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Biogenic amines are nitrogenous organic compounds produced in wine from amino acid
precursors mainly by microbial decarboxylation. The concentration of biogenic amines that
can potentially be produced is dependent on the amount of amino acid precursors in
the medium, the presence of decarboxylase positive microorganisms and conditions that
enable microbial or biochemical activity such as the addition of nutrients to support the
inoculated starter cultures for alcoholic and malolactic fermentation (MLF). MLF can be
conducted using co-inoculation or an inoculation after the completion of alcoholic fermen-
tation that may also affect the level of biogenic amines in wine. This study focused on the
impact of the addition of complex commercial yeast and bacterial nutrients and the use of
different MLF inoculation scenarios on the production of biogenic amines in wine. Results
showed that the addition of complex nutrients to real grape must could potentially increase
histamine concentrations in wine. The same experiment in synthetic grape must showed a
similar trend for putrescine and cadaverine. The effect of different MLLF inoculation scenar
ios was examined in two cultivars, Pinotage and Shiraz. Conflicting results was obtained.
In the Shiraz, co-inoculation resulted in lower biogenic amine concentrations after MLF
compared to before MLF, while the concentration was higher in the Pinotage. However,
the production of biogenic amines was affected more by the presence of decarboxylase
positive lactic acid bacteria than by the addition of complex nutrients or the inoculation

scenario.
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INTRODUCTION

Biogenic amines are basic nitrogenous compounds produced in
wine mainly through the decarboxylation of amino acids by
yeasts or lactic acid bacteria (LAB). The concentration of biogenic
amines that can potentially be produced in wine largely depends
on the abundance of amino acid precursors in the medium, the
presence of decarboxylase positive microorganisms and wine para-
meters such as pH, alcohol, and sulfur dioxide that will impact the
growth of microbes (Smitetal.,2008; Moreno-Arribasetal.,2010).

Vintage, grape variety, geographical region, and vinification
methods such as grape skin maceration are some of the vari-
ables that can lead to an increase of precursor amino acids and
subsequently the biogenic amine content in wine. Aging of wine
on yeast lees involves autolyzing yeast cells that release vitamins
and nitrogenous compounds into the wine. The latter may include
amino acids that are the precursors of biogenic amines (Smit and
Du Toit, 2011).

The yeasts and LAB responsible for wine fermentations
have certain basic nitrogen nutrient requirements. Saccharomyces
species can utilize the ammonium ion (NH4+) and free alpha
amino acids as nitrogen sources. Moreover, yeasts can synthesize
all required nitrogen compounds, including amino acids, from
ammonium. However, if amino acids are present yeasts will use it
very efficiently after ammonium has been depleted. Yeast strains
display different preferences for the uptake of different amino

acids, and can also secrete certain amino acids into the wine
(Bely et al., 1990). In general, yeasts require at least a minimum
of 140-150 mg/N/L to prevent stuck fermentations, but 200 mg/L
is recommended to avoid the formation of off-flavors (Ribérau-
Gayon et al., 2006). Because ammonium alone does not meet all
the nutritional requirements of yeast, many wine yeast manufac-
turers recommend the use of complex yeast nutrients that include
a nitrogen supplement (Gonzalez-Marco et al., 2006; Herndndez-
Orte et al., 2006). Bach et al. (2011) have shown that the addition
of yeast nitrogen compounds leads to an increase in the total level
of biogenic amines in wine.

Lactic acid bacteria require and are able to use only complex
organic nitrogen sources, such as amino acids. They can also uti-
lize peptides or proteins as nitrogen sources by the breakdown to
amino acids by proteolytic enzyme activity (Leitao et al., 2000).
It has been shown that the highest risks for the production of
histamine and tyramine is during malolactic fermentation (MLF;
Vidal-Carou et al., 1990a,b; Soufleros et al., 1998; van der Merwe,
2007). Generally complex malolactic nutrients include inactivated
yeast cells rich in alpha amino acids as well as casein, vitamins,
minerals, polysaccharides, and cellulose. As with commercial yeast
preparations, commercial malolactic nutrients are recommended
for use with fermentation starter cultures (selected Oenococcus oeni
strains) unable to produce biogenic amines according to the man-
ufacturers (Lerm et al., 2010). However, in practice winemakers
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might add nutrients to sluggish spontaneous MLF or allow spon-
taneous MLF to proceed after complex yeast nutrients had been
added during alcoholic fermentation (AF). The question arises
whether residual precursor amino acids from complex nutrients
could be present in the wine for the natural LAB flora, which could
include decarboxylase positive strains, to use.

