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Many different species of acidophilic prokaryotes, widely distributed within the domains
Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of
ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environ-
ments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and
far greater solubility of ferric iron under such conditions. Cycling of iron has been demon-
strated in vitro using both pure and mixed cultures of acidophiles, and there is considerable
evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and
iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxi-
dation and reduction by acidophilic microorganisms show that different species vary in
their capacities for iron oxido-reduction, and that this is influenced by the electron donor
provided and growth conditions used. These measurements, and comparison with corre-
sponding data for oxidation of reduced sulfur compounds, also help explain why ferrous
iron is usually used preferentially as an electron donor by acidophiles that can oxidize both
iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that
available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a
technology that harness their abilities to accelerate the oxidative dissolution of sulfidic min-
erals and thereby facilitate the extraction of precious and base metals) for several decades.
More recently they have also been used to simultaneously remediate iron-contaminated
surface and ground waters and produce a useful mineral by-product (schwertmannite).
Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dis-
solution of ferric iron minerals such as goethite has also recently been demonstrated, and

new biomining technologies based on this approach are being developed.
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ENERGETIC CONSTRAINTS ON THE 0XIDO-REDUCTION OF
IRON AT LOW pH

Iron is the most abundant transition metal in the lithosphere, as
well as the most abundant element (on a weight basis) in planet
earth. In contrast, the concentration of soluble, bio-available iron
often limits the growth of primary producing organisms in many
aquatic (e.g., marine) and terrestrial (e.g., calcareous soils) envi-
ronments. However, extremely acidic (pH < 3) environments tend
to buck this trend, though there are exceptions, such as acidic
sites that develop in calcareous substrata due to the microbio-
logical oxidation of hydrogen sulfide (e.g., in the Frasissi cave
system, Italy; Macalady et al., 2007). There are two main rea-
sons why iron is more bio-available (often to the point at which
it becomes toxic to most life forms) at low pH: (i) extremely
acidic environments, both natural and man-made, are often asso-
ciated with the oxidative dissolution of sulfide minerals, many
of which contain iron (including the most abundant of all such
minerals, pyrite; FeS;), and (ii) both ionic forms of (uncom-
plexed) iron are far more soluble (especially ferric iron) at low
pH than at circum-neutral pH. Metallic (zero-valent) iron is
rare in the lithosphere, while the dominant non-complexed ionic
form of this metal in the environment is mostly dictated by its

aeration status, with ferrous iron [iron (II)] being more relatively
abundant in anoxic environments and ferric iron [iron (III)] in
aerobic sites. This is also the case in extremely acidic environ-
ments, though the causative agents of ferrous iron oxidation are
often very different in the two situations. At pH 7, the sponta-
neous (abiotic) rate of oxidation in an oxygen-saturated solution
containing 100 mg ferrous iron L~! is 8.4 mg min~!, while at pH 2
the corresponding rateis 8.4 x 1077 g min~! (using the equation
described in Stumm and Morgan, 1981). Spontaneous chemi-
cal oxidation of (uncomplexed) iron can, therefore, be rapid at
circum-neutral pH, though it is much slower where oxygen con-
centrations are low, e.g., the oxidation rate of the same hypothetical
solution (pH 7, containing 100 mg ferrous iron L™!) is much
slower (0.47 mg min~!) when the dissolved oxygen concentration
is 0.5mgL~!, as opposed to 9 mg L~!. An important consequence
of this is that acidophilic iron-oxidizing bacteria and archaea
can exploit ferrous iron as a resource in oxygen-saturated waters
where, in contrast to their neutrophilic counterparts, abiotic iron
oxidation is not competitive.

The greatly enhanced solubility of ferric iron at low pH
derives chiefly from the fact that ferric (oxy-)hydroxide phases
have very small solubility products. For example, the log K¢, of
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Fe(OH)s is —38.6 at 25°C (Monhemius, 1977) so that the the-
oretical maximum concentrations of non-complexed ferric iron
at pH 2 is 140mgL~!, compared to 140ngL~! at pH 4 and
0.14fgL=! at pH 7. However, the most significant ferric iron
mineral phases that form in sulfate-containing low pH environ-
ments are jarosites [e.g., KFe3(SO4)2(OH)g] and schwertmannite
[ideal formula FegOg(OH)SO4; Bigham et al., 1996] the solubility
products of which have not been determined. Schwertmannite is
metastable with respect to goethite (a-FeO.OH) and recrystallizes
to the latter in an acid-generating reaction:

FesOs(OH)(SO4 + 2 H,O — 8 FeO.OH + SO~ + 2H™T

At very low pH values, and in the presence of monovalent
cations, schwertmannite is also metastable with respect to jarosite
(Regenspurg et al., 2004). In addition, ferric iron forms complexes
with both sulfate and hydroxyl ions, and the dominant soluble
forms of this ionic species in acidic, sulfate liquors are Fe(SO4),~
and Fe(SO4)* rather than uncomplexed Fe’t (Welham et al,
2000), which influences its solubility.

The standard redox potential of the ferrous/ferric couple at pH
2 is generally quoted as +770 mV. However, the fact that ferric
iron is complexed by sulfate ions in most natural and man-made
extremely acidic environments influences this value, and the stan-
dard redox couples of both the Fe(SO4),~ and Fe(SO4)*/Fe*+
couples are more electronegative than that of the uncomplexed
metal. In sulfate solutions at pH 1, the standard potential of the
ferrous/ferric couples has been calculated to be 4697 mV (Welham
etal.,2000), and it is slightly more electropositive (~ + 720 mV) at
pH 3 (O’Hara and Johnson, unpublished data). Although signifi-
cant, these more electronegative redox potentials do still not allow
the oxidation of iron to be coupled, at low pH, to potential alterna-
tive electron acceptors to oxygen, such as nitrate (the redox poten-
tial of the nitrate/nitrite couple is +430 mV). This bioenergetic
constraint is one of the factors that differentiates the metabolic
diversities of acidophilic and neutrophilic iron-oxidizing bacteria
(Hedrich et al.,, 2011). However, the more electronegative redox
potential of the ferrous/ferric sulfate complex couple, together
with the more electropositive potential of the oxygen/water couple
in acidic liquors (1.12'V at pH 2) than at pH 7 (+820 mV), means
that the net potential difference between ferrous iron as electron
donor and oxygen as electron acceptor is ~420 mV at pH 2, which
is far greater than values (50-350 mV) that are often quoted.

BIODIVERSITY OF PROKARYOTES THAT CATALYZE REDOX
TRANSFORMATIONS OF Fe AT LOW pH

Acidophilic microorganisms, as a generic group, have wide meta-
bolic diversities, including the abilities to use solar and chemical
(organic and inorganic) sources of energy, a variety of elec-
tron acceptors, and to use both inorganic and organic sources
of carbon (and, in some cases, both). In phylogenetic terms,
iron-metabolizing acidophiles are highly diverse, occurring in
the domain Bacteria within the Proteobacteria (alpha-, beta-, and
gamma-classes), Nitrospirae, Firmicutes, Actinobacteria, and Aci-
dobacteria phyla, and in the domain Archaea within the Crenar-
chaeota and Euryarchaeota phyla. They also vary in their response
to temperature, and include species that are psychrotolerant

(e.g., Acidithiobacillus ferrivorans), mesophilic (e.g., Ferrimi-
crobium acidiphilum), thermotolerant/moderately thermophilic
(e.g., Sulfobacillus acidophilus), and extremely thermophilic (e.g.,
Sulfolobus metallicus).

