte-
rial metabolic activity to the bacterial cell surface where reduction
of Fe(III) oxides occurs. Gene inactivation and subsequent phe-
notypic analyses of S. oneidensis MR-1 mutants have identified
several proteins directly involved in this electron transfer system.
These include four c-type cytochromes (c-Cyts) CymA, MtrA,
MtrC, and OmcA and a trans outer-membrane and porin-like
protein MtrB (Table 1; Myers and Myers, 1997a,b, 2002; Beliaev
and Saffarini, 1998; Beliaev et al., 2001; Lies et al., 2005; Gorby
et al., 2006; Bretschger et al., 2007; Coursolle and Gralnick, 2010;
Reardon et al.,, 2010). Together, they form a pathway (i.e., Mtr
pathway) through which electrons move from the quinone/quinol

www.frontiersin.org

February 2012 | Volume 3 | Article 50 | 1


http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Microbiological_Chemistry/10.3389/fmicb.2012.00050/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=25768&d=1&sname=LiangShi&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=42224&d=1&sname=TomClarke&name=Science
mailto:liang.shi@pnnl.gov
http://www.frontiersin.org
http://www.frontiersin.org/Microbiological_Chemistry/archive

Shietal.

Fe(lll) oxide reduction by Shewanella

Table 1| Identified protein components of Mtr pathway.

Name Locus tag Number of heme Location

CymA SO_4591 4 Innermembrane
MtrA SO_1777 10 Outermembrane
MtrB SO_1776 0 Outermembrane
MtrC SO_1778 10 Outermembrane
OmcA SO_1779 10 Outermembrane

pool in the inner-membrane, through the periplasm and across
the outer-membrane to the surface of Fe(III) oxides (for recent
reviews, see Richardson, 2000; Shi et al., 2007, 2009; Fredrickson
and Zachara, 2008; Fredrickson et al., 2008). Investigation of the
Mtr pathway not only has advanced our understanding of molec-
ular mechanisms by which microbial cells transfer electrons to the
external environment, such as for the reduction of Fe(III) min-
erals, but also will enable improved applications of S. oneidensis
MR-1 and other metal-reducing Shewanella in microbial fuel cells
and for electrobiosynthesis of valuable bio-materials (Hau and
Gralnick, 2007; Fredrickson et al., 2008; Ross et al., 2011).

In S. oneidensis MR-1, the genes encoding MtrABC and OmcA
are clustered in a sequential order of omcA-mtrC-mtrA-mtrB.
Comparative analysis of the genomes of 19 metal-reducing She-
wanella strains reveals that mtrC-mtrA-mtrB genes are well con-
served, while omcA is sometimes replaced by undA or undAl,
the genes predicted to encode 11-heme ¢-Cyts (Fredrickson et al.,
2008; Shi et al., 2011). PCR analysis of seven metal-reducing She-
wanella strains isolated from the Hanford Reach of the Columbia
River also indicates that all tested strains possess an mtrC homolog,
while three strains have an omcA homolog, and the remain-
ing four strains contain an undAl homolog. Thus, essentially
all characterized metal-reducing Shewanella strains contain mtr
and related genes that are originally identified from S. oneidensis
MR-1 (Shi et al., 2011). S. oneidensis MR-1 and other metal-
reducing Shewanella are key contributors to metal redox cycling in
energy-rich gradient environments where electron acceptor type
and availability, including Fe(III) and Mn oxides, vary spatially
and temporally (Nealson and Scott, 2003). The respiratory versa-
tility enabled by the Mtr pathway allows Shewanella to effectively
compete with other microorganisms in environments where such
solid-phase electron acceptors are common. In addition to Fe(III)
oxide reduction, MtrAB homologs are also involved in the electron
transfer reactions for extracellular reduction of dimethylsulfoxide
(DMSO) by S. oneidensis MR-1 and extracellular Fe(II) oxida-
tion by Rhodopseudomonas palustris TIE-1 (Gralnick et al., 20065
Jiao and Newman, 2007). A survey of recently finished genomes
of the Fe(Il)-oxidizing bacteria Gallionella ferruginea ES-2 and
Sideroxydans lithotrophicus ES-1 reveals that each genome has a
pair of mtrAB homologs that are clustered together, indicating
that MtrAB homologs may also be widely employed by the Gram-
negative bacteria for extracellular Fe(IT) oxidation (L. Shi, personal
observation).