In this study, the influence of complex commercial yeast and
bacterial nutrients on biogenic amine production by yeast and
natural LAB (partially supplemented by decarboxylase positive
Lactobacillus species) in the wine or added to a synthetic medium
are evaluated. The second aim was to assess the impact of different
MLF inoculation scenarios on the production of biogenic amines.

MATERIALS AND METHODS

GRAPE MUST FERMENTATIONS WITH COMPLEX NUTRIENTS

Cabernet Sauvignon grapes from the Paarl region and Shiraz
grapes from the Stellenbosch region, South Africa, were used in
this study. After grapes were destemmed and crushed, the skins and
free-run juice were separated and homogenized. Equal amounts
of free-run juice (per volume) and grape skins (per weight) were
allocated to each treatment in 10 L plastic buckets. Sulfur diox-
ide (SO;) was added to the must of all treatments at 20 mg/L. AF
was performed by Saccharomyces cerevisiae strain NT202 (Anchor
Yeast, South Africa) in all treatments; rehydrated and inoculated at
30 g/hL according to the instructions of the manufacturer. Sugar
density was measured daily in all treatments with a Brix hydrome-
ter to monitor the progression of AF, which was conducted at room
temperature. The temperature in the cellar was not controlled,
but grape must temperature was recorded daily and fluctuated
between 19 and 22°C. Grape skins were punched down daily
throughout AF and pressed with a hydraulic basket press to 1 bar at
the completion of AF. Wines were transferred to 4.5 L glass bottles
to complete MLF at 20°C. MLF was performed spontaneously by
strains native to the grapes used in this study, supplemented with
a culture containing confirmed decarboxylase positive strains iso-
lated from spontaneous MLF in South African wine (Downing,
2003; Smit et al., submitted). This decarboxylase positive culture,
comprised of equal cell concentrations of Lactobacillus hilgardii
B74, L. hilgardii M59, and Lactobacillus brevis M58 (Smit et al.,
submitted), was inoculated into all treatments at approximately
10 CFU/mL after the completion of AF and prior to the start of
spontaneous MLE.

Representative samples for the analysis of biogenic amines and
microbial enumeration were drawn in sterile sample vials before
AF (grape must), after AF, and after MLE. The presence and growth
of LAB in the wine was monitored by plate counts on selective agar
media (Smitand Du Toit, 2011). MLF was monitored using Fourier
transform mid infrared spectroscopy (FT-MIR; WineScan FT'120,
FOSS Analytical, Denmark) to determine malic acid and lactic
acid concentrations in the wine. All treatments were repeated in
duplicate for each of the two cultivars. Treatments consisted of the
addition of commercial preparations of complex yeast or bacter-
ial nutrients to the fermenting must or wine. Yeast nutrients were
added after the exponential growth phase of yeast; 1-3 days after
inoculation with yeast for AF, as recommended by the manufactur-
ers. Bacterial (malolactic) nutrients were added after AF, before the
start of MLF. All complex nutrients were added to the fermenting

must or wine at the maximum dosage recommended by the manu-
facturers. Treatment 1 contained no added nutrients, treatments 2,
3, and 4 were supplemented with complex yeast nutrients (nutri-
ents A, B, and C), and treatments 5 and 6 were supplemented with
complex bacterial nutrients (nutrients D and E).