Chemolithotrophy (using inorganic chemicals as sole or major
electron donors) is a particularly widespread and much stud-
ied trait among acidophilic bacteria and archaea (Johnson and
Hallberg, 2009). Reduced forms of sulfur (including elemental
sulfur) are used by diverse genera of acidophilic bacteria (e.g.,
Acidithiobacillus spp.) and archaea (e.g., Sulfolobus spp.),and some
species of acidophiles can also use hydrogen as an energy source
(e.g., Drobner et al.,, 1990). The first ferrous iron-oxidizing aci-
dophile to be characterized was Acidithiobacillus (At.) ferrooxidans
(strains variously named at the time as Thiobacillus ferrooxidans,
Ferrobacillus ferrooxidans, and Ferrobacillus sulfooxidans). These
were all described as chemo-autotrophic bacteria that appeared
to vary in their capacities for oxidizing reduced sulfur. Subse-
quently, many different species of acidophilic bacteria, though
fewer acidophilic archaea, have also been shown to be able to uti-
lize the energy derived from oxidizing ferrous iron to support
their growth, including species that are obligate and facultative
heterotrophs, as well as other autotrophic species.

In contrast to iron oxidation at low pH, the ability of aci-
dophiles to grow via the dissimilatory reduction of ferric iron
was only discovered in the late 1980s/early 1990s, with this trait
being first reported for an autotrophic bacterium (At. ferrooxi-
dans; Pronk et al., 1991) and heterotrophic bacteria (Acidiphilium
spp.; Johnson and McGinness, 1991). Currently, all acidophiles
that are known to use ferric as an electron acceptor to support
their growth are facultative reducers, in that all of them can also
reduce molecular oxygen. Electron donors that are coupled to
iron reduction are inorganic (sulfur or hydrogen) in the case
of chemolithotrophic acidophiles such as At. ferrooxidans, and
organic (e.g., glucose or glycerol) in the case of heterotrophic
acidophiles, such as Acidiphilium spp.

Table 1 groups acidophiles that catalyze the dissimilatory redox
transformations of iron into three categories, based in their abil-
ities to oxidize ferrous iron, to reduce ferric iron or (depending
on environmental conditions) to do both. One interesting fact is
that the majority of iron-oxidizing bacteria can also reduce ferric
iron and, in cases where this has been examined, use the latter
to support their growth. Exceptions to this include Leptospirillum
spp. and “Ferrovum (Fv.) myxofaciens,” though this is explained
by the fact that these two genera are known to use only ferrous
iron as an electron donor, thereby restricting them to an aero-
bic life-style and negating the possibility that they can grow by
ferric iron respiration. In the case of the currently mis-named aci-
dophile “Thiobacillus (T.) prosperous” (proposed to be re-classified
as “Acidihalobacter prosperous”; Nicolle et al., 2009) there are cur-
rently no published data showing that this salt-tolerant acidophilic
iron- and sulfur-oxidizer can grow anaerobically using sulfur as
electron donor and ferric iron as electron acceptor. For all other
iron-oxidizing acidophilic bacteria, the co-existence of iron oxi-
dation and iron reduction capabilities suggests that the electron
shuttle pathways involved might have some components in com-
mon. This, however, is patently not the case for heterotrophic
acidopbhiles, such as Acidiphilium spp., that catalyze iron reduction
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Table 1 | Acidophilic bacteria and archaea that have been reported to
catalyze the dissimilatory oxidation of ferrous iron or reduction of
ferric iron.

Iron-oxidizing Iron-reducing Iron-oxidizing/reducing

acidophiles acidophiles acidophiles

BACTERIA
Leptospirillum (L.)"
L. ferrooxidans

Acidithiobacillus (At.)"
At. ferrooxidans

Acidiphilium (A.)*3
A. cryptum?

L. ferriphilum A. acidophilum?® At. ferrivorans
Acidiferrobacter
thiooxydans’

Ferrimicrobium

“L. ferrodiazotro- A. angustum/rubrum?

phum”

" Ferrovum A. organovorum2

myxofaciens”’ acidiphilum?
"Thiobacillus

prosperous”’

2 Acidimicrobium

A. multivorum
ferrooxidans®

Ferrithrix thermotolerans?
Sulfobacillus (Sb.)?

Sb. acidophilus

Acidocella (Ac.)?
Ac. facilis

"Ac aromatica”
Acidobacterium? Sb. thermosulfidooxidans
Sb. benefaciens
Alicyclobacillus (Alb.)

Alb. tolerans

Acb. capsulatum
Acidobacterium spp.

Alb. ferrooxydans

Alb. aeris

Alb. pohliae

Alicyclobacillus sp. GSM
ARCHAEA
Sulfolobus (S.)
S. metallicus

Ferroplasma (Fp.) spp.
Fp. acidiphilum

S. tokodaii "Fp. acidarmanus”
Metallosphaera Acidiplasma (Ap.)
sedula Ap. cupricumulans

Ap. aeolicum

" Obligate autotrophs; ?obligate heterotrophs, *facultative autotrophs.

but not iron oxidation. Also, Ohmura et al. (2002) found that
At. ferrooxidans grown anaerobically using ferric iron as elec-
tron donor synthesized large amounts of an acid-stable c-type
cytochrome whose reduced form was re-oxidized by ferric iron.
Interestingly, neither species of Acidithiobacillus that oxidizes sul-
fur but not ferrous iron (At. thiooxidans and At. caldus) can
grow anaerobically by ferric iron respiration. Although Brock and
Gustafson (1976) had reported that At. thiooxidans can reduce
ferric iron, Hallberg et al. (2001) showed that this only occurred
in cell suspensions that were incubated aerobically, and that there
was no corresponding increase in cell numbers. This suggests that
iron reduction may have been mediated abiotically by a metabo-
lite produced during sulfur oxidation and that At. thiooxidans
cannot grow by ferric iron respiration. Interestingly, the situa-
tion with iron-oxidizing archaea is less clear, though it appears
that the ability to couple the oxidation of sulfur to the reduction
of ferric iron is commonplace among the Sulfolobales (Paul Nor-
ris, Warwick University, unpublished data). Brock and Gustafson
(1976) also reported that a Sulfolobus sp. [quoted to be Sul-
folobus (S.) acidocaldarius, though this is unlikely as this archacon

does not grow autotrophically as described in the paper] coupled
sulfur oxidation to ferric iron reduction. Both classified genera of
iron-oxidizing euryarchaeotes (Ferroplasma and Acidiplasma) can
also reduce ferric iron, though the electron donor here is organic
(e.g., yeast extract) rather than elemental sulfur (Dopson et al.,
2004; Golyshina et al., 2009).