Shewanella oneidensis MR-1 secretes water-soluble molecules
that function either as electron shuttles or Fe(III) complexing lig-
ands to enhance Fe(III) oxide reduction (Marsili et al., 2008; von
Canstein et al., 2008; Jones et al., 2010). Non-biogenic organic

shuttle molecules, such as anthraquinone disulfonate, are also
well known to accelerate Fe(III) oxide reduction rates (Zachara
etal., 1998),1in part because of thermodynamically accessible redox
potentials, and in part because of intrinsically fast electron trans-
fer kinetics (Rosso et al., 2004). Quinones and molecules bearing
quinone moieties have been shown to be particularly efficient elec-
tron transfer mediators to Fe(III) oxides (Stack et al., 2004). These
molecules exert or are thought to exert their roles in Fe(III) oxide
reduction by working in concert with the Mtr pathway (Ross et al.,
2009; Shi et al., 2009; Coursolle and Gralnick, 2010; Jones et al.,
2010). Extracellular appendages or nanowires are also observed to
be associated with S. oneidensis MR-1 cells where they are believed
to be involved in Fe(III) oxide reduction. Key components of the
Mtr pathway, such as MtrC and OmcA, have been implicated as
important electron transfer proteins in the Shewanella nanowires
(Gorby et al., 2006; El-Naggar et al., 2008, 2010). This review
focuses on our current understandings of functional roles of the
identified protein components of the Mtr pathway in the electron
transfer reactions during extracellular Fe(III) oxide reduction by
S. oneidensis MR-1.

CymA IS THE ENTRY POINT OF THE Mtr PATHWAY

Tetraheme ¢-Cyt CymA is a member of the NapC/NrfH family
of quinol dehydrogenases that are critical for quinol oxidation
during bacterial anaerobic respiration (Simon and Kern, 2008).
In addition to Fe(III) oxide reduction, CymaA is also required for
reducing DMSO, fumarate, nitrate, and nitrite by S. oneidensis
MR-1 and for reducing arsenate by Shewanella sp. strain ANA-
3 and S. putrefaciens CN-32 (Myers and Myers, 1997a; Schwalb
etal., 2003; Murphy and Saltikov, 2007). The N-terminal region of
CymA polypeptide contains a single trans-membrane domain that
anchors CymA to the inner-membrane, and the rest of the CymA
polypeptide covalently binds four heme groups and protrudes
into the periplasm. The periplasmic portion of CymA (CymA)
can reduce DMSO, fumarate, and nitrite in vivo (Schwalb et al.,
2003). Likewise, purified CymAy, transfers electrons directly to
the fumarate reductase FccA of S. oneidensis MR-1 with an appar-
ent second-order rate constant of 19 uM~!s™! (Schwalb et al.,
2003). CymAg,] has a broad redox potential ranging from ~—350
to ~0mV vs. the standard hydrogen electrode (SHE), which is
similar to the redox potential measured for the membrane-bound
CymA of S. frigidimarina NCIMB400 (Field et al., 20005 Firer-
Sherwood et al., 2008). Like other members of the NapC/NrfH
family of quinol dehydrogenases, CymA is believed to oxidize
quinol in the inner-membrane and transfer the released electrons
to redox proteins located in the periplasm. Purified CymA of S.
frigidimarina NCIMB400 indeed can be reduced by duroquinol
and menaquinol in vitro (Field et al., 2000). Structural determina-
tion of NrfH of Desulfovibrio vulgaris, which is the only available
molecular structure for the NapC/NrfH family of quinol dehy-
drogenases, reveals that quinol binds in a pocket adjacent to the
heme 1 of NrfH of D. vulgaris, where quinol oxidation occurs
(Rodrigues et al., 2006, 2008). Heme 1 of NrfH of D. vulgaris is
unique in terms of its coordination. Its proximal axial ligand is
a methionine residue (Met49) that is two residues downstream
from the histidine residue of the CX,CH motif for binding of
heme 1, and an aspartate residue (Asp89) is at the position usually

Frontiers in Microbiology | Microbiological Chemistry

February 2012 | Volume 3 | Article 50 | 2


http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiological_Chemistry
http://www.frontiersin.org/Microbiological_Chemistry/archive

Shietal.

Fe(lll) oxide reduction by Shewanella

occupied by the distal axial ligand. However, Asp89 is not used for
heme coordination; rather, it binds quinol (Rodrigues et al., 2006,
2008). Consequently, heme 1 of NrfH of D. vulgaris is a single
methionine-coordinated, high-spin heme (Rodrigues et al., 2006).
In contrast to NrfH of D. vulgaris, neither Met49 nor Asp89 is con-
served in the CymA of S. oneidensis MR-1. In fact, purified CymA
of S. frigidimarina NCIMB400 contains four low-spin hemes each
of which is most likely coordinated in the axial positions by two
histidine residues (Field et al., 2000). Thus, it is still unclear how
CymA binds and oxidizes quinol at the molecular-level.

