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The unicellular, euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 is a model
organism for laboratory-based studies of cyanobacterial metabolism and is a potential plat-
form for biotechnological applications.Two of its most notable properties are its exceptional
tolerance of high-light intensity and very rapid growth under optimal conditions. In this
study, transcription profiling by RNAseq has been used to perform an integrated study of
global changes in transcript levels in cells subjected to limitation for the major nutrients
CO2, nitrogen, sulfate, phosphate, and iron. Transcriptional patterns for cells grown on
nitrate, ammonia, and urea were also studied. Nutrient limitation caused strong decreases
of transcript levels of the genes encoding major metabolic pathways, especially for com-
ponents of the photosynthetic apparatus, CO2 fixation, and protein biosynthesis. Uptake
mechanisms for the respective nutrients were strongly up-regulated.The transcription data
further suggest that major changes in the composition of the NADH dehydrogenase com-
plex occur upon nutrient limitation. Transcripts for flavoproteins increased strongly when
CO2 was limiting. Genes involved in protection from oxidative stress generally showed
high, constitutive transcript levels, which possibly explains the high-light tolerance of this
organism. The transcriptomes of cells grown with ammonia or urea as nitrogen source
showed increased transcript levels for components of the CO2 fixation machinery com-
pared to cells grown with nitrate, but in general transcription differences in cells grown on
different N-sources exhibited surprisingly minor differences.
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INTRODUCTION
Synechococcus sp. strain PCC 7002 (hereafter Synechococcus 7002),
a euryhaline, unicellular cyanobacterium, is capable of growth
over a wide range of NaCl concentrations, and is extremely tol-
erant of high-light intensities (Batterton and Van Baalen, 1971;
Nomura et al., 2006b). When grown under optimal condi-
tions [38˚C, 1% (v/v) CO2 in air, at saturating light intensity,
∼250 μmol photons m−2 s−1] with a reduced nitrogen source or
nitrate, its doubling times of 2.6 and 4 h, respectively, are the
shortest currently reported for any cyanobacterium (although
two closely related strains can grow ∼10% faster; G. Shen
and D. A. Bryant, unpublished). Synechococcus 7002 is easily
and naturally transformable (Stevens and Porter, 1980; Frigaard
et al., 2004), its complete genomic sequence is available (see
http://www.ncbi.nlm.nih.gov/), and a system for complementa-
tion of mutations, and overproduction of proteins is available
(Xu et al., 2011). The organism is relatively easy to handle and
has become a laboratory model organism for transcriptome, pro-
teome, and metabolome studies (Baran et al., 2010; Bennette et al.,
2011; Ludwig and Bryant, 2011; Zhang and Bryant, 2011). All
of these traits make Synechococcus 7002 an excellent platform
for the production of biofuels as well as other biotechnological
applications.

Most cyanobacteria are photolithoautotrophs, which means
that sunlight serves as the primary energy source, electrons are
obtained from an inorganic source (i.e., water), and CO2 is the
sole carbon source. Like other organisms, cyanobacteria addition-
ally require sources of N, S, and P for the production of new
biomass. Because many Fe–S proteins and cytochromes are found
in the photosynthetic apparatus (Cramer et al., 2005; Fromme
and Grotjohann, 2008), cyanobacteria additionally require rela-
tively large quantities of Fe for optimal growth. Thus, studies have
shown that cyanobacteria regulate transcription in response to
changes in light as well as these essential nutrients; this has been
demonstrated in transcriptomic studies in several cyanobacterial
strains (Hihara et al., 2001; Gill et al., 2002; Singh et al., 2003;
Wang et al., 2004; Nodop et al., 2008; Zhang et al., 2008; Ludwig
and Bryant, 2011).

Like other autotrophs, cyanobacteria take up carbon in its inor-
ganic forms as CO2 and/or bicarbonate. Cyanobacteria produce
carboxysomes, specialized bacterial microcompartments (Yeates
et al., 2008; Kinney et al., 2011), which contain ribulose bispho-
sphate carboxylase/oxygenase (RuBisCO), the key enzyme of the
CO2 reduction pathway (Tabita, 1994). Furthermore, cyanobac-
terial cells have multiple mechanisms for CO2 and bicarbonate
uptake as well as mechanisms to increase the local intracellular
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CO2 concentration within the carboxysome (Badger and Price,
2003; Yeates et al., 2008; Cannon et al., 2010). Some cyanobacte-
ria can additionally use a few simple organic compounds, sugars,
or alcohols as carbon and/or energy sources (Bottomley and van
Baalen, 1978; Anderson and McIntosh, 1991; Eiler, 2006). Syne-
chococcus 7002 can grow on glycerol as its carbon and energy
source (Lambert and Stevens, 1986).

Most cyanobacteria can use nitrate, nitrite, and ammonia as
primary N-sources, although urea and organic N-compounds can
also be used in some cases (Flores and Herrero, 1994). Some
cyanobacteria, mainly filamentous heterocystous strains, are addi-
tionally able to reduce dinitrogen to ammonia via nitrogenase
(Berman-Frank et al., 2003; Seefeldt et al., 2009). Although Syne-
chococcus 7002 does not produce nitrogenase, it has been reported
to use a wide variety of organic compounds as sole nitrogen
source (Kapp et al., 1975). Most if not all cyanobacteria can
use sulfate as sole S-source. Because the sulfate concentration
of seawater is much higher than in typical freshwater habitats
(Holmer and Storkholm, 2001; Giordano et al., 2005), sulfate is
rarely a limiting nutrient in marine habitats. On the other hand,
P- and N-levels are often growth-rate limiting for cyanobacteria
in freshwater habitats but are often less problematic in marine
environments (Guildford and Hecky, 2000). Fe is often growth-
limiting in marine environments (Veldhuis and de Baar, 2005),
but Synechococcus 7002 produces a family of siderophores, syne-
chobactins A–C (Ito and Butler, 2005) to facilitate Fe acquisition.
The genes for the synthesis of synechobactin are encoded on plas-
mid pAQ7 along with other proteins for Fe uptake (see GenBank
Accession NC_010474.1). The Synechococcus 7002 genome also
encodes various transport systems for uptake of phosphate, sulfate,
and various N-sources.