New insights into the nature of iron-oxidizing acidophiles and
how they interact with each other and with other acidophilic
microorganisms have arisen from the detailed microbiological and
molecular studies carried out at the abandoned Richmond mine
at Iron Mountain, California (e.g., Denef et al., 2010). Among
other things, this research has highlighted the important role of
the iron-oxidizing/reducing archaeon “Ferroplasma (Fp.) acidar-
manus” in the dissolution of sulfide minerals in extremely acidic
(pH < 1) moderately thermal (~40°C) environments, and iden-
tified very small (<0.45 um diameter) pleomorphic cells within
acidic biofilms as novel archaeal lineages (designated “ARMAN”:
Archaeal Richmond Mine Acidophilic Nanoorganisms; Baker
et al., 2006).

BIOCHEMICAL MECHANISMS OF DISSIMILATORY
OXIDATION AND REDUCTION OF Fe AT LOW pH

The pathway of dissimilatory iron oxidation has been elucidated
for At. ferrooxidans, and genomic and proteomic studies have
provided revealing insights of how this is mediated in other aci-
dophiles (reviewed in Bonnefoy and Holmes, 2011). By maintain-
ing a near-neutral cytoplasmic pH and living in acidic solutions,
acidophiles have a “ready-made” trans-membrane pH gradient for
generating ATP. However, continued influx of protons would lead
to severe acidification of the cytoplasm and cell death if this was
not counterbalanced by equivalent amounts of negatively charged
ions or particles. Electrons derived from the oxidation of ferrous
iron satisfy this requirement, and the reduction of molecular oxy-
gen completes the energy-synthesizing (“downhill electron flow”)
pathway (Figure 1). Electrons derived from ferrous iron are also
used to generate reducing equivalents (e.g., NADH) but since the
redox potential of the ferrous/ferric couple is far more electropos-
itive than that of NADT/NADH (—320 mV), energy is required
to fuel this reaction (“uphill electron flow”) which is thought
to derive from the proton motive force (Bonnefoy and Holmes,
2011). For mixotrophic and heterotrophic iron-oxidizers, the latter
appears not to be the case as reducing equivalents can be generated
from the oxidation of organic carbon.

The “uphill” and “downhill” electron transport pathways run
concurrently in all iron-oxidizing chemoautotrophs, but the mol-
ecular complexes involved are often quite different, suggesting that
iron oxidation in acidophiles has evolved independently on sev-
eral occasions (Bonnefoy and Holmes, 2011). For example, the
rus operon, which contains genes coding for the blue copper
protein rusticyanin and several cytochromes, mediates ferrous oxi-
dation in iron-oxidizing acidithiobacilli and, seemingly, in the salt-
tolerant gammaproteobacterium “T. prosperous” (Nicolle et al.,
2009). The role of another high potential iron-sulfur protein found
in At. ferrivorans (at least one strain of which does not appear to
contain rusticyanin) encoded by the iro gene, has yet to be resolved
(Amouric et al., 2011). Interestingly, Ferroplasma spp. also contain
a blue copper protein (sulfocyanin) which is also thought to be
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inner membrane
outer membrane

periplasm

FIGURE 1 | Schematic representation of ferrous iron oxidation by the
Gram-negative autotrophic acidophile, At. ferrooxidans. Controlled
influx of protons is used to generate ATP via the membrane-bound ATP
synthetase complex (ATPase). Iron oxidation is mediated by a cytochrome
located on the outer membrane and electrons transferred via periplasmic
cytochromes and rusticyanin either to a terminal oxidase ("downhill
pathway,” indicated in brown text and by **) where they are used to reduce
oxygen, or used to reduce NAD™ (“uphill pathway,” indicated red text and
by *) in a reaction also driven by the proton motive force across the inner
membrane (Bonnefoy and Holmes, 2011).

involved in iron oxidation in this euryarchaeote (Bonnefoy and
Holmes, 2011). In contrast, rusticyanin/sulfocyanin has not been
detected in Leptospirillum spp., where the electron shuttle pathway
is thought to involve four or five different cytochromes (Bonnefoy
and Holmes, 2011). In the iron-oxidizing crenarchaeotes [S. metal-
licus, S. tokodaii, and Metallosphaera (M.) sedula], the fox [Fe(II)
oxidation] cluster, which houses genes coding for cytochrome b,
electron transporters, and a terminal oxidase, appears to have an
analogous role to the rus operon in At. ferrooxidans, an hypothesis
strengthened by the fact that this cluster has not been found in
Sulfolobus spp. (e.g., S. acidocaldarius) that do not oxidize ferrous
iron.

Relatively little is known about how prokaryotes catalyze ferric
iron reduction at low pH, for example whether this is medi-
ated enzymatically (via “iron reductases”), indirectly via metabolic
intermediates, or both. All Acidiphilium spp. are known to reduce
ferric iron, though most strains do not grow under strictly anoxic
conditions in the presence of ferric iron, (Johnson and McGin-
ness, 1991; Bridge and Johnson, 2000) and growth coupled to
ferric iron reduction is most readily observed in cultures inocu-
lated under micro-aerobic conditions (Johnson and McGinness,
1991; Bridge and Johnson, 2000). However, Kiisel et al. (2002)

reported that one strain [Acidiphilium (A.) cryptum JF-5] could
reduce ferric iron in oxygen-saturated media. Johnson and Bridge
(2002) showed that ferric iron reduction was constitutive in oblig-
ately heterotrophic Acidiphilium SJH (also identified as a strain
of A. cryptum) but was inducible in the facultative autotroph A.
acidophilum. Low oxygen concentrations, rather than ferric iron,
appeared to induce a putative “iron reductase” in A. acidophilum.
Whole cell protein profiles of Acidiphilium SJH were similar for
cells grown under oxygen-saturated or micro-aerobic conditions,
while in contrast three additional proteins were detected in SDS-
PAGE profiles of A. acidophilum cells that could reduce ferric iron
compared to those where iron reduction had not been induced. A.
organovorum and A. multivorum were also reported to have consti-
tutive iron reduction systems, while iron reduction appeared to be
inducible in A. rubrum. Interestingly, Kiisel et al. (2002) reported
that the ferric iron reduction enzyme(s) were not constitutive in A.
cryptum JE-5, a strain that is closely related to Acidiphilium SJTH.
Recent annotation of the draft genome of another Acidiphilium
strain (PM) has failed to identify a putative iron reductase gene
(San Martin-Uriz et al., 2011). Elsewhere, an outer membrane
cytochrome ¢ has been implicated as having a role in ferric iron
reduction by A. cryptum JE-5 (Magnuson et al., 2010), which is
intriguing in the light of the induced production of an acid-stable
c-type cytochrome by At. ferrooxidans when respiring on ferric
iron (Ohmura et al., 2002). Whether c-type cytochromes are also
involved in iron reduction by other species of heterotrophic bac-
teria that are known to reduce ferric iron (e.g., Acidocella and
Acidobacterium; Coupland and Johnson, 2008) is unknown.