Unlike NrfH of D. vulgaris that forms a stable complex with
NrfA, the interactions between CymA and its redox partners in
the periplasm appear weak because CymA can be easily purified
to homogeneity from S. frigidimarina NCIMB400 (Field et al.,
2000; Rodrigues et al., 2006, 2008). The apparent transient nature
of the protein—protein interactions between CymA and its redox
partners in the periplasm may be attributed to the fact that CymA
interacts with different periplasmic proteins, such as NrfA and
FccA, depending on the nature of the terminal electron acceptors.
Weak interactions would permit CymA considerable flexibility
with regards to its binding partners in response to electron accep-
tors. Periplasmic proteins small tetraheme cytochrome (STC, also
known as CctA), MtrA, and FccA are all proposed to receive elec-
trons from CymA during Fe(III) oxide reduction (Ross et al., 2007;
Shietal.,2007; Schuetz etal., 2009). In vivo chemical cross-linking,
however, fails to detect any physical interaction between CymA and
STC or MtrA (Ross et al., 2007). In vitro, direct electron transfer
has been demonstrated between CymA and MtrA, FccA, or STC
and between MtrA and FccA, but not between STC and MtrA
(Schwalb et al., 2003; Schuetz et al., 2009; Firer-Sherwood et al.,
2011b). Investigation of reverse electron transfer reactions from
electrode surfaces through the Mtr pathway to the periplasmic
FccA suggests that electron transfer between MtrA and FccA is
facilitated by CymA, while direct electron transfer from MtrA to
FccA is minimal (Ross et al., 2011). Furthermore, deletion of cctA
or fecA has little impact on Fe(III) oxide reduction by S. oneidensis
MR-1 (Schuetz et al., 2009; Coursolle and Gralnick, 2010). Col-
lectively, all these results suggest that neither STC nor FccA play
a major role in mediating electron transfer between CymA and
MtrA during extracellular reduction of Fe(III) oxides.

Survey of the genome of the neutrophilic Fe(II)-oxidizing bac-
terium S. lithotrophicus ES-1 identifies a cymA homolog located
next to a pair of mtrAB homologs, mtoAB, in a sequential order
of mtoA-mtoB-cymA. This finding raises a possibility that CymA
homolog may also be involved in Fe(II) oxidation, in which it may
serve as a quinone reductase.

MtrA AND MtrB TRANSLOCATE THE ELECTRONS ACROSS
THE OUTER-MEMBRANE TO THE MtrC AND OmcA LOCATED
OUTSIDE OF BACTERIAL CELLS

MtrA can be purified, following overexpression, from either S.
oneidensis MR-1 or Escherichia coli. Purified MtrA contains 10 low-
spin hemes with a redox potential ranging from —400 to —100 mV
vs. SHE (Pitts et al., 2003; Shi et al., 2005; Firer-Sherwood et al.,
2008, 2011b). In vivo cross-linking with formaldehyde indicates a
physical interaction between MtrA and MtrB (Ross et al., 2007).
When Triton X-100 is used as a solubilizing reagent, MtrABC can

be isolated as a protein complex with a stoichiometry of 1:1:1
(Ross et al., 2007; Hartshorne et al., 2009). The purified MtrABC
complex can transfer electrons across a lipid bilayer following
incorporation into proteoliposomes, providing direct evidence
that together, MtrABC serve as an electron conduit between the
periplasm of S. oneidensis MR-1 cells and its extracellular envi-
ronments (Hartshorne et al., 2009). Consistent with these results,
heterologous co-expression of MtrABC enables E. coli to reduce
solid-phase Fe(III) oxides (Jensen et al., 2010). Furthermore, while
MtrAB can form a stable complex in the absence of MtrC, an
MtrBC complex cannot be isolated in the absence of MtrA. When
MtrB is present, MtrA only associates with the bacterial mem-
brane, presumably with MtrB that spans the outer-membrane.
Measurement by sedimentation equilibrium indicates a high bind-
ing affinity (K4 < 0.1 wM) between MtrAB and MtrC. Based on
these findings, it is proposed that MtrB is a trans outer-membrane
spanning B-barrel protein that serves as a sheath to embed MtrA
in the membrane where MtrAB form a trans outer-membrane
delivery module for transferring electrons to MtrC, which func-
tions as an extracellular reductase (Hartshorne et al., 2009). This is
the first molecular model of electron transfer across the bacterial
outer-membrane, which we hypothesize will apply more broadly
to a number of bacterial genera that either gain energy by oxidiz-
ing extracellular substrates, such as Fe(II), or reducing compounds
such as DMSO as part of anaerobic respiration (Hartshorne et al.,
2009).