Cyanobacteria must acclimate to changes in their energy sup-
ply (provided by light), and they must also have mechanisms
to cope with fluctuations in nutrient availability that occur in
their natural environments. In a previous study that focused
on the effects of light and oxygen on transcription, we demon-
strated that global transcription profiling in Synechococcus 7002
can effectively be performed by cDNA sequencing (a technique
now often referred to as RNAseq). This method provides suffi-
cient sequencing depth to detect changes in genes that are only
rarely transcribed, even at moderate sequencing depth and with-
out using methods to deplete ribosomal RNA (Ludwig and Bryant,
2011). In this study we present an integrated global transcriptome
study of Synechococcus 7002 that compares the specific cellular
responses to limitation for each macronutrient. Specifically, we
present the global transcription profiles of this model cyanobac-
terium in response to limitation for carbon, nitrogen, sulfur, phos-
phorus, and iron. Previous global transcriptome studies on the
effects of nutrient limitation were performed by microarray analy-
ses in isolated studies from various laboratories in the freshwater
organism Synechocystis sp. PCC 6803 for carbon (Eisenhut et al.,
2007), nitrogen (Osanai et al., 2006), sulfur (Zhang et al., 2008),
and iron (Singh et al., 2003; Shcolnick et al., 2009). Most previ-
ous studies on the effects of nitrogen limitation in cyanobacteria
have been performed in the heterocystous freshwater/soil strains
Nostoc (Anabaena) sp. PCC 7120 and Nostoc punctiforme PCC
73102, which differentiate heterocysts and are capable of fixing

dinitrogen (Ehira et al., 2003; Sato et al., 2004; Campbell et al.,
2007; Christman et al., 2011). Iron limitation has also been studied
in the freshwater strain Synechococcus elongatus PCC 7942 (Nodop
et al., 2008) and the marine Prochlorococcus strains MED4 and
MIT9313 (Thompson et al., 2011). The effect of phosphate limita-
tion on the global transcriptome, however, has only been studied
in the marine strains Synechococcus sp. WH8102 (Tetu et al., 2009;
Ostrowski et al., 2010) and Prochlorococcus strain MED4 (Steglich
et al., 2008). No single global transcriptomic study is available that
compares data from cells limited for all macronutrients for one
cyanobacterial strain cultivated under identical and well-defined
conditions. This information is a prerequisite for the development
of comprehensive metabolic models for a specific organism. We
additionally compared the transcription profiles of cells grown
with reduced nitrogen sources (ammonia and urea) to those of
cells grown with nitrate. In addition to identifying many nutrient-
specific acclimation processes, these comparisons identified some
general acclimation responses that occur in Synechococcus 7002
cells experiencing nutrient limitation.

MATERIALS AND METHODS
SAMPLE PREPARATION
Synechococcus 7002 cultures were grown in tubes containing
medium A (25-mL) supplemented with 1 mg of NaNO3 mL-1

(designated as medium A+; Stevens and Porter, 1980; Ludwig and
Bryant, 2011). The cultures were grown at 38˚C with continu-
ous illumination at 250 μmol photons m-2 s-1 and were sparged
with 1% (v/v) CO2 in air (These optimal growth conditions are
defined as “standard conditions.”). The reference cultures grown
under “standard” conditions were grown to OD730 nm = 0.7 (Lud-
wig and Bryant, 2011). Growth under low CO2 was performed in
A+ medium under standard temperature and light intensity, but
cultures were sparged with air [0.035% (v/v) CO2]. The cultures
used for N-, S-, and P-limitation studies were grown under “stan-
dard” conditions in complete A+ medium containing all nutrients
to an OD730 nm of ∼0.6–0.7 (i.e., prior to the onset of light limi-
tation). Cells were then harvested by centrifugation, washed twice
in a modified medium A (lacking the specified nutrient), and
were resuspended in medium A without the specified nutrient:
in medium A (lacking nitrate); in sulfate-free medium A+ that
contained MgCl2 × 6 H2O instead of 20.3 mM MgSO4 × 7 H2O;
or in phosphate-free medium A+. The resuspended cultures were
adjusted to an initial OD730 nm of 0.35 (for N- and S-limitation) or
0.25 (for P-limitation). The resulting cell suspensions were incu-
bated under standard temperature, light intensity, and aeration
and were harvested when OD730 nm reached 0.7. This procedure
allowed at least one doubling to occur under nutrient-limiting
conditions. Preliminary growth experiments (see Figure S1 in
Supplementary Material) showed that, by initiating the growth
limitation at the OD730 nm values specified above, the cultures
could still grow to the same final OD730 nm (i.e., 0.7) as cells har-
vested from standard conditions. Furthermore, the RNA yields
obtained from such cultures were sufficient for the preparation of
high-quality cDNA libraries.

Fe-limitation was induced by adding an Fe-binding chelator to
the growth medium instead of medium exchange (Shcolnick et al.,
2009). Preliminary growth experiments with Synechococcus 7002

Frontiers in Microbiology | Microbial Physiology and Metabolism April 2012 | Volume 3 | Article 145 | 2

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbial_Physiology_and_Metabolism
http://www.frontiersin.org/Microbial_Physiology_and_Metabolism/archive


Ludwig and Bryant Synechococcus transcriptome upon nutrient limitation

cultures showed that a 50-fold excess of deferoxamine mesylate B
was required to induce Fe-limitation, and that cells could continue
to grow for ∼1 more doubling under these conditions (Figure S2 in
Supplementary Material). At OD730 nm = 0.35, a final concentra-
tion of 720 μM deferoxamine mesylate B was added to a culture in
A+ medium (containing 14.4 μM iron), which was grown under
standard conditions until OD730 nm = 0.7.

Growth with different N-sources was performed in modified,
HEPES-buffered medium A, in which 25 mM HEPES, pH 8.0
replaced 8.3 mM Tris–HCl, pH 8.2. The medium was supple-
mented with 1 μM NiSO4 to avoid Ni-limitation (see Sakamoto
and Bryant, 2001). Apart from these modifications, all other
components were the same and had the same concentrations as
medium A. NaNO3 (12 mM), NH4Cl (10 mM), or urea (10 mM)
were added as N-sources. The cultures were grown under standard
conditions as described above to a final OD730 nm of 0.7.

RNA EXTRACTION
Cells were rapidly harvested by centrifugation (5 min, 5000 × g,
4˚C), and the cell pellets were frozen in liquid nitrogen and
stored at −80˚C until required. RNA samples for subsequent
cDNA library construction were prepared from frozen cell pellets
resulting from 20 to 30 mL liquid cultures.

For RNA purification, cells were resuspended in 10 mM Tris–
HCl, pH 8.0 (400 μL); lysozyme was added (4.5 mg mL−1 final
concentration); and the sample was incubated for 2 min at room
temperature. The sample was dispensed into two 1.5-mL reac-
tion tubes and acidic phenol–chloroform solution [400 μL; 1:1
(v/v), pH 4.3] and BugBuster Protein Extraction Reagent (400 μL;
Novagen) were added to each reaction tube for cell lysis and pro-
tein denaturation; the samples were vortexed two times for 1 min
and stored on ice between treatments. After cell lysis, the samples
were centrifuged (2 min, 10,000 × g, 22˚C), the aqueous phase was
extracted once more with phenol–chloroform solution, and the
combined extracts were finally extracted once with chloroform–
isoamyl alcohol (24:1, v/v). The RNA was precipitated from the
aqueous phase by adding one-tenth volume of 3.0 M sodium
acetate, pH 5.2 and 2.5 volumes of ethanol, and the precipitated
RNA was washed twice with 70% (v/v) ethanol. The RNA was
further processed using the High Pure RNA Isolation Kit (Roche)
according to the recommendations of the manufacturer. The RNA
pellet was resuspended in DNase incubation buffer (460 μL), and
RNasin (4 μL, Promega), and DNase I (60 μL) were added to the
samples, which were incubated for 1 h at 22˚C. After DNase I treat-
ment, the RNA was purified by size exclusion chromatography on
the provided spin-columns; this step removed RNA species smaller
than ∼300 nucleotides, including tRNAs and 5S rRNA.