MEASUREMENT AND INTERPRETATION OF SPECIFIC RATES

OF IRON OXIDATION AND IRON REDUCTION IN ACIDOPHILES
Determining specific rates of iron oxidation and iron reduction
by acidophilic microorganisms is a relatively simple procedure.
The data obtained illustrate how different species vary in their
capacities for iron oxido-reduction, and how this is influenced by
growth histories and environmental parameters. Such information
is also of fundamental importance for the design of biotechnolog-
ical processes that utilize microbial iron oxidation or reduction
in low pH liquids (see following sections). The technique involves
growing biomass under controlled conditions, harvesting and con-
centrating cells and assaying their abilities to either oxidize ferrous
iron or reduce ferric iron (typically 1 mM of either) under suitable
conditions, e.g., in the presence of a suitable electron donor, and
under anoxic conditions, for iron reduction (Figure 2). Biomass
measurements are simultaneously carried out on sub-samples of
the concentrated cells. Usually, this involves determination of pro-
tein contents using, for example, the Bradford assay (Bradford,
1976) but measurements of active biomass (e.g., of ATP; Okibe
and Johnson, 2011) are more relevant where the total biomass
includes a significant proportion of dead or moribund cells. The
time taken to determine rates of iron oxidation and reduction is
also important and needs to be much smaller than the culture
doubling time of the organism being assayed in order for there
to be no significant increase in biomass during the assay period.
Typically, 20 min to 2 h provides sufficient time to allow sufficient
iron oxidation or reduction by cell suspensions while avoiding sig-
nificant biomass perturbations (acidophiles generally have culture
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doubling times varying between 6 and 12 h). Details of the method
used to determine specific rates of ferrous iron oxidation are given
in Hallberg et al. (2011a). Specific rates of ferric iron reduction
referred to in Table 2 were measured using a similar protocol,
with nitrogen replacing air (to create anoxic conditions in the cell
suspensions) and a suitable electron donor (organic or inorganic)
supplied in stoichiometric excess to ferric iron.

2. Harvest and resuspend sssmms) 3. Assay Fe oxidation or
reduction*** by cell

l suspensions over a 20 -

120 minute time frame

1. Grow cells Protein determination*
under specified (+ATP analysis™) >
conditions

FIGURE 2 | Typical protocol used for determining specific rates of
ferrous iron oxidation and ferric iron reduction by acidophilic
prokaryotes (*Bradford, 1976; **Okibe and Johnson, 2011; *** e.g.,
using the ferrozine assay, Lovley and Phillips, 1987).

Table 2 | Specific rates of ferrous iron oxidation determined for
different species of acidophilic bacteria and the archaeon
Ferroplasma.

Fe2t+ oxidation
(mgmin~" g protein—)

Acidophile

(1) AUTOTROPHIC SPECIES
Iron-oxidizing acidithiobacilli

Group | (At. ferrooxidans') 484433
Group Il (ATCC 33020) 440+ 115
Group Il (At. ferrivorans') 192+ 14
Group IV (JCM 7812) 446 +£6.8
Leptospirillum spp.

L. ferrooxidans’ 426+6.5
L. ferriphilum™* 484 + 88
Others

Acd. thiooxidans' 457 420
" Fv. myxofaciens"T 532 +23

(1) MIXOTROPHIC/HETEROTROPHIC SPECIES
Ferrimicrobium acidiphilum

(25 mM Fe?*+/100 uM glycerol) 191+75
(100 M FeZ*/5 mM glycerol) 77+0.14
Sulfobacillus spp.*

Sb. thermosulfidooxidans 449+4.0
Sb. acidophilus 236+ 11
Sb. benefaciens 341416
Ferroplasma acidiphilum* 371+£4.0

(i) All specific iron oxidation rates were determined at 30°C (except those indicated
*, which were determined at 37°C); (ii) all prokaryotes were grown in 25 mM fer
rous iron medium, supplemented (for mixotrophs and heterotrophs) with 0.02 %
(w/v) yeast extract (the media used for Fm. acidophilum were as indicated in the
Table).

Table 2 shows specific rates of iron oxidation by different
species of autotrophic acidophiles, and facultatively and oblig-
ately heterotrophic species, using this approach. Most of the
autotrophic species show similar specific rates of oxidation, vary-
ing between mean values of 428 and 484 mg ferrous iron oxi-
dized min~! gprotein~!. The two outliers in Table 2 are At.
ferrivorans and the betaproteobacterium “Fv. myxofaciens.” Two
other strains of At. ferrivorans (Peru6 and CF27) also displayed
lower rates (236 £2.4 and 312+ 6.6 mg ferrous iron oxidized
min~! g protein~!, respectively) than the other three “Groups” of
iron-oxidizing acidithiobacilli (based on the delineation described
by Amouric et al., 2011) suggesting that this is a species-specific
trait. “Fv. myxofaciens” displayed the fastest specific rate of iron
oxidation of all bacteria (and the sole archaeon) examined, but
since the isolate tested (P3G; the nominated type strain of the
species) is the only strain currently available in pure culture, the
question of whether this is a genus- or species-specific charac-
teristic remains to be verified. All of the mixotrophic and het-
erotrophic prokaryotes tested, with the exception of Sulfobacillus
(8b.) thermosulfidooxidans, displayed significantly lower specific
rates of iron oxidation than the mean value found with autotrophic
species, even though these assays were carried out at 37°C rather
than at 30°C [as for all of the autotrophic strains, except Leptospir-
illum (L.) ferriphilum], since most mixotrophic iron-oxidizing
acidophilic bacteria are thermotolerant or moderate thermopbhiles.
In the case of the mesophilic heterotroph Fm. acidiphilum which
was, like the autotrophic strains, assayed at 30°C, the specific rate
of iron oxidation was very much dictated by the growth medium
used, in particular the ratio of ferrous iron to organic carbon
source (Table 2).

Specific rates of ferric iron reduction by the heterotroph
Acidiphilium SJH and two autotrophic Acidithiobacillus spp. (At.
ferrooxidans”, and Acidithiobacillus sp ATCC 33020, the proposed
type strain of “Group II” iron-oxidizing acidithiobacilli), again
using the approach described above, are shown in Table 3. These
were much smaller (by about one order of magnitude) than typ-
ical rates of iron oxidation found in acidophiles. Data obtained
for Acidiphilium SJH suggested that the electron donor had little

Table 3 | Specific rates of ferric iron reduction by heterotrophic
(Acidiphilium) and autotrophic (Acidithiobacillus spp.) acidophiles.