MtrA contains a signal peptide that targets the synthesized
polypeptide to the periplasm via the bacterial Sec system. The
MtrA polypeptides can be divided into two pentaheme domains,
each of which shares sequence similarity with NrfB of E. coli
(Beliaev and Saffarini, 1998; Clarke et al., 2007, 2008). When it
is expressed in E. coli, the truncated MtrA with only one of its
pentaheme domains is folded properly and possesses five hemes,
providing experimental evidence that MtrA contains two repet-
itive functional domains (Clarke et al., 2008). The molecular
structure of NrfB of E. coli has been determined and contains five
closely packed hemes (<6 A between neighboring hemes) with a
maximal edge to edge distance of 40 A. This type of heme arrange-
ment permits rapid electron transfer among the heme groups of
NrfB that form a molecular wire (Figure 1; Clarke et al., 2007,
2008). The heme groups NrfH of D. vulgaris are also closely packed
in a nearly linear array with a maximal edge to edge distance of
13 A (Rodrigues et al., 2006). Based on the structures of NrfB of
E. coli and NrfH of D. vulgaris, one could speculate that the heme
groups of MtrA may also form a molecular wire that could be 80 A
long, while those in CymA may form a 13-A-long molecular wire.
Consistent with this idea, measurements with small angle X-ray
scattering show that MtrA adapts to a flat elongated shape with
overall dimensions of 104 A x 20 A x 50 A (Firer-Sherwood et al.,
2011a). Because MtrB is thought to be a porin-like protein with an
estimated pore size thatis >30 A x 40 A, MtrA can, in principle, be
embedded at least partially in MtrB (Firer-Sherwood et al., 2011a).

Given that the thickness of the Gram-negative bacterial outer-
membrane is ~70 A (or 7 nm; Matias et al., 2003), the estimated
length of MtrA is sufficient for transferring electrons heme-to-
heme across the entire outer-membrane. However, the periplasmic
width of S. oneidensis MR-1 is 235437 A (Dohnalkova et al.,
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FIGURE 1 | Molecular structure of NrfB of E. coli. (A) Crystal structure of
NrfB (PDB-ID: 20ZY) showing the peptide chain (green) and hemes (Blue).
(B) Arrangement of NrfB hemes shown in the same orientation as panel
(A). The hemes are numbered according to the position of their
corresponding CXXCH binding motif in the NrfB amino acid sequence.

2011), too great a distance for a pair of MtrA and CymaA to bridge.
Additional periplasmic redox proteins thus appear to be necessary
for conducting electrons between CymA in the inner-membrane
and MtrA in the outer-membrane. The periplasmic redox pro-
tein involved in this aspect of electron transfer chain, however, has
not been identified. As discussed in the previous section, STC and
FccA, two of the most abundant redox proteins in the periplasm
of S. oneidensis MR-1, do not appear to mediate electron transfer
between CymA and MtrA. Given that NrfH of D. vulgaris (i.e., a
CymA homolog) and NrfB of E. coli (i.e., an MtrA homolog) all
physically interact with NrfA, and that heterologously expressed
MtrA of S. oneidensis MR-1 exchanges electrons with the NrfA in
E. coli (Pitts et al., 2003), it seems possible that NrfA may con-
duct the electrons between CymA and MtrA during Fe(III) oxide
reduction (Shi et al., 2007). Alternatively, CymA may be localized
in the periplasmic regions that are sufficiently close enough for
direct electron transfer between CymA and MtrA as demonstrated
in vitro (Matias et al., 2003; Schuetz et al., 2009; Firer-Sherwood
etal, 2011b).

MtrC AND OmcA ARE THE TERMINAL REDUCTASES OF Fe(lll)
OXIDES

MtrC and OmcA are two outer-membrane c-Cyts located on the
bacterial surface where they are translocated across the outer-
membrane by the bacterial type II secretion system (DiChristina
et al., 2002; Myers and Myers, 2003; Donald et al., 2008; Shi et al.,
2008; Lower et al., 2009; Reardon et al., 2010). Following expres-
sion in S. oneidensis MR-1, OmcA is co-isolated with MtrC when
they are solubilized with n-octyl-B-p-glucopyranoside. In vitro
characterization shows that purified MtrC and OmcA form a sta-
ble complex (K 4 < 500 nM) with a stoichiometry of 1: 2 (Shi et al.,
2006). Subsequent in vivo cross-linking with different chemical

reagents consistently demonstrates that MtrC and OmcA physi-
cally interact with each other on the bacterial cells (Ross et al,,
2007; Tang et al., 2007; Zhang et al., 2008, 2009). The physical
interaction between MtrC and OmcA synergistically enhances the
metal reductase activity of MtrC and OmcA (Shi et al., 2006).