RNA concentrations were determined using a NanoDrop ND-
1000 Spectrophotometer (Thermo Scientific), and a Qubit System
(Invitrogen) was also used to determine DNA concentration sep-
arately. The quality of the RNA samples was analyzed using a 2100
Bioanalyzer (Agilent).

cDNA LIBRARY CONSTRUCTION, SOLID™ SEQUENCING AND DATA
ANALYSES
Construction of cDNA libraries and SOLiD™ sequencing was per-
formed in the Genomics Core Facility at The Pennsylvania State

University (University Park, PA, USA). The cDNA libraries were
constructed from 0.5 μg RNA sample using SOLiD™ Whole Tran-
scriptome Analysis Kit (Applied Biosystems) and were barcoded
by using the SOLiD™ Transcriptome Multiplexing Kit (Applied
Biosystems). In brief, reverse transcription and library prepara-
tion included the following steps: fragmentation of RNA using
RNase III, ligation of the resulting RNA fragments (∼150 bases in
average) to adaptors via RNA Ligase 2, reverse transcription, and
amplification of cDNA (both starting from adaptor sequences).
SOLiD™ ePCR Kit and SOLiD™ Bead Enrichment Kit (both
Applied Biosystems) were used for processing the samples for
sequencing, and either the SOLiD™ 3 or 3 Plus protocol (Applied
Biosystems) was used for sequencing.

The sequence data have been submitted to the NCBI Sequence
Read Archive (SRA) under accession number SRP007372.

The 50-bp cDNA sequences obtained were mapped against the
Synechococcus 7002 genome by using the Burrows–Wheeler algo-
rithm (Li and Durbin, 2009), allowing four mismatches (≥92%
sequence identity). Sequences mapping to regions coding for ribo-
somal RNAs, and reads that did not map to unique positions, were
removed from the resulting mapped sequence files. Counting of
sequences covering each open reading frame (ORF), calculations
of the relative transcript abundance for each ORF and comparisons
of the relative transcript abundances between different condi-
tions/data sets were performed as described previously (Ludwig
and Bryant, 2011). The relative transcript abundances for cells
grown under “standard” conditions were obtained from a previ-
ous study (Ludwig and Bryant, 2011). Those reference values were
obtained by using the same experimental procedures as described
here, and those cultures were grown during the same time period.
The “standard” values were average values determined from three
independently grown cultures. Statistical analyzes were performed
as described (Ludwig and Bryant, 2011).

RESULTS AND DISCUSSION
NUTRIENT LIMITATION CAUSES LOWER EXPRESSION OF GENES
ENCODING THE PROTEIN BIOSYNTHESIS MACHINERY AND ENZYMES
OF MAJOR METABOLIC PATHWAYS
Transcript profiles of cells experiencing nutrient limitation (C,
N, S, P, or Fe) or grown with alterative N-sources were deter-
mined. As shown in Table 1, ∼10–17 million reads obtained from
SOLiDTM sequencing were mapped for each growth condition.
The sequences mapping to genes other than those for the rRNA
operons varied from 5.5 to 17.4% of the total mapped reads. The
relative transcript abundances for each annotated protein-coding
ORF of the genome were calculated from these data. Transcript
levels for all genes under all conditions of this study are provided
in Table S1 in Supplementary Material.

Limiting the supply of any essential nutrient will impair cel-
lular metabolism and will inevitably result in slower growth.
Moreover, initially that slower growth is characteristically lin-
ear rather than exponential (see Sakamoto and Bryant, 1998). In
order to monitor changes in the global transcriptome, transcript
abundances obtained for cells subjected to nutrient limitation
were compared to those of cells grown under nutrient-replete,
“standard conditions.” Gene-by-gene comparisons for all condi-
tions presented in this study, which also provide p-values for the
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Table 1 | Number of sequences obtained by SOLiD™ sequencing for the samples analyzed in this study.

Sample Mapped reads Mapped in rDNA

regions

Percent rDNA Remaining mapped

reads

Uniquely mapped

reads

Percent unique reads

Low CO2 12,173,835 10,051,192 82.6* 2,122,643 2,041,396 96.2

N-limited 13,737,066 12,171,332 88.6 1,565,734 1,541,960 98.5

S-limited 17,059,268 15,695,180 92.0 1,364,088 1,298,737 95.2

PO4-limited 12,524,188 11,530,056 92.1 994,132 975,574 98.1

Fe-limited 11,791,982 10,398,433 88.2 1,393,549 1,374,474 98.6

Nitrate 12,976,083 12,217,966 94.2 758,117 740,385 97.7

Ammonia 10,571,843 9,991,998 94.5 579,845 563,335 97.2

Urea 13,447,715 12,550,036 93.3 897,679 877,885 97.8

*This sample was treated to deplete rRNAs (see Ludwig and Bryant, 2011).

The number of reads obtained for the different samples, number of mapped reads, number of reads mapping within the rDNA regions and outside rDNA regions, and

the number of reads mapping uniquely (outside rDNA regions) are given for the individual samples.

statistical significance of each result, are provided in Table S2
in Supplementary Material. Figure 1 shows scatter plots for the
relative transcript abundances of all ORFs in cells subjected to
different nutrient limitation conditions compared to those under
“standard” (replete) conditions. The parallel gray lines in each
panel demarcate 2-fold changes, and many genes clearly showed
greater increases or decreases. It is obvious from these plots that
the response to P-limitation (Figure 1D) was much more limited
than the responses to limitation for other nutrients. The perturba-
tions caused by these limitations had a much greater impact on the
overall transcript pattern than was previously observed for high
irradiance or dark treatments of Synechococcus 7002, in which only
the combined effects of changing two parameters (switching from
light to dark and from oxic to anoxic conditions) caused a compa-
rably severe change in the global transcript pattern (Ludwig and
Bryant, 2011).