The following descriptions of the compositions of the nutri-
ents used in this study were provided by the manufacturers.
Nutrient A contains inactivated yeast, dlammonium phosphate
(DAP), and ammonium sulfate. Nutrient B contains inactivated
yeast, DAP, and one specific vitamin. Nutrient C contains inacti-
vated yeast, DAP, vitamins, minerals, unsaturated fatty acids, and
sterols. Nutrient D contains inactivated yeast and cellulose. Nutri-
ent E contains inactivated yeast, cellulose, and casein. It is not
clear in all cases from the manufacturers’ descriptions whether
vitamins, minerals (trace elements), polysaccharides, sterols, and
fatty acids were added or derived from the inactivated yeast. Some
manufacturers claim to use specially selected inactivated yeast.

SYNTHETIC MEDIUM FERMENTATIONS WITH COMPLEX NUTRIENTS
Synthetic grape must (MS300) described by Bely et al. (1990) was
used to perform a similar experiment to confirm results under con-
trolled conditions. The following modifications were made to the
synthetic grape must: 120 mg/L ammonium chloride was included
as the only nitrogen source (no amino acids were added as per
the original protocol), 0.005% of pyridoxal 5'-phosphate (Sigma-
Aldrich, Germany) was added to induce decarboxylase activity.
All chemicals used for the preparation of the synthetic grape
must were purchased from Saarchem (Merck, South Africa) except
for malic acid, glucose, and ammonium chloride (Sigma-Aldrich,
Germany).

The treatments in the synthetic grape must consisted of four
control treatments without the addition of any complex nutrients,
(1) in the absence of yeast and LAB, (2) in the presence of yeast
and LAB, (3) in the absence of yeast but presence of LAB, and (4)
in the absence of LAB but presence of yeast. Treatments 5-10 con-
sisted of different combinations of three complex yeast and two
bacterial nutrients; (5) nutrients A and D, (6) nutrients A and E,
(7) nutrients B and D, (8) nutrients B and E, (9) nutrients C and
D, and (10) nutrients C and E. Treatments 11 (nutrient D) and 12
(nutrient E) contained only bacterial nutrients.

Saccharomyces cerevisige strain NT202 was rehydrated and
inoculated at 30 g/hL for AF. Complex yeast nutrients were added
to the fermenting synthetic must 48 h after the start of AE Fer-
mentations were performed under static conditions in 100 mL
Erlenmeyer flasks fitted with airlocks, at 30°C. After 14 days AF
was considered complete when CO, gas formation seized, and
yeast cells were removed from the treatments by centrifugation at
8000 rpm for 5min to prevent further fermentation or autolysis
and release of nutrients from the yeast cells. Complex bacter-
ial nutrients were added to the synthetic wine and 1% of pre-
cultured decarboxylase positive LAB culture was inoculated into
the medium. LAB growth (with limited MLF) proceeded for a
period of 14 days at 30°C.

Prior to the start of this experiment, the five nutrients tested,
dissolved in synthetic must, were analyzed for biogenic amines.
Samples were drawn from the fermentation medium after AF and
at the end of growth of LAB for biogenic amine analysis.
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CO-INOCULATION VERSUS SEQUENTIAL MALOLACTIC FERMENTATION
Malolactic fermentation was carried out in the cultivars Pinotage
and Shiraz to examine the influence of different MLF inoculation
times on the biogenic amine content of wine. The co-inoculation
treatments were inoculated for MLF 24 h after the addition of
the yeast for AF, whereas the sequential treatments were inocu-
lated for MLF by the conventional practice, after the completion
of AF. All treatments were performed in triplicate, using 9.5 kg of
grapes for the co-inoculation fermentations and 4.5 L of wine for
the sequential fermentations. After destemming and crushing of
the grapes, sulfur dioxide was added at a concentration of 20 and
30 mg/L to the co-inoculation and sequential treatments, respec-
tively. The S. cerevisiae yeast strain WE372 (30 g/hL; Anchor Yeast,
South Africa) was used for AF. The juice was supplemented with
diammonium phosphate (250 mg/L) on day one of AF. No addi-
tional nutrients were added to any treatment. AF was performed
at 25°C. As soon as AF was completed (residual sugar <5g/L)
the wines were moved to a 20°C incubation room to complete
MLE After the completion of MLF (which ranged between 18
and 34 days) sulfur dioxide was added to a final concentration of
between 60 and 80 mg/L, after which the wines were bottled. The
MLEF treatments for the Pinotage consisted of a spontaneous con-
trol, which was not inoculated for MLF, two treatments inoculated
with L. hilgardii strains (L. hilgardii 1 and L. hilgardii 2) and one
treatment inoculated with a Lactobacillus plantarum strain. These
Lactobacillus cultures were isolated from South African wines and
were investigated for their ability to perform MLF (unpublished
data). For the Shiraz, a treatment inoculated with a commercial
O. oeni starter culture was included for comparison to the Lacto-
bacillus cultures. Samples were taken from all fermentations before
inoculation for MLF and again at the completion of MLF for analy-
ses of the biogenic amines histamine, tyramine, putrescine, and
cadaverine.