Purified MtrC and OmcA, each of which contains 10 hemes,
show broad redox potentials ranging from —400 to 100 mV vs.
SHE and —320 to —20 mV vs. SHE, respectively (Shi et al., 2006;
Hartshorne et al., 2007; Firer-Sherwood et al., 2008). Both UV-
visible spectropotentiometric titrations and electron paramag-
netic resonance (EPR) analyses show that MtrC has only low-spin
hemes (Hartshorne et al., 2007), while EPR measurement reveals
at least one high-spin heme in OmcA, although UV-visible spec-
tropotentiometric titrations fail to detect it (Bodemer et al., 2010).
Scanning tunneling microscopy and tunneling spectroscopy show
that MtrC and OmcA immobilized on gold surfaces have distinct
current—voltage (I-V) tunneling spectra at the single-molecule
level (Wigginton et al.,, 2007a,b). Theoretical interpretation of
their I-V spectra suggest that MtrC and OmcA possess differ-
ent electron transfer properties, related to apparent participation
of MtrC hemes with redox potentials between —81 and —365 mV
vs. SHE, whereas for OmcA no heme participation is detectable
by single-molecule tunneling spectroscopy. It is proposed that in
this measurement, conductance is through the peptide backbone
of OmcA (Wigginton et al., 2007a). However, in other measure-
ments, the heme groups of OmcA are involved in electron transfer
to metal ions (Shi et al., 2006; Xiong et al., 2006; Borloo et al., 2007;
Marshall et al., 2008; Wang et al., 2008; Ross et al., 2009; Reardon
et al., 2010). These different results can probably be attributed to
the different methods used for the measurements. Nevertheless,
all these measurements consistently show that MtrC and OmcA
possess different electron transfer properties (Marshall et al., 2006,
2008; Shi et al., 2006; Borloo et al., 2007; Wigginton et al., 2007b;
Wang et al., 2008; Reardon et al., 2010; Belchik et al., 2011). The
distinct electron transfer properties observed for MtrC and OmcA
suggest different physiological roles for these c-Cyts during metal
reduction (Shi et al., 2006; Wigginton et al., 2007b).

Interactions between purified MtrC or OmcA and Fe(III)
oxides have been extensively investigated using a variety of meth-
ods. Analyses with co-sedimentation and fluorescence correlation
spectroscopy show that OmcA binds hematite (a-Fe;O3) directly
with a partition coefficient of ~2 x 10° (A G = —28 kJ/mol),
which corresponds to 10'* OmcA molecules per cm? of hematite
(Xiong et al., 2006). Similar binding affinity to hematite is also
observed for OmcA using neutron reflectometry (Johsetal., 2010).
Atomic force microscopy measurements reveal that MtrC and
OmcA bind hematite with distinct force characteristics. The bind-
ing strength of OmcA to hematite is approximately twice that for
MtrC, while the binding frequency of MtrC to hematite is twice
that for OmcA (Lower et al., 2007). Measured force signatures with
purified MtrC and OmcA also correlate well with those measured
with intact cells (Lower et al., 2001), a finding that supports the
direct electron transfer to Fe(III) oxide by MtrC and OmcA (Lower
et al., 2007). Screening with phage-display technology identifies a
polypeptide with a conserved hematite-binding motif of Ser/Thr-
hydrophobic/aromatic-Ser/Thr-Pro-Ser/Thr. Molecular dynamics
simulation with Ser-Pro-Ser polypeptide and hematite suggests
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that Ser-Pro-Ser peptide binds hematite via the hydrogen bonds
formed between the two serine residues and hydroxylated hematite
surface, while the proline residue helps stabilize the binding by lim-
iting the peptide flexibility. The putative hematite-binding motif
of Thr-Pro-Ser/Thr is found close to heme 10 of both MtrC and
OmcA polypeptides (Lower et al., 2008).

Measurements with spectroscopy and protein film voltam-
metry consistently show that purified MtrC and OmcA transfer
electrons directly to hematite with the rate constants ranging from
0.025 to 63.5s~! (Xiong et al., 2006; Eggleston et al., 2008; Meitl
et al., 2009). Most important, the voltammograms of purified
MtrC and OmcA on hematite electrodes are very similar to those
of the S. oneidensis MR-1 cells expressing only the corresponding
outer-membrane c-Cyt, suggesting that MtrC and OmcA on the
bacterial surface exchange electrons directly with hematite (Meitl
et al., 2009). Furthermore, MtrC and OmcA are co-localized with
hematite and secondary mineral phases after ferrihydrite reduc-
tion by S. oneidensis MR-1 and E. coli cells with heterologously
expressed MtrABC reduce solid-phase Fe(III) oxide in the absence
of any mediators such as flavins (Lower et al., 2009; Jensen et al.,
2010; Reardon et al., 2010). Taken together, these results demon-
strate that MtrC and OmcA are the terminal reductases that bind
and reduce Fe(III) oxides directly.