Figure 2 summarizes graphically the changes in transcript lev-
els of genes involved in major metabolic pathways and nutrient
uptake mechanisms under different nutrient limitations compared
to “standard” growth conditions. A detailed listing of the compar-
isons (showing exact values and p-values for all comparisons) for
all genes coding for components of the respective pathways or cell
components is given in Table S3 in Supplementary Material. The
impairment of cell growth during nutrient limitation was revealed
by large decreases in transcript levels for genes encoding ribosomal
protein subunits and for genes coding for major metabolic func-
tions (i.e., reductant and energy production by PSII, PSI, and the
light harvesting complexes; ATP synthesis by the ATP synthase; and
CO2 fixation; Figure 2). Furthermore, transcript levels for genes
coding for enzymes involved in heme and chlorophyll biosynthe-
sis decreased (Table S3 in Supplementary Material). These results
generally agree with observations reported for microarray stud-
ies in other cyanobacteria during C-, N-, S-, P-, and Fe-limitation
(Singh et al., 2003; Wang et al., 2004; Osanai et al., 2006; Zhang
et al., 2008; Tetu et al., 2009; Schwarz et al., 2011). However, in
contrast to cyanobacterial strains that perform dinitrogen fixa-
tion, Synechococcus 7002 experiences the full effect of N-limitation
when nitrate is removed from the growth medium. Transcript
levels for genes encoding other components of the photosynthetic
electron transport chain (cytochrome b6f complex, cytochrome

c6, ferredoxin, and ferredoxin–NADP+ reductase) were relatively
unaltered (Figure 2). It has been reported that genes encoding the
cytochrome b6f complex in Synechocystis sp. PCC 6803 have lower
transcript levels during S-, Fe-, or CO2-limitation (Singh et al.,
2003; Wang et al., 2004; Zhang et al., 2008). However, transcript
levels for these genes decreased only slightly under nutrient lim-
itation conditions in Synechococcus 7002. The situation with the
psbA gene family (encoding the D1 protein of PSII) as well as a few
phycobilisome-related genes is more complex and showed differ-
ences from the above-mentioned general trend (lower transcript
levels when a nutrient was limiting; see Text S1 in Supplementary
Material).

Transcript levels for nblA, which encodes a small protein that
potentiates the degradation of phycobiliproteins by Clp protease
(Baier et al., 2004; Barker-Astrom et al., 2005; Bienert et al., 2006;
Karradt et al., 2008), showed very large increases upon nutrient
deprivation (Figure 2). Transcript levels for nblA increased ∼60-
fold under N-limitation (Figure 1B); limitation for other nutrients
also resulted in large increases in nblA transcript levels: ∼10-fold
in cells grown under low CO2 or S-limitation; and 2- and 3-fold
increases under P- and Fe-limitation, respectively (Table S3 in Sup-
plementary Material). In general, the nblA transcription patterns
observed here for Synechococcus 7002 were similar to the patterns
of phycobiliprotein degradation observed for Synechococcus sp.
PCC 7942 (Collier and Grossman, 1992, 1994). However, in a
study with Synechocystis sp. PCC 6803, it was shown that NblA-
mediated bleaching was most severe upon N- and Fe-limitation;
S-limitation did not cause a large increase of nblA transcripts,
and cells correspondingly did not undergo subsequent bleaching
(Singh and Sherman, 2000; Richaud et al., 2001).

TRANSCRIPTIONAL REGULATION OF CO2 FIXATION
The reducing equivalents and ATP generated by the activities of
the photosystems are mostly channeled into CO2 fixation via
the Calvin–Benson–Bassham (CBB) cycle in cyanobacteria. Ribu-
lose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the key
enzyme of the CBB cycle and is encoded by the rbcL and rbcS genes
(Badger and Bek, 2008; Tang et al., 2011). Transcripts for the rbcLS
genes decreased sharply upon N- (∼10-fold) and S-limitation (3-
to 5-fold), but were only slightly lower under Fe-limitation and
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FIGURE 1 | Changes in the relative transcript abundance upon nutrient

limitation. The scatter plots show the relative transcript abundances (A) when
grown with low CO2 supply and after (B) nitrogen, (C) sulfur, (D) phosphate,

and (E) iron deprivation compared to that for “standard” growth conditions
(mean of three biological replicates). The gray lines give 2-fold changes in
either direction. Selected genes are identified by name/locus tag number.

were largely unaffected by P-limitation (Figure 2). When cells
were grown with limiting CO2, (i.e., the cultures were sparged

with air instead of 1% (v/v) CO2-enriched air), transcript levels
for the rbcLS genes increased 2- to 4-fold. RuBisCO is enclosed
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FIGURE 2 | Overview over the regulation pattern in response to nutrient

limitations for a selection of cellular components. The figure summarizes
the general regulation pattern in response to limitation of CO2, nitrogen,
sulfur, phosphorus, and iron. The changes of the relative mRNA levels under
the respective nutrient limitation are compared to “standard” growth
conditions. These ratios are displayed for genes coding for a selection of
cellular functions, among these the photosystems (PSI, PSII; for PSII the
three psbA genes were disregarded since they replace each other in
response to different conditions), phycobilisomes, the phycobilisome
degradation protein NblA, components of the photosynthetic electron

transport chain, the carboxysome, the Calvin–Benson–Bassham cycle, the
NADH dehydrogenase complex, the F0F1 type ATP synthase, the terminal
oxidases, and the ribosome. Further, the genes coding for uptake systems for
ammonia, nitrate, sulfate, phosphate (pstABCS), and iron (all genes listed in
Table S3 in Supplementary Material except those for regulation, siderophore
biosynthesis, and Fe–S cluster assembly) are shown. The nitrate and nitrite
reductases and the glutamine synthetases (glnA, glnN ), the siderophore
biosynthesis (SYNPCC7002_G0019-G0023), and Fe–S cluster assembly
(sufBCDS) are highlighted. Finally, the changes in the transcript levels of two
flavoproteins, the superoxide dismutase, and catalase are given.
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in sub-cellular microcompartments called carboxysomes, which
also harbor a carbonic anhydrase encoded by icfA (Yeates et al.,
2008; Cannon et al., 2010; Espie and Kimber, 2011). Similar to
the rbcLS genes, CO2-limitation also caused transcript levels of
the ccm genes, encoding structural subunits of the carboxysomes
(ccmK, ccmL, ccmM, ccmN ), and icfA to increase up to 5-fold. N-
limitation resulted in a very dramatic decrease (up to 20-fold) in
mRNA levels for ccm genes, whereas the transcript levels for these
genes were slightly lower in cells subjected to S- and P-limitation
or at about standard level after Fe-limitation. Interestingly, tran-
script levels for icfA were only slightly lower (2-fold) during N-
and P-limitation but were slightly higher (less than 2-fold) when
cells were S- or Fe-limited (Table S3 in Supplementary Material).
Transcript levels for other genes encoding enzymes of the CBB
cycle also changed during nutrient limitation. Under N-limitation
mRNA levels decreased up to 10-fold, but the impact of limita-
tion for other nutrients, in particular CO2, was less significant
(mRNA levels decreased 2- to 3-fold at most; Figure 2). The gen-
erally lower transcript levels for genes encoding enzymes of the
CBB cycle are consistent with a general decrease in biosynthetic
activities in nutrient-limited cells compared to cells growing under
optimal conditions (see above). A slight decrease of transcript lev-
els of CBB cycle genes under low CO2 might indicate that cells only
require increased levels of the rate-limiting enzyme, RuBisCO,
which directly interacts with CO2. Adequate levels of the other
enzymes may already exist to meet the biosynthetic demand under
CO2-limited growth conditions.