Bacterium Growth conditions Fe3* reduction

(incubation time) (mg min! g protein~—)

A. cryptum SJH Glycerol/Fe3+ 32437
Galactose/Fe3+ 4048.0
At. ferrooxidans’ H2/O4 (7 days) 46410
H,/O5 (21 days) 23+5.0
Ha/Fe3+* (5 days) 84+23
Acidithiobacillus H2/O5 (7 days) 63+73
sp. ATCC 33020 H2/O4 (21 days) 53+19
Ha/Fe3+* (5 days) 76+2.1

*Cultures grown under anoxic conditions; the electron donors used to grow
the acidophiles (glycerol, galactose, or hydrogen) were also those used for the
measurements of specific rates of ferric iron reduction.
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influence on the specific rate of ferric iron reduction, with the value
being similar when either glycerol or galactose was supplied. Ferric
iron reduction data shown in Table 3 for the two iron-oxidizing
Acidithiobacillus spp. are for hydrogen-grown cultures grown
either aerobically, or under anoxic conditions with ferric iron as
electron acceptor. There was evidence of suppression of the poten-
tial for ferric iron reduction by At. ferrooxidans® with protracted
aerobic growth on hydrogen, and the reverse when it was grown
anaerobically on hydrogen and ferric iron. While similar tends
were apparent for Acidithiobacillus spp. ATCC 33020, differences
in specific rates of iron reduction were far less pronounced.

The effect of growing iron-oxidizing acidithiobacilli on alter-
native electron donors to ferrous iron on the specific rates of iron
oxidation is shown in Table 4. Data shown for tetrathionate-grown
cultures are of cells harvested at early stationary phase (generally
after ~5 days) from cultures grown in 5 mM S4027 with varying
concentrations of ferrous iron, while for both elemental sulfur and
hydrogen more protracted growth was possible by providing excess
elemental sulfur or by continuously replenishing the hydrogen
supply. These results showed that specific rates of iron oxida-
tion were lower for both At. ferrooxidans™ and Acidithiobacillus
sp- ATCC 33020 when grown on electron donors other than fer-
rous iron, though this varied with the electron donor used and

Table 4 | Effects of different electron donors and culture conditions on
the specific rates of ferrous iron oxidation by Acidithiobacillus spp.

Bacterium and culture medium Fe?* oxidation

(mgmin~—' g protein™)

AT. FERROOXIDANS"

(i) S4O§’—grown cultures

+0 Fe?* 69410
+10 uM FeZt 21942.0
+100 uM Fe?t 2104+4.0
+1000 uM Fe?+ 190+ 75
(i) S%-grown cultures

+0 Fe?t; 10 days 4448.0
+10uM Fe?t; 10 days 24+0.6
+100 M Fe?*; 10 days 38+0.95
+1000 LM Fe?*; 10 days 32+15
+0 Fe?*; 21 days <0.01

(iii) Hz-grown cultures

7 days 149+2.0
21 days 210+£3.1
+25mM Fe3t; 5days* 178 +8.3
ACIDITHIOBACILLUS SP. ATCC 33020

(i) 840623‘—grown culture

+100 uM Fe?* 4542.0
(i) Hp-grown cultures

7 days 132+4.8
21 days 225+75
+25mM Fe3t; 5days* 139+ 12
+25mM Fe3+: 14 days* 130+ 70

All cultures were grown aerobically, except those indicated by *, which were
grown under anoxic conditions.

incubation period. In the case of At. ferrooxidans®, the specific
rate of iron oxidation for sulfur-grown cells was about 10% of
that of iron-grown cells after 10 days, and was not detectable after
3 weeks of growth on this electron donor. In contrast, the spe-
cific rate of ferrous iron oxidation by cells grown aerobically on
hydrogen for 3 weeks was still about 50% of that of ferrous iron-
grown cells. Ferrous iron has been reported to induce expression
of the rus operon in At. ferrooxidans (Amouric et al., 2009), and
the lack of ferrous oxidation ability in sulfur-grown cultures can
be explained by the ferrous iron originally present in the cul-
tures being rapidly oxidized (within 1 day) to ferric. However, the
same would have been true for hydrogen-grown biomass grown
with excess oxygen, so why the rus operon was still apparently
being expressed in these cultures is unclear. Similar results were
obtained for Acidithiobacillus sp. ATCC 33020 (Table 4). Both
Acidithiobacillus spp. displayed significant rates of iron oxidation
when grown anaerobically on hydrogen (even after 14 days, in
the case of Acidithiobacillus sp. ATCC 33020) though this can be
explained that ferrous iron would have accumulated in these cul-
tures as a result of dissimilatory reduction of ferric iron, causing
the rus operon to be expressed.

In natural and man-made (biomining) environments, pyrite is
amajor energy resource for chemo-autotrophic acidophiles. Ferric
iron attack on this mineral releases both ferrous iron and soluble
reduced sulfur species (Rohwerder et al., 2003) so that bacteria that
can use both as electron donors, such as At. ferrooxidans, may use
one or the other in preference, or both simultaneously. Compari-
son of specific rates of iron oxidation of bacteria grown on pyrite
with those of the same strain grown on ferrous iron or reduced
sulfur can provide insights into what substrate is being utilized.
Results for the type strains of At. ferrooxidans and L. ferrooxi-
dans grown in pure culture in 1% (w/v) pyrite liquid medium,
in which planktonic-phase cells and those attached to the min-
eral were harvested separately using the protocol described by
Okibe and Johnson (2004), are shown in Table 5. After 1 week
of incubation, the specific rates of ferrous iron oxidation by
planktonic-phase cells of both acidophiles were actually some-
what greater than those of ferrous iron-grown cells, and much
greater than of those of sulfur-grown cells, implying that both

Table 5 | Specific rates of ferrous iron oxidation by the type strains of
L. ferrooxidans and At. ferrooxidans grown on pyrite.

RLU*
(ng protein—")

Fe?* oxidation
1

Bacterium

(mgmin~"g~" protein)

L. FERROOXIDANS (PYRITE; PLANKTONIC CELLS)

Week 1 527 +78 5,112
Week 2 283+6.1 2,291
AT. FERROOXIDANS (PYRITE; PLANKTONIC CELLS)

Week 1 562 + 1.0 5,486
Week 2 240+1.0 2,444
At. ferrooxidans: pyrite

Planktonic cells 224+£1.0 n.d.
Attached cells 307+1.0 n.d.

*Relative light units (measurement of ATP concentration).
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bacteria were oxidizing ferrous iron rather than reduced sulfur
species. However, by week 2, corresponding values of both had
fallen by about 50%. While this might suggest a switch from iron
to sulfur oxidation, this could not be the case for L. ferrooxidans
which does not use reduced sulfur as an electron donor. Measure-
ments of ATP concentrations in harvested cells showed that these
had also fallen by about 50% from week 1 to 2 relative to pro-
tein contents, implying that much of the bacterial populations
in these cultures had become moribund or had died. Indexed
relative to ATP concentrations, specific rates of ferrous iron oxida-
tion were similar on weeks 1 and 2, suggesting that both bacteria
were continuing to use ferrous iron as their preferred electron
donor. The specific rates of iron oxidation by planktonic-phase
and attached cells of At. ferrooxidans sampled at the same time
were found to be similar, suggestion that bacteria attached to the
mineral phase were also using ferrous iron as their major energy
source.