Compared to measurements with intact cells and the total
membrane fraction, purified MtrC and OmcA reduce goethite
[a-FeO(OH)] at much slower rates. Addition of flavin, however,
increases the rates comparable to those measured with intact cells
and the total membrane fraction. Further investigations show that
OmcA reduces flavins much faster than flavins reduce goethite,
suggesting an electron shuttle role for flavins during MtrC- and
OmcA-mediated reduction of Fe(III) oxides (Ross et al., 2009).
Consistent with this suggestion, the Mtr pathway is required for
in vivo reduction of flavins by S. oneidensis MR-1 cells (Coursolle
et al., 2010).

Recent determination of the molecular structure of MtrF, an
MtrC homolog, at a resolution of 3.2 A has provided the unprece-
dented molecular structural evidence supporting the terminal
reductase role for the outer-membrane c-Cyts of S. oneidensis MR-
1 in Fe(III) oxide reduction (Clarke et al., 2011). Results show that
MtrF is folded into four distinct domains: domains I (aa 49—-186)
and III (aa 319-473) each contains seven anti-parallel B-strands
folded together to form a split-f barrel structure, while domains
II (aa 187-318) and IV (aa 474—641) each bind five tightly packed
hemes (Figure 2A). The four domains fold together so that the
pentaheme domains II and IV are packed to form a central core
with the two split-p barrel domains I and III flanking either side.
This organizes 10 hemes of MtrF into a unique “wire cross,” in
which a staggered 65-A octaheme chain (hemes 10, 9, 8, 6, 1, 3,
4, 5) transects the length of the protein through domains IV and
1T and is crossed at the middle by a 45-A tetraheme chain (hemes
2, 1, 6, 7) that connects the two split B-barrel domains I and III.
This “wire cross” is made up of a lower order organization of two
triads of parallel hemes (hemes 3, 4, 5 and hemes 8, 9, 10) that lie
perpendicular to a quartet of parallel hemes. Each heme is within
7 A of its nearest neighbor(s), permitting rapid electron trans-
fer among the hemes (Figure 2B). It is proposed that domain II
interacts with solid-phase Fe(III) oxides by transferring electrons

9 Yes.

10485

FIGURE 2 | Molecular structure of MtrF of S. oneidensis MR-1. (A)
Crystal structure of MtrF (PDB-ID: 3PMQ) showing the peptide chain
(green) and hemes (Blue). Domains |-V are labeled. (B) Arrangement of
MtrF hemes shown in the same orientation as panel (A). The hemes are
numbered according to the position of their corresponding CXXCH binding
motif in the MtrF amino acid sequence.

directly to the oxides via the solvent-exposed heme 5. Domain I
and III are thought to be involved in binding and reduction of
flavins and soluble metals such as chelated Fe(III), while domain
IV is predicted to physically interact with the MtrDE (MtrAB
homologs) complex and exchange electrons with MtrD via heme
10 (Clarke et al., 2011). It should be noted that the functional
roles of domain II and IV of MtrF are interchangeable and that
the overall shape of MtrF is very similar to that of OmcA (Johs
et al,, 20105 Clarke et al., 2011); the latter suggests that MtrF and
OmcA may fold similarly. Like MtrC and OmcA, MtrF also reduces
Fe(III) oxides and flavins (Coursolle and Gralnick, 2010; Clarke
et al,, 2011). Thus, the structural characteristics of MtrF support
the notion that bacterial surface-localized c-Cyts MtrC, MtrF, and
OmcA transfer electrons directly to the surface of Fe(III) oxides via
their solvent-exposed hemes, such as heme 5 or 10 of MtrE They
also support the notion that, in order to enhance their reaction
rates, these c-Cyts also use flavins secreted by S. oneidensis MR-1
cells as diffusible co-factors (i.e., shuttles) for reduction of Fe(III)
oxides. Because of the direct binding of the ¢c-Cyts to the Fe(III)
oxides, the distance that flavins diffuse between the putative flavin-
reducing sites in the c-Cyts and the surface of Fe(III) oxide can be
very short [~20 A between MtrF and Fe(III) oxide], which makes
the shuttle-mediated electron transfer efficient. Given that they
physically interact with each other in vivo, MtrC and OmcA may
exchange electrons through diffusible flavins. MtrC, MtrF, and
OmcA also reduce soluble Fe(III) complexed with different ligands
(Shi et al., 2006; Borloo et al., 2007; Wang et al., 2008; Ross et al.,
2009; Bucking et al., 2010; Coursolle and Gralnick, 2010; Clarke
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et al., 2011). Reduction of chelated Fe(Ill) by MtrC, MtrF, and
OmcA, in principle, also occurs via their solvent-exposed hemes
as well as the hemes adjacent to the flavin-binding domains (i.e.,
hemes 2 and 7 of MtrF).