IMPACT OF NUTRIENT LIMITATION ON CARBOHYDRATE DEGRADATION
Transcript levels for genes encoding enzymes of carbohydrate
metabolism also changed in response to nutrient limitation.
Fructose-bisphosphate aldolase (class I), which is encoded by fbaB
(SYNPCC7002_A0010) and which showed higher transcript lev-
els in the dark (Ludwig and Bryant, 2011), probably encodes the
enzyme involved in carbohydrate catabolism. Transcript levels for
this gene were higher under all nutrient limitation conditions (see
Table S3 in Supplementary Material). However, the transcript lev-
els for most other genes involved in carbohydrate degradation
pathways did not change very much. Interestingly, transcript levels
for phosphoenolpyruvate synthase (ppsA), which increased more
than 100-fold in cells exposed to darkness (Ludwig and Bryant,
2011), had 2-fold higher transcript levels in cells grown under
CO2-limitation and 5-fold higher transcript levels in P-limited
cells. When cultures were S- or Fe-limited, the mRNA levels of
ppsA were ∼2-fold lower compared than that of cells grown under
standard conditions. Transcript levels for the pyk gene, encod-
ing the pyruvate kinase, were lower under all nutrient limitation
conditions (Table S3 in Supplementary Material), and those for
the pyruvate dehydrogenase complex and the pyruvate:ferredoxin
oxidoreductase were unchanged or decreased up to 3-fold. These
differences suggest that the increase in ppsA transcripts during P-
limitation is probably a specific, acclimative response (phosphate is
one of the substrates of PpsA). Transcript levels for genes encoding
for components of fermentative metabolism, d-lactate dehydro-
genase (ldhA), and hydrogenase, were generally lower in nutrient-
limited cells. When cells were P-limited, however, transcript lev-
els for the bidirectional hydrogenase, especially the diaphorase

subunits (hoxE, hoxF, and hoxU ), increased up to 3-fold. Tran-
script levels for these three genes also specifically increased in cells
exposed to dark anoxic conditions (Ludwig and Bryant, 2011). In
contrast to anabolic reactions generally, carbohydrate catabolism
remains relatively unchanged when cells are subjected to nutrient
limitation. This probably reflects the necessity to maintain these
elements of central metabolism under less favorable conditions.

ACCLIMATION OF THE NADH DEHYDROGENASE COMPLEX AND OF
TERMINAL OXIDASES
The Type-I NADH dehydrogenase complex (complex 1; Ndh
complex) is involved in feeding reducing equivalents into the res-
piratory chain and in cyclic electron flow around PS I (Ogawa
and Mi, 2007; Battchikova et al., 2010). The transcript levels for
genes encoding subunits of the Ndh complex changed signifi-
cantly when cells were subjected to various nutrient limitations
(Figure 2; Table S3 in Supplementary Material). The Ndh com-
plex in cyanobacteria (and in Synechococcus 7002) consists of 15
subunits (NdhA-O); several paralogous genes occur in cyanobac-
terial genomes for the NdhD and NdhF subunits (Ogawa and
Mi, 2007). In Synechococcus 7002 these are ndhD, ndhD1, ndhD2,
ndhD3, and ndhD4, and ndhF, ndhF3, and ndhF4. NdhD3/NdhD4
and NdhF3/NdhF4 are components of CO2 uptake and concen-
trating complexes that convert CO2 into bicarbonate (Battchikova
et al., 2010). Transcription profiles of the genes for these vari-
ants of the Ndh complex are listed separately (see below). Growth
with limiting CO2 caused up to a 6-fold increase in mRNA levels
for the ndh genes (ndhA–C, ndhE–O). Transcript levels for these
genes also increased up to 4-fold during S- and Fe-limitation,
but little or no change was observed upon N- or P-limitation.
An exception was the transcript level for ndhL, which encodes a
subunit involved in inorganic carbon transport; its mRNA level
increased 5-fold under N-limitation and also increased 3- to 4-
fold when cells were grown under CO2-limitation, S-limitation,
or Fe-limitation, but did not increase under P-limitation (Table
S3 in Supplementary Material). Synechococcus 7002 has only one
ndhF paralog (SYNPCC7002_ A0854) that is not involved in CO2

uptake (ndhF3, ndhF4; see below), but it has three paralogous
ndhD genes (annotated as ndhD, ndhD1, ndhD2) that do not
encode subunits of the complexes involved in CO2 uptake (ndhD3,
ndhD4; see below). Transcript levels for ndhD and ndhD1 gener-
ally did not change dramatically (Figure 2). However, transcript
levels for ndhD2 were higher under all nutrient limitation con-
ditions: 2.5-fold under P-limitation; 6-fold under N-limitation;
and 17- to 18-fold under CO2-limitation and Fe-limitation. The
transcript level for the ndhD2 gene exhibited one of the largest
of all increases, 54-fold, under S-limitation (see Figure 1C). The
mRNA level of ndhD2 increased 16-fold when Synechococcus 7002
cells were exposed to high-light (Ludwig and Bryant, 2011). These
data suggest that NdhD2 may replace other paralogous NdhD sub-
units under several stress conditions, when reducing equivalents
cannot be efficiently transferred to terminal electron acceptors
(mainly CO2, but also NO−

3 , SO2−
4 ). Because the NdhD subunit

is located within the hydrophobic, membrane-intrinsic domain of
the complex and is involved in proton pumping (Battchikova et al.,
2010; Efremov and Sazanov, 2011), a role in adjusting the ratio of
protons translocated to electrons transported has been suggested
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to be the reason for exchanging paralogous NdhD subunits
(Ludwig and Bryant, 2011). The general increase of transcripts
for all NADH dehydrogenase genes under some stress condi-
tions implies that cyclic electron transport, involving PS I and
the Ndh complex, may become more important during nutrient
stress. Transcription changes that could lead to modification of the
subunit composition of the Ndh complexes presumably produce
different and specialized properties, but this possibility must be
experimentally verified.

The Synechococcus 7002 genome encodes two cytochrome oxi-
dases, and it has been suggested that cytochrome oxidase-I serves
as the principal terminal oxidase of the respiratory chain, whereas
cytochrome oxidase-II has been suggested to play a role as sig-
nal transducer to measure the redox balance and trigger oxidative
stress responses (Nomura et al., 2006a,b). Transcript levels of the
cta-I genes were generally 1.5- to 3-fold higher during N-, P-, and
Fe- limitation (Figure 2; Table S3 in Supplementary Material), but
were 1.5- to 3-fold lower in CO2-limited cells. Transcript levels for
the cta-II genes increased moderately under all nutrient limitation
conditions presented in this study.