The conclusion that bacteria such as At. ferrooxidans use fer-
rous iron in preference to reduced sulfur when oxidizing pyrite
correlates with similar observations reported when these bacteria
are grown in liquid or on solid media that contain both fer-
rous iron and a soluble (usually tetrathionate) sulfur oxy-anion
(Johnson, 1995; Yarzdbal et al., 2004). Using ferrous iron in prefer-
ence to reduced sulfur would appear not to make thermodynamic
sense, given that the free energies (AG values) of elemental sul-
fur and tetrathionate (—507 and —1225k] mol~!, respectively)
far exceed that of ferrous iron (—30kJ mol~1; Kelly, 1978). How-
ever, the specific rates of tetrathionate oxidation tend to be much
slower than ferrous iron oxidation for the acidithiobacilli (Table 6;
data for Acidithiobacillus sp. ATCC 33020) so that the rates at
which these bacteria can generate energy by oxidizing ferrous
iron or tetrathionate are very similar. In addition, whereas fer-
rous iron oxidation by At. ferrooxidans involves a relatively short
electron transport chain (comprising three cytochromes and rus-
ticyanin), tetrathionate metabolism by this acidophile requires
the synthesis of several enzymes (tetrathionate hydrolase, sul-
fur dioxygenase, thiosulfate quinone oxidoreductase, sulfite oxi-
doreductase, and rhodanese; Kanao et al., 2007), in addition
to trans-membrane electron transport proteins. The additional
energy expenditure required to synthesize these enzymes cou-
pled with the fact that energy yields in unit time are similar
for both tetrathionate and ferrous iron oxidation help explain
why ferrous iron is used as a preferential electron donor by
Acidithiobacillus spp. Additional supporting evidence for ferrous
iron being the preferred electron donor for At. ferrooxidans comes
from the observation that the rus operon is not repressed by

Table 6 | Comparison of the specific rates of ferrous iron and
tetrathionate oxidation by Acidithiobacillus sp. ATCC 33020, and
conversion of these into specific rates of energy generation in unit

time.

Electron Oxidation rate Energy generation
donor (mmol min—" g protein—") (Jmin~—1gprotein—)
Fe?+ 7940.21 237+6

S403" 0.2140.027 260433

elemental sulfur when ferrous iron is present (Amouric et al,
2009).

ENVIRONMENTAL ASPECTS OF OXIDO-REDUCTION OF IRON
IN LOW pH ENVIRONMENTS

One of the first reports of active iron cycling in an acidic environ-
ment was by Johnson et al. (1993) who noted that 30 cm deep acid
streamer growths found within an abandoned pyrite mine were
stratified in terms of their color and consistency, and that these
correlated with variations in concentrations of dissolved oxygen
and redox potentials, the latter reflecting relative concentrations of
ferrous and ferric iron (Table 7). Later work identified the major
iron-oxidizing acidophile in the surface streamers as “Fv. myxofa-
ciens,” while iron-reducing Acidiphilium spp. and novel Firmicutes
were more abundant in the lower depths of the streamer growths
(Kimura et al., 2011). Johnson et al. (1993) also demonstrated
that iron cycling by a mixed bioreactor culture of At. ferrooxidans
and Acidiphilium SJH could be controlled by varying concentra-
tions of dissolved oxygen (Figure 3). Pure cultures of moderate
thermophiles [Sulfobacillus spp. and Acidimicrobium (Am.) fer-
rooxidans] also displayed iron cycling in vitro (Figure 4). Stratified
acid streamer/mat growths have also been reported in an adit
draining an abandoned small-scale copper mine (Cantareras) in
Spain (Figure 5). Fragments of acid streamers from the site were
shown to both oxidize and reduce iron in vitro, and acidophiles
known to catalyze the oxido-reduction of iron were identified
by molecular techniques and isolated from the streamer growths
(Rowe et al., 2007). The Cantareras streamers have also been mate-
rials from which acidophilic sulfate-reducing bacteria have been
isolated. The latter can also mediate ferric iron reduction in acidic
environments indirectly via the hydrogen sulfide they generate asa
waste product (H,S + 2 Fe’T — S% 4+ 2 Fe? 4+ 2H™) and possibly
also directly, using ferric iron as an alternative electron acceptor to
sulfate.

The Rio Tinto is a 100 km long river located in south-west
Spain, characterized by being extremely acidic (pH 1.5-3.1)
throughout its length and containing elevated concentrations of
soluble iron (both ferrous and ferric, the latter conferring the
characteristic burgundy red color of the river). The microbiol-
ogy of this extensive extreme environment has been researched in
depth by Ricardo Amils and colleagues at the Centro de Astro-
biologia/Universidad Autonoma in Madrid. They found that the
dominant bacteria in the Tinto river were the iron-metabolizing
acidophiles At. ferrooxidans, L. ferrooxidans, and Acidiphilium spp.,
and that other prokaryotes that also catalyze the oxido-reduction
of iron at low pH (Ferrimicrobium and Ferroplasma spp.) were
present in smaller numbers (Gonzilez-Toril et al., 2003). Iron
cycling, involving ferrous iron oxidation mediated primarily by
At. ferrooxidans and L. ferrooxidans in the oxic zones of the river
and ferric iron reduction by Acidiphilium spp. and At. ferrooxidans
in the anoxic zones, maintain the iron dynamics of the river from
its source at the Pena de Hierro in the Iberian Pyrite Belt to Huelva,
where it enters the Atlantic Ocean. Since the oxidation of ferrous
to (soluble) ferric iron is a proton-consuming reaction, while the
reverse reaction (as well as ferric iron hydrolysis) generates pro-
tons, the net effect of ongoing oxido-reduction of iron is to main-
tain the extremely low pH of the Tinto river throughout its length.
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Table 7 | Depth-related chemical changes in acid streamer growths found within the abandoned Cae Coch pyrite mine.

Streamer depth (cm) pH DO, (% of ambient) Ep (mV) Fe?* (gL™") Fe3+ (gL™") S0,42- (gL™")
0-10 2.35 82 +734 0.25 1.15 59
10-20 2.40 10 +634 1.21 0.39 6.0
20-30 2.45 <0.1 +484 2.16 <0.01 5.2
Johnson et al. (1993), Kimura et al. (2011).
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FIGURE 3 | Cycling of iron by a mixed culture of At. ferrooxidans and
Acidiphilium SJH. The culture medium (pH 2.0) contained (initially) 25 mM
ferrous sulfate and 10 MM glycerol, and was maintained at 30°C under ?:- 160 9
controlled aeration. Ferrous iron concentrations are shown in red and i et
concentrations of dissolved oxygen in blue (modified from Johnson et al., ,}j 1 40 8
1993). =
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Extensive opencast mining of lignite in Lusatia and other
regions of Germany has left a legacy of a large number of aban- -0
doned and flooded sites (“pit lakes”), many of which are moder- 125
ately or extremely acidic and contain elevated concentrations of ]
soluble iron and sulfate, resulting from the oxidation of pyrite and Tirme (k)
other minerals present in the disturbed substrata (Geller et al,,

