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Human papillomaviruses (HPVs) target the stratified epidermis, and can causes diseases
ranging from benign condylomas to malignant tumors. Infections of HPVs in the genital
tract are among the most common sexually transmitted diseases, and a major risk factor
for cervical cancer. The virus targets epithelial cells in the basal layer of the epithelium,
while progeny virions egress from terminally differentiated cells in the cornified layer, the
surface layer of the epithelium. In infected basal cells, the virus maintains its genomic DNA
at low-copy numbers, at which the viral productive lifecycle cannot proceed. Progression
of the productive lifecycle requires differentiation of the host cell, indicating that there is
tight crosstalk between viral replication and host differentiation programs. In this review,
we discuss the regulation of the HPV lifecycle controlled by the differentiation program of
the host cells.
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INTRODUCTION
Human papillomavirus (HPV) infections of the anogenital organs
are a very common“sexually transmitted disease (STD).”Although
the incidence of cancer progression is low, a HPV infection is
frequently detected in anogenital cancers. As for cervical cancer,
HPV DNA is detected in more than 90% of cases. Approx. 5.5
million new cases of HPV infection are reported and there are c.a.
450,000 diagnoses of cervical cancer per year worldwide, leading
to approximately 200,000 deaths each year, which ranks second
among cancers in women (Parkin and Bray, 2006). HPV infec-
tions have also been associated with the head and neck squamous
cell carcinomas (HNSCCs).

Human papillomavirus is categorized as a small virus con-
taining DNA. More than 120 types of HPV have been identified
and one-third of them target mucosal membranes, the remain-
der target the cutaneous membranes. Mucosa-tropic HPVs can be
classified into two types based on their association with malignant
carcinomas: a high-risk type (such as HPV type 16, 18, 31) and a
low-risk type (such as HPV6 and 11; Howley, 1996). Prophylactic
vaccines for HPV16 and18, Cervarix (GlaxoSmithKline), and for
HPV6, 11, 16, and 18, Gardasil (Merck & Co.), have been developed
recently and effectively prevent primary infections. They, however,
cannot be used as therapeutic vaccines, indicating the importance
of a Pap smear and the development of effective treatment strate-
gies (Carter et al., 2011). In order to inhibit HPV-induced cancer,
an understanding of the molecular basis of the infection and the
characteristics of the infected lesions is important.

GENOME ORGANIZATION OF HPV AND FUNCTIONS OF VIRAL
PROTEINS
Human papillomaviruses have a common gene organization
(Figure 1): an early region encoding non-structural genes, the late

region for structural genes, and a regulatory region (long control
region: LCR).

The functions of each viral protein are summarized in Table 1.
E1 and E2 are cooperatively involved in the initiation of viral
DNA replication. E2 also functions as a transcriptional transac-
tivator. E6 and E7 modulate the cell cycle control and contribute
to viral genome maintenance (Frattini et al., 1996; Stubenrauch
et al., 1998; Thomas et al., 1999). They also contribute to cancer
development (Münger et al., 2004). Though E4 and E5 are specu-
lated to modulate the productive phase of the HPV lifecycle, their
biological roles remain unclear (Fehrmann et al., 2003; Genther
et al., 2003; Nakahara et al., 2005; Wilson et al., 2005, 2007; Fang
et al., 2006). Both L1 and L2 are capsid proteins.

HPV LIFECYCLE
The target of a HPV infection is the stratified epithelium. In the
normal stratified epithelium, the cell attached to the basal mem-
brane (basal cell) is the only cell that has the potential to proliferate.
The basal cell divides into a new basal cell and a daughter cell
that is detached from the basal membrane, and the daughter cell
launches its differentiation process. The daughter cells exit from
the cell cycle and change their gene expression pattern, proceed-
ing to terminal differentiation, then peel off from the epithelium
(Jones et al., 2007). The lifecycle of HPV is tightly regulated by
the differentiation program of the host cells (Figure 2). In this
section, the differentiation-dependent lifecycle of HPV is briefly
summarized.