FACING OXIDATIVE STRESS: SUPEROXIDE DISMUTASE, CATALASE,
AND FLAVOPROTEINS
Alternative reductive pathways (CO2, nitrate, and sulfate reduc-
tion) could serve as sinks for excess electrons under some nutrient-
limiting conditions. Transcription data, however, do not support
the possibility that electrons are directed to other reductive path-
ways when a major nutrient is limiting (see Text S2 in Sup-
plementary Material). The inability of nutrient-limited cells to
transfer reducing equivalents generated by the photosystems into
anabolic reactions could result in over-reduction of the plasto-
quinone pool, which can contribute to the formation of reactive
oxygen and nitrogen species (ROS/RNS; Latifi et al., 2009; Kornas
et al., 2010). Principal components of the response to oxidative
stress in cyanobacteria include superoxide dismutase (sodB, SYN-
PCC7002_A0242), catalase (katG, SYNPCC7002_A2422), vari-
ous peroxidases (SYNPCC7002_A0117, SYNPCC7002_A0970),
cyanoglobin (glbN, SYNPCC7002_A1621; Scott et al., 2010), and
methionine sulfoxide reductases (msrA, SYNPCC7002_A0215 and
msrB, SYNPCC7002_A0672), which inactivate or repair the dam-
age caused by these toxic species. Surprisingly, although transcript
levels for a few of these genes increased modestly under some
stress conditions, the transcript levels for these genes were rel-
atively constant overall (Table S3 in Supplementary Material).
Under standard growth conditions, the relative transcript level
of sodB was similar to that for rbcL and rbcS, and the transcript
levels of most other genes involved in the oxidative stress response
were at least 10% of those for rbcLS (see Table S1 in Supplemen-
tary Material). We have reported previously that transcripts for
some genes encoding enzymes involved in carotenoid biosynthe-
sis in Synechococcus 7002 increased during nutrient limitation and
other stress conditions (Zhu et al., 2010). These observations are
consistent with the hypothesis that Synechococcus 7002 constitu-
tively expresses a high level of enzymes to cope with oxidative
stress, which might explain the natural tolerance of this organism
to conditions that cause severe or even lethal oxidative stress in
other cyanobacteria.

Besides superoxide dismutase, peroxidases, and catalase,
cyanobacteria synthesize flavoproteins that transfer electrons to
dioxygen, producing water, and thereby relieving the electron sur-
plus that leads to the formation of ROS/RNS (Helman et al.,
2003; Hackenberg et al., 2009). The Synechococcus 7002 genome
encodes two flavoproteins (flv1, SYNPCC7002_A1321 and flv2,
SYNPCC7002_A1743), and the transcript levels of these genes
did not change in response to N- and P-limitation (Figure 2).
S- and Fe-limitation, however, caused a slight increase of flv2
transcripts (∼1.5- to 2-fold) and flv1 transcripts increased nearly
3-fold. The largest increase in flv1 and flv2 transcripts was observed
when cells were CO2-limited. The flv2 transcripts increased 13-
fold, and flv1 transcripts increased 19-fold. These two genes were
among those exhibiting the largest increases in transcript abun-
dance for all genes in CO2-limited cells (Figure 1A). These results
suggest that Flv1 and Flv2 relieve over-reduction of the quinone
pool by transferring electrons to O2 when CO2 is limiting. Inter-
estingly, in cells exposed to high-light intensity for 1 h, which
produced some of the transcription changes characteristic of CO2-
limitation, a concerted up-regulation of flv1 and flv2 mRNAs was
not observed (Ludwig and Bryant, 2011). Thus, these flavoproteins
appear to play a more important role in cells subjected to chronic
CO2-limitation than in cells transiently exposed to high-light.

TRANSCRIPTIONAL UP-REGULATION OF ALTERNATIVE ELECTRON
CARRIERS AND OTHER (PUTATIVE) GENES
The Synechococcus 7002 genome has several genes annotated as
encoding “universal stress proteins” and also has genes for several
molecular chaperones (e.g., groEL, groES, dnaK, dnaJ ) and heat-
shock proteins (e.g., hspA, grpE, htpG). Transcript levels for these
genes, however, were largely unaffected under the nutrient limita-
tion conditions tested here (see Text S3 in Supplementary Mater-
ial). Although its role in electron transfer is not completely clear
(Shuvalov et al., 2001), cytochrome cM is a membrane-associated
c-type cytochrome, whose expression is enhanced under low-
temperature and high-light stress in Synechocystis sp. PCC 6803
(Malakhov et al., 1999). Transcript levels for cytM in Synechococcus
7002 were 14- to 24-fold higher under N-, S-, and Fe-limitation
(Table S3 in Supplementary Material) but decreased 2-fold under
P-limitation. The transcript level for cytM increased 6-fold after
a 1-h exposure to high-light (Ludwig and Bryant, 2011). These
data suggest that Cyt cM may be involved in electron transfer
under several stress conditions in cyanobacteria. There are two
genes annotated as cytochrome c6 (petJ ): SYNPCC7002_A0167
and SYNPCC7002_A2391. Transcript levels of both were gen-
erally lower under nutrient-limiting conditions (3-fold or less);
however, slight increases of mRNA (∼2-fold) were observed for
SYNPCC7002_A2391 under Fe- and S-limitation. The exchange
of a soluble c-cytochrome for a membrane-anchored cytochrome
could reflect changes in the periplasmic space or outer membrane
that might affect the functionality of soluble Cyt c6 (PetJ).

Transcript levels for two adjacent genes, SYNPCC7002_A1476
(“high-light inducible protein”) and SYNPCC7002_A1477 (con-
served hypothetical protein), increased 43- and 47-fold respec-
tively, which were among the largest increases observed in
response to N-limitation (Figure 1B). BlastP analyses indicate
that SYNPCC7002_A1476 encodes a high-light-inducible protein
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of the CAB/ELIP/HLIP family, proteins that are known to
increase in cells in response to high-light and nutrient stress (He
et al., 2001; Kilian et al., 2008). SYNPCC7002_A1477 encodes
a protein homologous to Arabidopsis thaliana protein PGR5,
which is a small, highly conserved protein required for ferre-
doxin:plastoquinone reductase-dependent, cyclic electron trans-
port (Munekage et al., 2002; Takabayashi et al., 2005; Yere-
menko et al., 2005). Transcript levels for these two genes
also increased markedly under Fe-limitation (15- and 13-fold),
CO2-limitation (4- and 10-fold), and S-limitation (3.5- and 9-
fold), and their transcript levels likewise increased 3.5- to 5-
fold after cells were exposed to high-light for 1 h (Ludwig and
Bryant, 2011). CAB/ELIP/HLIP proteins may bind chlorophyll(s)
and/or carotenoid(s) and play a role in binding these mole-
cules while cells acclimate to stress by altering the composi-
tion of their photosynthetic apparatus (Montane and Klopp-
stech, 2000; Havaux et al., 2003). Besides SYNPCC7002_A1476
there are three additional genes annotated as high-light-inducible
proteins: SYNPCC7002_A0186, SYNPCC7002_A0602, and SYN-
PCC7002_A0858, and transcript levels for all of them increased
when cells were exposed to high-light for 1 h (Ludwig and Bryant,
2011). CO2-, N-, S-, and Fe-limitation resulted in 3- to 20-fold
increases in transcript levels for SYNPCC7002_A0186 and SYN-
PCC7002_A0602, whereas transcripts for SYNPCC7002_A0858
only increased ∼2.5-fold in CO2- and S-limited cells (Table S3
in Supplementary Material).