1998). Microbially mediated cycling of both iron and sulfur has FIGURE 4 | Iron cycling by pure cultures of moderately thermophilic
been described in these pit lakes (Kiisel, 2003; Meier et al., 2004). acfd°Ph"es- (TOP) -A- Sb. Thefmosq/f/doox{dans (stramTHU, -B- Sb.
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Oxidation of reduced sulfur and of ferrous iron (coupled with grown in pH 2.0 medium containing 256 mM ferrous sulfate, 10 mM glucose
hydrolysis of ferric iron) in oxic surface waters causes these to and 0.02% yeast extract; no aeration control); (bottom) the effect of
be acidic (pH as low as 2.0) whereas the reductive dissolution of controlling concentrations of dissolved oxygen iron cycling by Sb.
schwertmannite and microbial sulfidogenesis in the anoxic lake | acidophilus (strain THWX) grown at pH 2.0 in @ medium containing 25 mM

. . . . . 0 . H
sediments generates net alkalinity, results in these zones having | 7°us sulfate, 10mM glycerol and 0.02% yeast extract; ferrous iron
hich Hval (t ically about 5.5: Kiisel et al 1999) Th . concentrations are shown in red and concentrations of dissolved oxygen in
fugher pH values (typicallyabout o.o; fusel etal., 1999). AREmajor b6 (modified from Johnson et al., 1993).
iron-oxidizing bacteria identified in the lignite pit lakes are the

acidophiles At. ferrooxidans, L. ferrooxidans, and Ferrimicrobium
(Kisel, 2003; Lu et al., 2010) whereas the neutrophile Geobacter as
well as acidophilic species (Acidiphilium, Acidobacteria, Acidocella,
and Acidithiobacillus) have been implicated in mediating ferric
iron reduction in these ecosystems (Lu et al., 2010).

Ferrous iron oxidation is an exergonic reaction, but for cycling
of iron to perpetuate in acidic streams, rivers and lakes, energy is
required to fuel the reduction of ferric iron, which may be micro-
bially mediated or an abiotic process. Both organic and inorganic

electron donors can be used by iron-reducing acidophiles. The
latter may arise from extraneous sources (e.g., leaf detritus in sur-
face waters) or derive from the indigenous primary producers
present. These include chemautotrophic bacteria such as Lep-
tospirillum and Acidithiobacillus spp., and photoautotrophic aci-
dophiles, which are predominantly eukaryotic micro-algae (Gross,
2000). A proportion of the inorganic carbon fixed by both groups
is released into the environments as organic compounds (cell
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FIGURE 5 | Redox transformations of iron and sulfur in stratified
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exudates and lysates) that can be utilized by heterotrophic and
mixotrophic iron-reducing prokaryotes. The nature and com-
position of organic exudates arising from acidophilic primary
producers varies from species to species, however, and this impacts
their potential utilization by organotrophic acidophiles. For exam-
ple, glycolic acid was identified by Nancucheo and Johnson (2010)
as a significant exudate (accounting for up to 24% of total dis-
solved organic carbon) in cultures of iron- and sulfur-oxidizing
acidophiles but was shown to be utilized by relatively few species
(mostly Firmicutes) of organotrophic acidophiles. In contrast,
monosaccharides (fructose, glucose and mannitol) identified in
exudates of the acidophilic algae Euglena mutabilis and Chlorella
protothecoides var. acidicola were found to support the growth of
both iron-reducing and sulfate-reducing acidophiles (Nancucheo
and Johnson, 2011). These findings suggest that reduction of both
ferric iron and sulfate can be more active processes in surface
acidic environments where acidophilic algae are active (such as at
Cantareras) than in subterranean sites like the Cae Coch mine.
Reduced sulfur and hydrogen can also act as inorganic electron
donors for iron reduction by some species of acidophiles (John-
son and Hallberg, 2009). The former can arise by a variety of routes
in extremely acidic environments. For example, elemental sulfur
and sulfur oxy-anions are formed as by-products of the abiotic
oxidation of pyrite and other sulfide minerals by (microbially gen-
erated) ferric iron (Rohwerder et al., 2003), and hydrogen sulfide
may be generated by sulfur- and sulfate-reducing prokaryotes in
anaerobic sediments in acid lakes and streams. However, dissimila-
tory sulfur- and sulfate-reduction also requires a suitable electron
donor, which may again be either organic or inorganic (hydro-
gen). Hydrogen, therefore, has a potentially important (though
currently unknown) role in fueling ferric iron reduction (directly
or indirectly) in acidic environments, where it may be formed via
the acid dissolution of metals (e.g., relics of mining activities) and
some minerals.

water column
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FIGURE 6 | Schematic of the different microbial and abiotic routes of
ferric iron reduction in an acidic (pH < 3) stream, river, or pit lake.
Abiotic iron oxidation proceeds slowly in these environments, and is
primarily mediated by prokaryotic microorganisms.

Ferric iron reduction in acidic waters can also, however, be
mediated by solar energy. Diez Ercilla et al. (2009) showed that
solar radiation was a major driver of diel changes in ferrous iron
concentrations (10-90 M) recorded in an acidic (pH 2.8) pit lake
in the Iberian pyrite belt. The kinetics of photo-reduction of iron
were shown to be zero-order and to be a function of tempera-
ture and the intensity of solar radiation, but were found to be
independent of ferric iron concentration. Wavelengths within the
UV-A spectrum and part of the visible spectrum (400-700 nm)
were both shown to be active in iron reduction in the acidic lake.
This is a particularly significant observation as it explains how
iron cycling can perpetuate in acidic waters, such as acid mine
drainage streams and pit lakes, in the absence of either inorganic
or organic reductants, or of iron-reducing and sulfate-reducing
bacteria. In addition, photochemical regeneration of ferrous iron
explains why numbers of iron-oxidizing acidophiles can be main-
tained or even increase when their primary energy source (e.g.,
pyrite) is exhausted.

Iron cycling in acidic waters, highlighting the various possible
routes of ferric iron reduction, is summarized schematically in
Figure 6.

TECHNOLOGICAL APPLICATIONS OF MICROBIAL IRON
0XIDO-REDUCTION AT LOW pH

Acidophilic iron-metabolizing prokaryotes are increasingly used
in biotechnologies, the longest established of which is “biomining.”

TECHNOLOGIES UTILIZING ACIDOPHILIC IRON-OXIDIZERS
The discovery of the first bacterium (At. ferrooxidans) shown, in
the late 1940s, to oxidize iron in acidic liquors and, several years
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later, demonstrated to accelerate the oxidative dissolution of pyrite
and other sulfide minerals, was relatively quickly followed up by
the first full-scale industrial application that used this acidophile
(a dump copper leaching operation in Utah, in the mid-1960s).
In reality, human civilisations had been exploiting the abilities of
acidophiles to solubilize metals from ores for many years, recover-
ing bioleached metals (chiefly copper, via cementation) from mine
waters at the Rio Tinto mine in Spain, Mynydd Parys in Wales, the
Song Guo Mountain and other locations in China, and probably
elsewhere in the world. Since the 1960s there have been many
developments and refinements in both the engineering design
and in understanding the mineral bioprocessing. Biomining tech-
nologies have also diversified into recovering metals other than
copper, including gold, uranium, nickel, cobalt and zinc. More
details accounts of biomining can be found in Rawlings (2002);
Rawlings and Johnson (2007a); and Johnson (2010).