ENTRY OF HPV INTO THE BASAL CELLS OF STRATIFIED EPIDERMIS
Human papillomavirus virions invade through damaged areas of
the epithelium and infect the basal cells. Although the receptor for
the HPV infection has not been fully characterized, the following
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FIGURE 1 |The genome organization of HPV16. The HPV genome has a
circular double-stranded DNA structure. The viral genes are transcribed in a
single direction (clockwise). There are genes coding for non-structural
proteins (E1, E2, E4, E5, E6, and E7) and structural proteins (L1, L2), and a

transcriptional control region (long control region; LCR). LCR contains a
DNA replication origin and functions as the regulator for the DNA
replication. The major promoters and polyadenylation signals are indicated
(P97, P670, AE, AL).

model has been postulated; virions initially attach to the heparan
sulfate proteoglycan (HSPG) on the basal membrane, and trans-
fer to the receptor expressed on the keratinocytes moving on the
basal membrane in the wound-healing process, then enter the cells
(Kines et al., 2009).

LOW-LEVEL EXPRESSION OF VIRAL GENES AND GENOME
MAINTENANCE IN THE BASAL LAYER
Following viral entry and uncoating, HPV genomic DNA is trans-
ported into the nucleus and maintained at a low-copy number in
the basal cells (50 ∼ 100 copies per cell; in the basal layer, Figure 2;
Moody and Laimins, 2010). Genome maintenance as episomal sta-
tus is essential for the establishment of the early phase of the viral
lifecycle (McBride et al., 2006).

PRODUCTIVE REPLICATION OF HPV IN THE DIFFERENTIATED CELLS
After leaving the basal membrane, the infected cells initiate the
differentiation program. Because HPV does not encode DNA
polymerase activity for viral genome replication, the host DNA
replication machinery is required. However, the DNA replication
activity is suppressed in the differentiated cells that exit from the

cell division cycle. To ensure that the viral genome is replicated,
HPV needs to reactivate cell division among the differentiation-
initiated cells. E6 and E7 inactivate p53 and retinoblastoma protein
(pRb), respectively, which enables the cells to maintain their DNA
replication potential (Münger et al., 2004).

In the upper layers of the stratified epithelium (in the spinous
layer, Figure 2), the expression of viral genes that are required
for viral genome replication is markedly accelerated (Hummel
et al., 1992; Ozbun and Meyers, 1997), inducing viral genome
amplification to thousands of copies per cell (Bedell et al., 1991).
Following the genome amplification, in the terminally differenti-
ated cells, the synthesis of capsid proteins is triggered. The capsid
proteins assemble into virions that encapsidate viral genomic
DNA. The progenitor virions are released externally with peeled
keratinocytes.

DIFFERENTIATION-DEPENDENT CONTROL OF HPV LIFECYCLE
The differentiation-dependent lifecycle of HPV is controlled of
multiple levels, such as transcription, post-transcriptional process-
ing, translation, and DNA replication. In the following sections,
each regulatory mechanism is summarized.
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Table 1 | Summary of HPV gene functions.

Function in viral lifecycle Activities Target factor

E1

Replication of viral genome DNA-binding activity, helicase activity, ATPase RPA, topoisomerase, polymerase alpha-primase

E2

Transcription of viral genes

Replication of viral genome Transactivation/transrepression, DNA-binding

activity, DNA segregation in mitotic cell

Brd4, ChlR1
Maintenance of viral genome

E6

Reactivation of cellular replication mechanisms

Proliferation, immortalization, inhibition of

apoptosis

Interaction with various cellular proteins p53, ADA3, p300/CBP, E6AP, SP1, c-Myc, NFX1-

91,TERT, FAK, FADD, Caspase 8, BAX, BAK, IRF3,

PDZ domain proteinsMaintenance of viral genome

E7

Reactivation of cellular replication mechanisms

Proliferation, genomic instability, inhibition of

apoptosis

Interaction with various cellular proteins RB, p107, p130, HDAC, E2F6, p21, p27,

CDK/cyclin, ATM, ATR, gamma-tubulin

Maintenance of viral genome

E4

Unknown

Destruction of keratin network, induction of

G2M arrest of cell cycle

Cytokeratin 8/18

E5

Possibly involved in proliferation and/or

inhibition of apoptosis Affection of cellular signaling pathway EGFR, PDGFR,V-ATPase, MHC1,TRAIL receptor,

FAS receptor

L1

Major capsid protein

L2

Minor capsid protein

TRANSCRIPTIONAL REGULATION OF VIRAL GENES
Human papillomavirus has two major promoters, the early pro-
moter and the late promoter. In HPV16, P97, and P670 have been
identified as the early and late promoters, respectively (Figure 1).
Transcriptional activity is mainly controlled by the LCR. A tran-
scriptional enhancer is located within the LCR, with which various
cellular transcription factors can associate (Figure 3).