Despite the detailed structural and electrochemical spectro-
scopic information becoming available for outer-membrane c-
Cyts, the electron transfer step from hemes to shuttle molecules,
such as flavins, or directly to terminal electron acceptors, such as
Fe(III) oxide itself, remains difficult to isolate. Although solvent
exposure of hemes is suggestive of a possible role as an interfacial
electron transfer mediator (i.e., input or output redox site), many
conditions must be met at the molecular scale for this process to be
usefully efficient to the organism. Indeed, solvent exposure to an
aqueous environment often intrinsically reduces heme electron
transfer efficiency compared to that fully embedded within the
protein; a higher reorganization energy and thus higher activation
energy is associated with repolarizing a high dielectric medium,
such as water, to move an electron from water-exposed donor heme
to a water-solvated acceptor species (Marcus and Sutin, 1985).
Exclusion of water between ¢-Cyts and an Fe(III) oxide surface
is demonstrated with computational molecular simulation to be
necessary to reduce both the reorganization energy and the inter-
facial electron transfer distance between heme groups of STC and
Fe(III) sites in the oxide surface (Kerisit et al., 2007). It shows
that STC docks with a solvent-exposed heme in direct contact to
a hematite (001) surface in 89% of the approach simulations, but
the frequency of specific heme contact does not correlate with sol-
vent exposure but rather the formation of covalent bonds to the
surface via heme proprionate groups. Furthermore, it is shown
that heme-surface encounter orientations involving the porphyrin
plane at ~90° with respect to the surface plane, along with heme
Fe to surface Fe distances of 9-10 A, enable interfacial electron
transfer rates consistent with overall macroscopic rates measured
by protein film voltammetry.

In addition to bacterial cell surfaces, MtrC and OmcA are
found to be associated with extracellular polymeric substances
(EPS) where they are directly associated with hematite as well
as U(IV)O, and Fe(II)-containing secondary mineral phases pre-
sumably because these are the sites for reducing U(VI) and fer-
rihydrite, respectively (Marshall et al., 2006; Lower et al., 2009;
Reardon et al., 2010). Likewise, MtrC and OmcA are released to
the growth medium and are also involved in the formation of
chromium [Cr(III)] precipitates that are found in the extracellu-
lar matrix following reduction of Cr(VI) by S. oneidensis MR-1
(Shi et al., 2008; Belchik et al., 2011). Global proteomic and West-
ern blot analyses show that the homologs of MtrC and OmcA
are the key components of the bound and loosely associated EPS
isolated from the biofilm of the metal-reducing bacterium She-
wanella sp HRCR-1 (Cao et al., 2011b). Interestingly, while an
MtrB homolog was present in the isolated EPS, no MtrA homolog
was detected (Cao et al., 2011b). MtrC and OmcA homologs in
these isolated EPS are also implicated in U(VI) reduction (Cao
et al,, 2011a). These results suggest that after they are released
from the bacterial cell surface, MtrB, MtrC, and OmcA may not
be in association with MtrA. Although their roles in Fe(III) oxide
reduction and their relationship with Shewanella nanowires and
the outer-membrane vesicles are currently uncharacterized, it is

proposed that EPS-associated MtrC, OmcA, and probably MtrB
may be part of non-local electron transfer strategy used by S. onei-
densis MR-1 for reduction of the Fe(III) oxide minerals distant
from the bacterial cell surface (Rosso et al., 2003; Gorby et al,,
2008; Bose et al., 2009; Lower et al., 2009).