Statistically significant differences between the amine concen-
tration before and after MLF for a specific inoculation time were
evaluated by one-way analysis of variance with Fisher’s LSD test
at a 95% significance level. The analysis was performed using
Statistica (Stat Soft, Inc., USA, version 10).

BIOGENIC AMINE ANALYSES

The biogenic amines histamine, tyramine, putrescine, and cadav-
erine were quantified by two different methods in this study.
For the small scale wine fermentations with complex nutrients,
biogenic amines were analyzed by high performance liquid chro-
matography (HPLC) using the method described by Alberto et al.
(2002) with modifications (Smit and Du Toit, 2011). Amines in the
synthetic media fermentations with complex nutrients, and in co-
inoculation versus sequential MLFs were determined using liquid
chromatography mass spectrometry (LC-MS/MS) as described by
Smit et al. (submitted).

RESULTS

GRAPE MUST FERMENTATIONS WITH COMPLEX NUTRIENTS

On average, AF was complete in 9 days in Cabernet Sauvignon
and 8 days in Shiraz. Figures 1 and 2 show the results of malic
acid degradation and growth of LAB during the course of MLF in
the two cultivars. In Cabernet Sauvignon (Figure 1), MLF initially

proceeded faster in some treatments that received added complex
nutrients. When comparing the three treatments that received
additional complex yeast nutrients (treatments 2, 4, and 4); not
only was the rate of AF enhanced (data not shown), but treatments
2 and 3 completed spontaneous MLF at a faster rate (44-51 days)
than the control, treatment 1 (66 days). MLF in treatments 5 and
6 also proceeded faster than in the control treatment (59 days),
suggesting that malolactic nutrients can act to increase the ini-
tial rate of spontaneous MLE. Treatment 4 (yeast nutrient C) did
not enhance MLF rate in Cabernet Sauvignon. For Shiraz treat-
ments the rate of MLF was similar in all treatments (Figure 2),
and took approximately 40 days to be completed. There were no
significant differences between LAB numbers measured in relation
to the nutrient treatments.

Four of the biogenic amines commonly found in wine were
analyzed (histamine, tyramine, putrescine, and cadaverine). No
tyramine was detected in any of the treatments for both culti-
vars. Although biogenic amines were detected in the grape must
(putrescine),and wines after AF and MLF (putrescine and cadaver-
ine), levels were similar for all treatments and no effect of nutrient
addition could be observed (results not shown). The only biogenic
amine that showed a difference between treatments was histamine.
Figure 3 shows the concentrations of histamine detected in sam-
ples of the grape must, at the end of AF and at the end MLF in
Figure 3A Cabernet Sauvignon and Figure 3B Shiraz treatments.

SYNTHETIC MEDIUM FERMENTATIONS WITH COMPLEX NUTRIENTS
Figure 4 shows the concentrations of each biogenic amine detected
in samples of the synthetic must, at the end of AF and at the end
of the 14-day growth period of LAB in the synthetic wine.

Biogenic amines were absent or detected only at very low levels
in the synthetic grape must with or without dissolved complex
nutrients.

When no LAB were present (treatments 1 and 4), no significant
production of any biogenic amines was measured in this study.