SYNPCC7002_A2492 and SYNPCC7002_A2493 are adjacent
genes that showed the largest increases in transcript levels when
cells were grown with limiting CO2 (690- and 530-fold, respec-
tively; Figure 1A; Table S3 in Supplementary Material). Transcript
levels for these genes were also elevated in N-, S-, and Fe-limited
cells (4- to 13-fold). P-limitation resulted in a lower mRNA level for
SYNPCC7002_A2492 and a higher level for SYNPCC7002_A2493.
However, because the number of mapped reads for these genes was
low, the p-values for these particular comparisons are low and, thus
the quality of the calculated ratio values is uncertain (see Tables S1
and S2 in Supplementary Material). Transcript levels for these two
genes also increased after a 1-h exposure to high-light or darkness
(Ludwig and Bryant, 2011). A conserved domain analysis showed
that SYNPCC7002_A2492 is an integral membrane protein with
a PsiE (Phosphate-starvation-inducible E) domain. The expres-
sion of psiE in E. coli increased upon phosphate limitation and
carbon starvation (Kim et al., 2000); however, the function of this
protein is unknown. SYNPCC7002_A2493 has sequence similarity
to a C-terminal domain of Mo-nitrogenase and contains several
highly conserved Cys residues. The transcriptome data obtained
here and in our previous study (Ludwig and Bryant, 2011) show
that C-limitation caused the largest changes in transcription for
SYNPCC7002_A2492 and SYNPCC7002_A2493, which is simi-
lar to results observed in E. coli upon carbon limitation for psiE
(Kim et al., 2000). Unlike E. coli, phosphate does not appear to
be regulator of SYNPCC7002_A2492 and SYNPCC7002_A2493
in Synechococcus 7002.

SPECIFIC RESPONSES OF GENES CODING FOR UPTAKE SYSTEMS
Although some transcription changes were observed during lim-
itation for multiple nutrients, many transcription changes were

highly specific for limitation for a specific nutrient. Figure 2
summarizes changes of transcript levels for CO2-concentrating
complexes, for different transporters (bicarbonate, ammonia,
nitrate/nitrite, sulfate, phosphorus, and Fe compounds), for genes
involved in siderophore biosynthesis and in Fe–S cluster assem-
bly. Generally, limitation of a given nutrient results in strongly
increased mRNA levels for genes encoding related nutrient uptake
systems; a more detailed description is given in the Section “Text
S4 in Supplementary Material.” In some cases there are several
uptake mechanisms for specific nutrients showing different regu-
lation patterns. Synechococcus 7002, as cyanobacteria in general,
harbors two CO2-concentrating complexes, which are deriva-
tives of the NADH dehydrogenase complex (Battchikova et al.,
2010), a constitutive CO2-concentrating complex (ndhD4, ndhF4,
and cupB) showing slightly lower transcript levels upon CO2-
limitation and an inducible CO2-concentrating complex (ndhD3,
ndhF3, cupA and cupS), whose mRNA levels increased strongly
(9- to 16-fold) when cells are grown with a limiting CO2 sup-
ply (Figure 2; Table S3 in Supplementary Material). As found
in some other cyanobacteria, the Synechococcus 7002 genome
encodes different types of sulfate uptake systems (Kertesz, 2001).
A gene cluster for a sulfate ABC transporter (sbpA, cysT, cysW,
cysA, and an additional ORF SYNPCC7002_A0796, see Text S5 in
Supplementary Material) and a sodium/sulfate symporter (sac1)
showed strong increases in transcript levels under S-limitation
(Figure 1C), whereas the transcript level of a sulfate permease
(SYNPCC7002_A2424) was about 4-fold lower upon S-limitation.
These data suggest that at high sulfate concentrations, a sulfate
permease imports sulfate into cells, whereas at low sulfate con-
centrations an ATP-driven system with higher binding affinity
and a sodium/sulfate symporter take over this role. Further-
more, the data show that the more energy-consuming ABC trans-
porter is strongly down-regulated when sulfate is available in
the medium at a sufficient level. This finding is surprising in a
way, because Synechococcus 7002 is considered to be a marine
cyanobacterium and sulfate is usually not limiting in marine
environments. Therefore, these transcription data suggest that
Synechococcus 7002 has the ability to easily acclimate to freshwa-
ter habitats, in which S-limitation is more common, by inducing
a high-affinity uptake system. This may contribute to the cos-
mopolitan distribution of this organism, which has been found in
temperate climates around the world (Van Baalen, 1962; Rippka
et al., 1979).

TRANSCRIPTION PROFILES OF CELLS GROWING ON REDUCED
NITROGEN SOURCES
Synechococcus 7002 can utilize a variety of organic and inorganic
nitrogen compounds as N-sources in addition to nitrate (Kapp
et al., 1975), but it cannot reduce dinitrogen. Synechococcus 7002
cells were grown with nitrate, ammonia, or urea as N-sources,
and the global transcriptomes of these cells were compared. Urea
is hydrolyzed by the nickel-containing enzyme, urease, yielding
ammonia and CO2 (Sakamoto and Bryant, 2001). Ammonia is
the common end product of both nitrate/nitrite reduction and
the hydrolysis of urea, and it is the substrate for glutamine for-
mation by glutamine synthetase, which catalyzes the major step in
ammonia assimilation by cells (Eisenberg et al., 2000). Compared
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to the large changes observed upon nutrient limitation, differ-
ences in global transcription patterns were surprisingly minimal
when Synechococcus 7002 was grown with different N-sources.
An inspection of scatter plots for these comparisons (Figure 3)
reveals that transcript levels for only a few genes changed more
than 2-fold. This very high similarity between ammonia- and
nitrate-grown cells is surprising. For example, it has been reported
for Synechococcus sp. WH 8102 that more than 300 genes were
differentially expressed when cells were grown with ammonia
or nitrate as N-source (Su et al., 2006). Transcript abundances

for cells grown with urea and with ammonia were strikingly
similar (Figure 3C). The mRNA levels of genes encoding com-
ponents of the photosystems, phycobilisomes, heme/chlorophyll
biosynthesis pathway, and the photosynthetic electron transport
chain, which comprise a very large proportion of the total mRNA
pool, did not change as a function of the N-source (Table S3
in Supplementary Material). However, transcript levels for nblA
decreased 3-fold when cells were grown with ammonia (Figure 4);
this suggests that cells growing on ammonia probably have a
slightly higher phycobiliprotein content than cells growing on