Ferric iron is a powerful oxidizing agent in aqueous solutions,
and can degrade a variety of minerals, including metal sulfides.
It follows, therefore, that any prokaryote that can oxidize ferrous
iron in an extremely acidic (pH < 3) medium should, in theory, be
able to accelerate the dissolution of such minerals. This indeed has
proven to be the case, with all of the iron-oxidizing bacteria listed
in Table 1 having been reported to also oxidize pyrite, though
some (e.g., Fm. acidiphilum) only do this when supplied with
organic carbon, which may originate from an extraneous source
(e.g., added yeast extract) or from a sulfur-oxidizing autotroph
in a mixed culture. The most numerous iron-oxidizing prokary-
otes in commercial operations tend, however, to be autotrophs.
For example L. ferriphilum, has frequently been reported to be
the major primary mineral-degrader in stirred tanks that operate
between 35° and 45°C. Although iron-oxidizing prokaryotes are
the major players in the bioprocessing of sulfide ores and concen-
trates, these are members of microbial consortia in commercial
operations. These consortia include “secondary” sulfur-oxidizing
(acid-generating) prokaryotes, and “tertiary” heterotrophic or
mixotrophic acidophiles that degrade the small molecular weight
organic compounds, such as glycolic acid, that are excreted by
autotrophic iron- and sulfur-oxidizers and which could otherwise
accumulate to inhibitory concentrations, especially in tank leach-
ing operations, as well as the “primary” iron-oxidizers (Rawlings
and Johnson, 2007b). Some acidophiles can assume more than one
role in such consortia, for example the heterotrophic iron-oxidizer
Ferroplasma (Figure 7). Although, as also indicated in Figure 7,
dissolution of sulfide minerals by ferric iron does not involve mol-
ecular oxygen, the process does not continue unless the ferrous
iron generated by this reaction is re-oxidized to ferric. This micro-
bially catalyzed reaction requires molecular oxygen, and oxygen is
also consumed during the oxidation of reduced sulfur interme-
diates and the catabolism of organic materials, and therefore the
process is described as “oxidative mineral dissolution.”

The concept of using iron-oxidizing acidophiles to remediate
mine waters has a long history, but only recently has such a sys-
tem been demonstrated at pilot-scale level. Many streams and
ground waters associated with the mining of coals and metals
are enriched with soluble ferrous iron. The most effective way
of removing soluble iron is first to oxidize ferrous iron to fer-
ric, thereby facilitating the formation of ferric minerals such as
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FIGURE 7 | The oxidative dissolution of pyrite in acidic liquors,
showing the major microorganisms identified in the biooxidation of
refractory gold concentrates and the bioleaching of a cobaltiferous
pyrite concentrate processed at ca. 40°C. Those reactions that consume
oxygen are indicated; “DOC" is dissolved organic carbon.

schwertmannite and ferrihydrite, which may require some addi-
tional input of alkaline materials. As noted previously, abiotic rates
of ferrous iron oxidation in low pH waters tend to be very slow,
but can be greatly accelerated by iron-oxidizing acidophiles. Since
autotrophic species use the energy from ferrous iron oxidation to
support their growth and have minimal nutritional requirements,
the use of these acidophiles to remediate iron-contaminated waters
is particularly attractive. Specific rates of iron oxidation (previous
section) can provide important fundamental data when determin-
ing the size of a reactor required for this purpose. The maximum
rate of iron oxidation by a mesophilic bacterium such as At. fer-
rooxidans is ~5 x 1078 g cell ! min~! (based on data shown in
Table 2). Acidic mine water discharged at 10Ls™! and contain-
ing 500 mg ferrous iron L~! would require a reactor containing
~6 x 10%° iron-oxidizing bacteria. Cell numbers of autotrophic
iron-oxidizers are typically ~5 x 10’ mL~! in media containing
500 mg iron L™, so that a minimum bioreactor volume of just
over 10m?® would be required to oxidize all of the iron present.
In reality, a much larger reactor would be required as the bacteria
would need to be immobilized on a support material to prevent
them being washed out, in a continuous flow system.

A pilot-scale (10 m?® reactor volume) system in Nochten, east-
ern Germany, is being used to oxidize ferrous iron and precipitate
schwertmannite from acidic (pH 5.3) ground water containing,
typically, 350 mg ferrous iron L~! with a flow rate of 2,500 Lh~!
(Jannecketal.,2010). The iron oxidation efficiency is ~70%, which
is partly due to the temperature at which the system operates (rang-
ing from 12 to 18°C). In addition, hydrolysis of ferric iron causes
the pH of the oxidized groundwater to fall to 3.0, which results
in a considerable proportion of the ferric iron being retained
in solution. The Nochten plant was originally inoculated with
At. ferrooxidans and L. ferrooxidans, but analysis of the indige-
nous microbial population several months after the plant was
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commissioned revealed that these bacteria were not detectable,
but that another iron-oxidizing acidophile (“Fv. myxofaciens”) and
bacteria related to the neutrophilic iron-oxidizer Gallionella, were
the dominant bacteria present (Heinzel et al., 2009). “Fv. myxofa-
ciens” has also been used in laboratory-scale systems to remediate
mine waters (Rowe and Johnson, 2008; Hedrich and Johnson,
2012). Besides its fast specific rate of iron oxidation (Table 2),
“Fv. myxofaciens” also has the important advantage of producing
copious amounts of extracellular polymeric substances, by which
itattaches to a variety of materials (including glass, plastics, metals,
and minerals) and causing it to grow as long macroscopic stream-
ers in flowing waters. This obviates the need of an inert support
material for these bacteria and maximizes the biovolume of an
operating reactor. A modular system for remediating acidic iron-
rich mine waters using “Fv. myxofaciens” to oxidize ferrous iron
and controlled pH adjustment to precipitate schwertmannite has
recently been described by Hedrich and Johnson (2012). The sys-
tem was shown to be highly efficient (an equivalent 10 m® primary
reactor was calculated to be able to process ~2.7 L pH 2 mine water
containing 250 mg L~! ferrousiron s~!) and produced pure-grade
schwertmannite from mine water containing elevated concentra-
tions of copper, zinc, aluminum, and manganese, in addition to
iron. Concentrations of soluble iron were lowered from 250 gL~}
in the untreated water to <1 mgL~! in the processed water.

TECHNOLOGIES UTILIZING ACIDOPHILIC IRON-REDUCERS

Development of technologies that use iron-reducing acidophiles
has lagged well behind those that use iron-oxidizers. However,
there has been at least one recent report that has demonstrated the
potential for utilizing acidophilic iron-reducing bacteria to extract
metals from mineral reserves. Not all metals occur exclusively as
oxidized ores. Nickel is found within sulfide minerals (such as
pentlandite) in, for example, reduced black shales, but is more
abundant in the lithosphere in oxidized lateritic ores (~73% of
estimated global reserves). In the case of limonitic laterites, nickel
is intimately associated with ferric oxyhydroxide minerals such
as goethite (FeOOH). Using an oxidative dissolution approach
to process such ores is obviously not viable, whereas a reductive
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