It seems as if though the Lactobacillus species produced much
higher levels of histamine and tyramine when their growth was
not preceded by the growth and fermentation of yeast (treatment
3). Also, the absence of any complex nutrients seemed to stimulate
histamine and tyramine formation by Lactobacillus species (treat-
ment 3). Similar concentrations (for both histamine and tyramine)
were reached for all treatments in the presence of both yeast and
bacteria (treatments 5-12) regardless of whether complex nutri-
ents were absent from the medium (treatment 2) or present in any
combination or alone.

More putrescine was produced in treatments that were supple-
mented with complex nutrients than in control treatments 2 and 3
containing Lactobacillus species but no added nutrients. No signif-
icant amounts of putrescine were produced in the absence of LAB
(treatments 1 and 4). Therefore, all of the tested nutrient combi-
nations had an influence on putrescine production, with bacterial
nutrients added alone (treatments 11 and 12) leading to a slightly
higher production when compared to any combination of yeast
and bacterial nutrients. It appears that the yeast NT202 produced
low levels of cadaverine during AF (treatments 2 and 4), more so in
the presence of complex yeast nutrients (treatments 5-10). After
the introduction of Lactobacillus species an increase of cadaverine
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FIGURE 1 | Malolactic fermentation (MLF) (malic acid degradation) and growth of lactic acid bacteria in Cabernet Sauvignon wines. Results are the
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for all treatments where Lactobacillus species were present could
be observed. As with histamine and tyramine, it appears that the
Lactobacillus species produced much higher levels of cadaverine
when their growth was not preceded by the growth of yeast. When
comparing treatment 2 (no complex nutrients in the presence of
yeast) and treatments 11 and 12, it is seen that the nutrients could
have influenced cadaverine production by LAB when yeast was
also present.

INFLUENCE OF MLF INOCULATION TIME ON BIOGENIC AMINES

In the Pinotage the total concentration of biogenic amines was
higher in the co-inoculation treatments than in the sequential
treatments (Figure 5). Precisely the opposite was seen in the Shi-
raz, where the total biogenic amine concentration was higher in
the sequential treatments (Figure 6).

All four biogenic amines that were measured could be detected
in one or more of the wines. For both inoculation scenarios in
the Pinotage and Shiraz, histamine did not increase significantly
from before to after MLF in any of the treatments (Figures 5 and
6). No significant production of tyramine occurred in any of the

treatments, except for the treatments inoculated with L. hilgardii 1
(Figures 5 and 6). This is not a surprising result. All the strains used
in these fermentations were analyzed for the presence of histidine,
tyrosine, and ornithine decarboxylases by a multiplex PCR assay
(Marcobal et al., 2005) and only this L. hilgardii strain gave a pos-
itive result for the tyrosine decarboxylase gene (data not shown).
The concentration of tyramine produced by this strain during the
sequential inoculation was also higher than what was produced
when co-inoculated. In all the other treatments the concentration
of tyramine was between 0 and 0.007 mg/L.

Putrescine was the most abundant amine in the analyzed wines.
In the Pinotage co-inoculation treatments putrescine increased
significantly from before MLF to after AF and MLF (Figure 5).
However, in the Shiraz co-inoculation treatments putrescine
decreased during the course of these processes (Figure 6). The
exact same incidence was seen for cadaverine (Figures 5 and 6). In
the sequential treatments of both cultivars, putrescine concentra-
tions were the same or less than before MLF. For cadaverine, there
was also no significant difference in the concentrations before and
after MLF in the sequential treatments, except for the uninoculated
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FIGURE 2 | Malolactic fermentation (MLF) (malic acid degradation) and growth of lactic acid bacteria in Shiraz wines. Results are the average of
duplicate treatments. AF = alcoholic fermentation.
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are the average of duplicate treatments.
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FIGURE 4 | Biogenic amines produced in synthetic medium
supplemented with complex yeast or bacterial nutrients. Results are
the average of duplicate treatments. The treatments consisted of (1) no
nutrient addition, in the absence of yeast and LAB, (2) no nutrient addition,
in the presence of yeast and LAB, (3) no nutrient addition, in the absence of
yeast but presence of LAB, (4) no nutrient addition, in the absence of LAB
but presence of yeast, (5) nutrients A and D with yeast and LAB, (6)
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LAB, (8) nutrients B and E with yeast and LAB, (9) nutrients C and D with
yeast and LAB, and (10) nutrients C and E with yeast and LAB, (11) nutrient
D with yeast and LAB (12) nutrient E with yeast and LAB.