CONCLUDING REMARKS

Recent in vivo and especially in vitro characterizations of Mtr and
related proteins of S. oneidensis MR-1 have significantly advanced
our understanding of the molecular mechanisms by which bac-
teria reduce Fe(IIl) oxides. These proteins, most of which are
c-Cyts with multiple hemes, are strategically positioned along the
width of the bacterial envelope. Through protein—protein interac-
tions, they form a pathway for electron conductance across entire
bacterial cell envelope to the surface of Fe(IIl) oxides. The elec-
tron conductance is mediated mainly by the heme groups of the
c-Cyts. The quinol in the inner-membrane is believed to be oxi-
dized by the heme 1 of CymA. Released electrons most likely
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FIGURE 3 | The proposed Mtr extracellular electron transfer pathway of
S. oneidensis MR-1. The protein components identified to date for the Mtr
pathway include CymA, MtrA, MtrB, MtrC, and OmcA. CymA is a tetraheme
c-Cyt that belongs to the NapC/NrfH family of quinol dehydrogenases.
Through its N-terminal region, CymA is anchored in the inne-membrane
(IM) where it oxidizes quinol in the IM and transfers the released electrons
to MtrA in the outermembrane (OM) either directly or indirectly via other
periplasmic proteins. MtrA is a decaheme c-Cyt that is thought to be
embedded in MtrB, a trans OM, and porin-like protein. Together, MtrAB
facilitate the electron transfer across the OM to the MtrC and OmcA on the
bacterial surface. Both MtrC and OmcA are the OM decaheme c¢-Cyts that
are translocated across the OM by the bacterial type Il secretion system.
MtrC and OmcA are the terminal reductases that bind the surface of Fe(lll)
oxides and transfer electrons directly to the oxides via their
solvent-exposed hemes. To increase their reaction rates, MtrC and OmcA
use flavins secreted by the S. oneidensis MR-1 cells as diffusible co-factors
or shuttles for Fe(lll) oxide reductions. MtrC and OmcA can also serve as
the terminal reductases for the Fe(lll) solubilized from the Fe(lll) oxides by
the Fe(lll)-complexing ligands secreted from the S. oneidensis MR-1 cells.
The sizes of the components depicted are not drawn to the scale.
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move along the heme groups of CymA. Through the heme 4,
CymA transfers the electrons to MtrA either directly or indirectly
via other periplasmic proteins. Inserted into the trans outer-
membrane porin formed by MtrB, MtrA transfers electron across
the outer-membrane to MtrC and OmcA on the bacterial surface.
MtrC and OmcA bind the surface of Fe(IIl) oxides and trans-
fer electrons directly to Fe(III) via their solvent-exposed hemes.
Through direct binding and reduction, MtrC and OmcA also use
flavins as diffusible shuttles for Fe(III) oxide reduction. Because
of their extracellular location, broad redox potentials, and ability
to reduce Fe(III) complexed with different ligands in vitro, MtrC
and OmcA can also reduce complexed forms of Fe(IIl) in vivo
(Figure 3).

Despite the advances in understanding the molecular mecha-
nisms of Fe(III) oxide reduction by S. oneidensis MR-1, key knowl-
edge gaps still remain regarding the critical steps of the Mtr elec-
tron transfer pathway. First, it is still unclear which heme groups
of the outer-membrane ¢-Cyts are directly involved in reduction
of Fe(IllI) oxides and flavins. The molecular structure of MtrF
predicts that heme 5 and 10 are highly solvent-exposed and thus
candidates for interfacial electron transfer from MtrF to Fe(III)
oxides, while hemes 2 and 7 are likely involved in flavin reduction.
These predictions can be readily tested using site-directed muta-
genesis. How the identified heme groups of MtrF interacts with
and mediates the interfacial electron transfer to Fe(III) oxides and
how MtrF binds and reduces flavins also need to be investigated,
preferably using an integrated experiment and molecular model-
ing approach. Second, how MtrABC interact with each other to
facilitate electrons transfer across the bacterial outer-membrane
has yet to be determined. Structural determination of the MtrABC
complex by X-ray crystallography could provide key insights of

the electron conductance mechanism through the bacterial outer-
membrane. Given that MtrABC is a trans outer-membrane protein
complex, determination of its molecular structure will be chal-
lenging. Third, how electrons are transferred from CymA to MtrA
remains unclear. Identification of this electron transfer mecha-
nism will help determine how electrons are delivered across the
bacterial periplasm. Another major knowledge gap is that the
molecular details regarding how CymA interacts with and oxi-
dizes the quinol in the inner-membrane are currently unclear.
Determination of CymA structure will enable insights into how
it binds and oxidizes quinol at the molecular-level. Finally, what
are the functional roles of the MtrC and OmcA associated with
EPS? Their relationship to bacterial outer-membrane vesicles and
conductive nanowire also needs to be thoroughly characterized.
Characterization of their roles will help understand the non-local
electron transfer mechanisms by which S. oneidensis MR-1 cells
reduce the Fe(III) oxide minerals distant from the cell surface.
Although these key knowledge gaps persist, Mtr pathway of S. onei-
densis MR-1 is the best characterized microbial pathway used for
extracellular electron transfer. Characterization of the Mtr path-
way has enabled unprecedented molecular-level understanding of
microbial reduction of Fe(III) oxides.
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