The binding sites for the viral transcriptional regulator, E2, are
found in HPV16 LCR. Viral gene expression is regulated by the
occupancy status of the E2-binding sites (E2BSs; Figure 3), which
is partly defined by the E2 expression level controlled by cellular
differentiation status (Steger and Corbach, 1997; Hadaschik et al.,
2003).

E2 functions in viral genome segregation by tethering the
viral DNA to the mitotic chromatin, in which a cellular protein,
bromodomain-containing protein 4 (Brd4), has been reported
to be involved (McPhillips et al., 2006). Interaction between E2
and Brd4 is also required for the E2-mediated transcriptional
activation and repression (McPhillips et al., 2006; Wu et al., 2012).

A ubiquitous transcription factor, Sp1 is a well-known reg-
ulator for HPV gene expression. The Sp1-binding site partially
overlaps with one of the E2BSs (E2BS#2), and a TATA box ele-
ment is located close to the promoter–proximal E2BS (E2BS#1;
Figure 3). The binding of E2 to those E2BSs, therefore, interferes

with the assembly of the transcriptional initiation complex, result-
ing in a suppression of E6/E7 expression that is governed by the
early promoter activity (Tan et al., 1992). It was also reported that
Sp1 altered the chromatin structure of HPV16 LCR, offering the
accessibility of transcription factors (Stünkel and Bernard, 1999).

TRANSCRIPTIONAL CONTROL IN THE UNDIFFERENTIATED CELLS
Transcripts of viral early genes are expressed in the infected basal
cells, which is essential for the viral DNA replication (Dürst et al.,
1992). It was reported that a unique promoter, P14, was utilized
for E1 expression and the E2BSs were considered as necessary for
the P14 activity (Lace et al., 2008). The transcript initiated from
P14 is a poly-cistronic mRNA containing E6, E7, and E1, in which
the shunting in ribosomal scanning process enables the transla-
tion of E1 (Remm et al., 1999). The regulatory mechanism for
E2 expression has not been clarified. The early promoter is used
for E6 and E7 expression, in which several transcription factors,
including AP-1, glucocorticoid receptor, NF1, Oct-1, Sp1, YY-1,
and CDP, are involved (Figure 3; Desaintes and Demeret, 1996).

TRANSCRIPTION IN THE DIFFERENTIATED CELLS
The early promoter is activated in association with the differen-
tiation process, increasing the E1/E2 expression (Hummel et al.,
1992; Ozbun and Meyers, 1997). Although levels of E6 and E7 also
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FIGURE 2 |The lifecycle of human papillomaviruses (HPVs). HPVs
infect specifically the cells in the basal layer of the stratified
epithelium through lesions. Viral genomes are maintained as
episomal DNA in the nuclei of infected cells. The viral lifecycle is

strictly controlled by host cell differentiation, and the late lifecycle
(productive lifecycle) occurs in upper layers of the epithelia that are
terminally differentiated, and the progenitor virions are released from
the cornified keratinocytes.

FIGURE 3 |The structure of HPV16 LCR (region of the control of early

promoter P97). The early promoter P97 and replication origin are located
in LCR, which are regulated by various cellular factors. Activity of P97 is
regulated by AP-1, NF1, SP1, TFIID, TF1, Oct-1, PSM, and the viral
transcription factor E2. Four E2-binding sites (E2BS) have been identified

in HPV16 LCR and the consensus sequence for E2BS is shown in an inset.
A glucocorticoid receptor and progesterone receptor (GR/PR) recognition
element was also identified in the LCR. The existence of a
keratinocyte-specific enhancer (KE) has been proposed (Desaintes and
Demeret, 1996).

increase with the early promoter’s activation, the E2 overexpressed
in the upper layer is thought to suppress their transcription via the
mechanism mentioned above. E6 and E7 are important in main-
taining infected cells in an undifferentiated state, but terminal
differentiation is required for the productive replication of HPV.