control in the Shiraz that only differed significantly from the
concentration before MLE

DISCUSSION

GRAPE MUST FERMENTATIONS WITH COMPLEX NUTRIENTS

Some biogenic amines, particularly polyamines such as putrescine,
are often present in grape berries since they are produced by the
metabolism of plants (Haldsz et al., 1994; Bover-Cid et al., 2006).
In this study, putrescine was present in the grapes used to assess
complex nutrients at relatively high concentrations, at 24.2 mg/L
in Shiraz grape must and 35.7 mg/L in Cabernet Sauvignon grape
must. Vine nutrition, such as potassium deficiencies in the soil,
has been linked to elevated concentrations of putrescine (Adams,
1991). In addition, vine nutrition and grape variety are signifi-
cant contributors to the concentration and composition of grape
amino acids, which could determine the final biogenic amine con-
centration that is found or formed by microorganisms in wine
(Soufleros et al., 1998; Herbert et al., 2005).

Histamine was the only biogenic amine showing treatment
differences potentially attributable to the presence of complex
nutrients. In some treatments we observed large variation in hista-
mine levels between the treatment replicates. Still, it seems possible
that there are differences between treatments and that nutrients
C, D, and E (Cabernet Sauvignon and Shiraz) and nutrient A
(Shiraz only) influenced the final histamine concentration in the
wine (Figure 3). Due to the small volumes used in small scale
winemaking, it is possible that the inherent heterogeneity in a
product such as complex nutrients could have caused the dis-
crepancy in treatment duplicates. Since the increase in histamine
occurred during MLE, the formation of this biogenic amine can
most likely be attributed to the decarboxylation of histidine by
LAB. Of the four biogenic amines analyzed in this study histamine
is the most important to human physiology, since it is one of the
most biologically active amines (Haldsz et al., 1994). Histamine can
cause hypotension, flushing, and headache (Silla Santos, 1996) as
well as abdominal cramps, diarrhea, and vomiting (Taylor, 1986).
The levels of histamine produced in some treatment replicates
in both cultivars during grape must fermentations supplemented
with complex nutrients are above the upper limits suggested for
histamine in wine in Germany (2mg/L) and Holland (3 mg/L;
Lehtonen, 1996).

During this study, a few trends regarding biogenic amine pro-
duction in relation to complex yeast and bacterial nutrients could
be observed. The production of relatively high levels of hista-
mine in wine during or after MLF (by decarboxylase positive
LAB) as a result of complex nutrient addition could significantly
impact the wholesomeness of the wine and present negative trade
implications.

These results obtained in wine are in accordance with a simi-
lar study reported in the literature which examined the impact of
yeast autolyzate, often a component of complex yeast nutrients, on
biogenic amine production during winemaking. The enrichment
of Chardonnay must by yeast autolyzate did not lead to an increase
of biogenic amines during AF. However, the concentration of bio-
genic amines, particularly tyramine and cadaverine, were higher
after MLF (Gonzélez-Marco et al., 2006).

Another study that yielded similar results with regards to yeast
nutrients was performed by Marques et al. (2008), who tested two
commercial fermentation activators. A nutritive factor used for AF
was added to the must, and a nutritive factor used for MLF was
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added at the end of AF to the respective treatments. In their study,
a slight increase in biogenic amines (particularly isoamylamine
and tyramine) resulted from the addition of the AF activator. This
increase was especially noticeable at the end of MLE. No signif-
icant differences could be observed between wines to which the
MLEF activator were added and the control wines.