FIGURE 3 | Differences in the relative transcript abundance in cultures

grown with different nitrogen sources. The scatter plots show the
relative transcript abundances of a culture grown with (A) ammonia and
(B) urea as nitrogen source compared to a culture grown with nitrogen. (C)

Shows a comparison of the relative transcript levels in a culture grown
with urea as nitrogen source compared to ammonia. The gray lines give
2-fold changes in either direction. Selected genes are identified by
name/locus tag number.
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FIGURE 4 | Overview over the regulation pattern for a selection of

cellular components when the culture was grown on different nitrogen

sources. This figure gives an overview of the transcription pattern in response
to growth with nitrate, ammonia, and urea as nitrogen source. The changes of

the relative mRNA levels are comparisons of ammonia or urea-grown cultures
to a nitrate-grown culture and of a urea-grown culture compared to a culture
grown with ammonia as nitrogen source. These ratios are displayed for genes
coding for a selection of cellular functions, see Figure 2.

nitrate. This is consistent with studies suggesting that phyco-
biliproteins can be used as a storage material for reduced car-
bon and nitrogen in cyanobacteria (Boussiba and Richmond,
1980).

As expected, major changes in transcript levels were observed
for genes involved in N-uptake and metabolism (summarized in
Figure 4). When cells were grown with a reduced N-source, the
transcript levels for the genes for nitrate/nitrite permease (nrtP),
nitrate reductase (narB), and nitrite reductase (nirA) decreased 5-
to 11-fold (see also Figures 3A,B). In contrast, transcript levels of

(methyl-) ammonium transporters (SYNPCC7002_A1070, SYN-
PCC7002_A2754, SYNPCC7002_A2208) and a high-affinity urea
transporter (urtA, urtB, urtC, urtD, urtE/SYNPCC7002_A0395-
A0398, SYNPCC7002_A1627; M. Romine and M. Serres, personal
communication) did not change strongly as a function of N-source
(Table S3 in Supplementary Material). These results are consistent
with the known preference of cyanobacteria and other organisms
for reduced N-sources (Flores and Herrero, 1994). Nitrate reduc-
tion is energetically expensive, and this eight-electron process can
consume up to 30% of the reducing equivalents produced by the
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photosynthetic light reactions (Flores et al., 1983; Ohashi et al.,
2011). Using reduced N-sources allows cells to channel these valu-
able reducing equivalents to CO2 reduction and other reductive
processes. The mRNA levels of both glutamine synthetase genes
(glnA and glnN ), which catalyze the fixation of ammonia by for-
mation of glutamine from glutamate, were unaffected by changing
N-sources (Figure 4); N-limitation, however, resulted in strongly
increased mRNA levels of those genes (Figure 2). The transcript
abundances of the genes encoding urease were nearly constant
(Table S3 in Supplementary Material), which indicates that urease
is constitutively present in Synechococcus 7002 cells.

Compared to nitrate-grown cells, transcript levels for the CO2

concentration and fixation mechanisms increased several-fold
when a reduced N-source was provided (Figures 3 and 4). Tran-
scripts for the rbcLS genes increased 3- to 5-fold, and the genes
encoding the structural subunits of the carboxysomes and the
carbonic anhydrase increased 1.5- to 4-fold, but transcript levels
for genes encoding other enzymes of the CBB cycle were essen-
tially constant. Transcripts for the inducible CO2-concentrating
complex (ndhD3, ndhD4, cupA, and cupS) and the sodium-
dependent bicarbonate transporter (sbtA) increased up to 3-fold
in cells grown with ammonia rather than nitrate. When cells
were grown with urea, however, only a slight increase in tran-
script level was observed for sbtA, and transcript levels for the
genes encoding the inducible CO2-concentrating mechanism were
essentially unchanged. When transcript levels of urea-grown cells
were directly compared to levels in ammonium-grown cells, tran-
script levels for rbcLS, the CO2-concentrating mechanism and
sbtA decreased ∼1.5- to 2.5-fold. These results indicate that cells
grown with urea have a lower requirement for CO2 and bicar-
bonate uptake compared to cells grown with ammonium. An
obvious explanation is that the CO2 produced internally during
the hydrolysis of urea lessens the requirement for uptake of exter-
nal CO2/bicarbonate (Mobley et al., 1995). Increased mRNA levels
were also observed for ndhD2 (ca. 4-fold) and for the two genes
encoding flavoproteins (1.5- to 2-fold) when cells were grown with
reduced N-sources. This could be a result of excess electrons in
those cells compared to a culture grown with nitrate, similar to
observations described above for cells grown with limited CO2

supply.

CONCLUSION
Global transcription profiles of Synechococcus 7002 in this inte-
grated study showed that this cyanobacterium has a com-
mon response to limitation for all macronutrients (C, N, S, P,
Fe). Cells experiencing nutrient limitation globally reduce tran-
script levels for the photosynthetic apparatus (i.e., photosystems,

phycobiliproteins, electron transport components, and pigments),
CO2 concentration and fixation,and the protein synthesis machin-
ery. This general strategy for acclimation to nutrient limitation is
probably widely conserved among cyanobacteria (Schwarz and
Forchhammer, 2005). Nutrient-specific acclimation of the Syne-
chococcus 7002 transcriptome was also observed. In general, these
responses increase the uptake machineries for the limiting nutrient
in order to enhance the supply of that nutrient. The transcrip-
tion data suggest that the subunit composition of the Type-I
NADH dehydrogenase complex changes during nutrient limita-
tion; this change could alter the ratio of protons translocated to the
periplasm/thylakoid lumen per pair of electrons transferred from
NADH to plastoquinone. Increased transcript levels for two flavo-
proteins under CO2-limiting conditions suggest that oxygen may
be used as an alternative electron acceptor to relieve over-reduction
of photosynthetic electron transport components, especially when
CO2 is limiting. Transcripts for enzymes that cope with ROS/RNS
and its affects were present at relatively high levels under standard
growth conditions and did not increase during nutrient limitation
or high-light stress. The transcription profiles for cells grown on
different N-sources agreed well with observations based on pre-
vious growth studies (Kapp et al., 1975; Sakamoto et al., 1998).
Reduced nitrogen sources support growth rates that are signifi-
cantly faster than those for nitrate (doubling times of 2.6 versus
4 h). Synechococcus 7002 exhibited an increased demand for CO2

when grown on reduced N-sources compared to nitrate, and the
demand for CO2 was higher when ammonia was supplied as
N-source rather than urea, which provides CO2 upon hydrolysis.
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