Histamine was produced at higher levels in Shiraz than in
Cabernet Sauvignon treatments. This seems to be particularly true
for nutrients A and C (Figure 3); however, due to the large vari-
ability between replicates this result is probably not significant.
Still, it is clear that grape cultivar is a variable that may signifi-
cantly influence the production of biogenic amines. It is possible
that the amino acid composition of the cultivar could influence
the amount of available precursors for biogenic amine production,
or that the phenolic composition of the grape cultivar could play
a role. In another study, using the same grape cultivars but from
different vintages and locations, we also found significantly higher
histamine production in Shiraz compared to Cabernet Sauvignon
(Smit et al., submitted).

SYNTHETIC MEDIUM FERMENTATIONS WITH COMPLEX NUTRIENTS
From the results presented in Figure 4, it can be concluded that
any major contribution to the increase of biogenic amines was

contributed by the Lactobacillus species and that they likely pro-
duce more histamine, tyramine, putrescine, and cadaverine in an
environment that lacks complex nutrients. An explanation for this
observation could be that LAB produce biogenic amines in order
to generate metabolic energy or regulate (increase) the pH of the
growth medium (Molenaar et al., 1993). When AF preceded LAB
inoculation, biogenic amine production was reduced. It can be
proposed that yeast potentially eliminate precursor amino acids
from the medium, leading to a reduction of subsequent biogenic
amine production. Co-inoculation was not tested in this study.
In synthetic wine medium, it was confirmed that biogenic
amines are produced by LAB and not by yeast. However, the
impact complex nutrients appear to have on histamine produc-
tion in grape must was not confirmed in synthetic medium. In
the synthetic grape must experiment, the absence of any complex
nutrients seemed to stimulate histamine and tyramine formation
by Lactobacillus species (treatment 3). This is contradictory to our
result observed in two cultivars of grape must, where histamine
production corresponded to the addition of certain nutrients. A
relationship seems to exist between yeast and bacterial growth and
biogenic amine concentrations produced in the synthetic medium.
It appears from this experiment in synthetic medium that the
absence of complex nutrients (the medium composition) has a
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more pronounced impact on biogenic amine production than the
presence of any complex fermentation nutrients.

Wine is a complex medium in which many compounds and
microorganisms can inhibit the growth and metabolisms of one
another or produce synergistic effects that are not observable in a
simple chemically defined synthetic medium. It has been observed
in a number of studies that biogenic amine production by wine
microorganisms in various synthetic media can show a different
set of results when evaluated in wine (Guerrini et al., 2002; Granchi
et al., 2005; Landete et al., 2007). The synthetic matrix used was
perhaps not an ideal model for wine, since it did not promote
MLF in the 14-days of the experiment, even though LAB growth
occurred.

INFLUENCE OF MLF INOCULATION TIME ON BIOGENIC AMINES

The evolution of biogenic amines during MLF was monitored to
evaluate the impact of different MLF inoculation scenarios on
the biogenic amine concentration. Inoculation for MLF simulta-
neously with AF has been shown to reduce the development of
biogenic amines in wine compared to the traditional sequential
inoculation (van der Merwe, 2007; Smit and Du Toit, 2011). This
seems to be a realistic tool to limit biogenic amine contamination.
The inoculated culture may be able to dominate and inhibit the
growth of the natural LAB flora and thus the chances of unwanted

activities by these bacteria are lessened during the course of AF.
Our results support and contradict the findings of van der Merwe
(2007) and Smit and Du Toit (2011) where co-inoculation resulted
in lower biogenic amine concentrations. The total biogenic amine
concentration after MLF in the co-inoculated treatments was lower
than before MLF in the Shiraz, but higher in the Pinotage. This
contradictory result can possibly be explained by the large number
of factors (such as the vintage, geographical region, grape variety,
vinification methods, availability of amino acid precursors, etc.)
that can influence the formation of biogenic amines in wine (Smit
et al., 2008).

Histamine did not increase significantly from before MLF to
after MLF in any of the treatments. Thus, the contribution of the
malolactic bacteria together with the yeast during co-inoculation
and the malolactic bacteria alone in the sequential treatments did
not affect the formation of histamine at all.

Significant tyramine formation was only observed in the treat-
ments inoculated with L. hilgardii strain 1. A PCR assay confirmed
that this strain is indeed a tyramine producing strain. It is also
important to note that this strain produced more tyramine when
it was inoculated sequentially compared to the co-inoculation in
both cultivars. Thus, by applying co-inoculation with a LAB strain
that is able to produce biogenic amines, could lower the risk of
biogenic amine contamination. Moreover, this result highlights

Frontiers in Microbiology | Food Microbiology

March 2012 | Volume 3 | Article 76 | 8


http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Food_Microbiology
http://www.frontiersin.org/Food_Microbiology/archive

Smit et al.

Managing BA in wine fermentations

the importance of inoculating with a starter culture unable to
produce biogenic amines.

Of all the amines measured, putrescine was present in the
highest concentration. The significant increase in the putrescine
and cadaverine concentration in the Pinotage co-inoculated treat-
ments, which was even seen in the uninoculated control treat-
ment, suggests that the yeast had the largest contribution. Exactly
the opposite was seen in the Shiraz co-inoculated treatments. A
decrease in the amount of these two amines was observed. Several
authors reported that yeast can produce biogenic amines during
AF (Buteau et al., 1984; Ancin-Azpilicueta et al., 2008; Smit et al.,
2008), but the prevailing opinion is that biogenic amines are pro-
duced by LAB during MLF (Soufleros et al., 1998; Lonvaud-Funel,
1999). From these results it appears that the inoculated bacteria
did not affect the biogenic amine content of the wine during MLFE.
In the sequential inoculated treatments, where the involvement
of the LAB in biogenic amine formation alone can be seen, all
amines were present in the same or significantly lower concen-
tration as before inoculation for MLE, except for cadaverine in
the uninoculated control treatment in the Shiraz and tyramine
in both cultivars. Thus, the relationship between biogenic amines
and MLF is debatable in this dataset. In some previous studies
biogenic amines increased during MLF (Marcobal et al., 20065
Izquierdo Canias et al., 2008), while it decreased in others (Buteau
et al., 1984). This inconsistency in results can be ascribed to the
wide variety of factors that can influence biogenic amine produc-
tion in wine, especially the fact that different species of yeast and
LAB as well as strains of the same species differ in their ability to
produce biogenic amines (Ancin-Azpilicueta et al., 2008; Marques
et al., 2008; Smit et al., 2008).

In conclusion, when comparing the observations made in real
grape must and synthetic grape must supplemented with com-
plex nutrients, it is clear that two different results were obtained.

From the real grape must experiment we could conclude that
complex nutrient additions have the potential to increase hista-
mine. A similar result was observed for amines putrescine and
cadaverine in synthetic grape must. However, from the syn-
thetic grape must experiment, it appears that biogenic amine
production by LAB is influenced largely by the combination or
succession of microorganisms and not always stimulated by the
presence of complex nutrients, as noted for histamine and tyra-
mine. Importantly, it is clearly observed that the presence of
decarboxylase positive LAB is associated with biogenic amine
increase in both the synthetic and real grape must experiments.
It is therefore recommended to inoculate for MLF with commer-
cial starter cultures that do not contain harmful decarboxylase
activities. From our results in real grape must it appears that
complex nutrients could influence wine wholesomeness nega-
tively by stimulating biogenic amine production. However, from
our results in synthetic must it seems that a lack of nutri-
ents could be equally or more harmful in this regard. Thus,
the judicious use of complex yeast and bacterial nutrients, used
in combination with a decarboxylase negative LAB strain is
recommended.

By inoculating for MLF simultaneously with AF has shown to
reduce the incidence of biogenic amines in previous studies. Our
results agree and disagree with these findings. However, by apply-
ing co-inoculation with a strain (L. hilgardii 1) that is capable of
producing tyramine resulted in a lower concentration of the spe-
cificamine compared to when it was sequentially inoculated. These
results also emphasize the importance of using decarboxylase
negative LAB strains for MLE.
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