The inhibition of E6/E7 expression by E2 might promote cellu-
lar differentiation, and the cells undergo terminal differentiation,
which is suitable for the viral productive lifecycle.

AP-1, a heterodimer composed of Fos and Jun, is considered
to be involved in the differentiation-dependent transcriptional
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control in keratinocytes; there are reports that the expression
profiles of Fos and Jun family members were modified, and that
the interaction between AP-1 and KRF-1, a keratinocyte-specific
transcription factor (Mack and Laimins, 1991), was strength-
ened in the differentiation process (Desaintes and Demeret, 1996;
Thierry, 2009). Several transcriptional factors were reported to be
involved in the differentiation-dependent control of LCR func-
tion; EPOC-1/Skn-1a, C/EBP-α, -β, c-Myb, NF1, NFATx, Pax5,
and WT1 (Desaintes and Demeret, 1996; Thierry, 2009).

The late promoter is specifically activated in the differenti-
ated layers of epithelium. The late promoter activity is suppressed
by CDP (CCAAT displacement protein) and YY-1, whose bind-
ing potential was reported to be decreased in differentiated ker-
atinocytes (Ai et al., 1999, 2000). There was also a report that the
expression ratio of a transcription factor, Sp1 and its antagonist,
Sp3, was altered through the differentiation, which activated the
late promoter activity (Apt et al., 1996). The binding of hSkn-1a
and C/EBPα to the proximal region of the late promoter con-
tributes to the control of the late promoter activity (Kukimoto
and Kanda, 2001; Wooldridge and Laimins, 2008). The involve-
ment of E7 in the regulation of the late promoter activity was also
described (Bodily and Laimins, 2011; Bodily et al., 2011). It still
remains necessary to clarify the regulatory mechanism for the late
promoter in the differentiation of epithelial cells.

METHYLATION OF THE HPV GENOME DURING THE CELL
DIFFERENTIATION PROCESS
HPV gene expression is controlled by the methylation of HPV
genomic DNA. As E2BSs contain CpG dinucleotides (see inset in
Figure 3), they can be modified by DNA methylation in the host

cell. E2BSs are reported to be highly methylated in undifferenti-
ated cells, inhibiting E2-binding, and demethylation at the E2BSs
occurs in association with the cell differentiation (Kim et al., 2003;
Vinokurova and von Knebel Doeberitz, 2011).

RNA PROCESSING
For conversion of the gene expression profile from the early to late
phase of viral replication, RNA processing is considered critical.
The primary transcript of HPV encodes multiple viral genes, and
precise RNA processing is essential to produce the mRNA for each
viral gene at an appropriate stage of cell differentiation (Schwartz,
2008).

In the early phase of the viral lifecycle, the primary transcription
initiated by the early promoter is terminated at the early poly(A)
signal, AE (Figure 1), and the transcript is processed by using the
early splicing signals, which produces the mRNAs encoding the
viral early genes. In the differentiated cells, the transcripts for the
late genes are expressed from the late promoter and utilize a late
poly(A) signal, AL (Figure 1), and late splicing signals. The early
and late splicing signals compete for the splicing factors, so their
usages are generally exclusive.

Multiple splicing signals are found in the HPV genome, which
are utilized for the expressions of various viral genes (Figure 4).
These splicing signals can be categorized into three groups; early
phase-specific signals (DS226, SA409, SA526, SA742 in HPV16),
late phase-specific signals (SD 3632 and SA5639), and non-specific
signals (SD880, SA2709, SA3358; Schwartz, 2008).

Early splicing events have three major roles; regulation of the
expression ratio of early genes, production of splicing variants of
viral genes, and suppression of late gene expressions. The early

FIGURE 4 |The splicing signals and the transcripts of HPV16. P97 and
P670 are the early and late promoters, respectively, for HPV16. AE and AL
indicate the early and late polyadenylation signals, respectively. Open

triangles indicate splicing acceptors and filled triangles indicate splicing
donors. Major mRNAs and their products are indicated. This figure is cited
from a review (Schwartz, 2008).
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splicing sites of HPV16, SD226, SA409, and SA526, are located
in the E6 ORF, which enhances the translation efficiency of E7.
Because the initiation codon for E6 is leaky and there are sev-
eral splicing signals in the E6 ORF, various variants of E6 can be
expressed. Those variants were reported to counteract the full-
length E6, which might be important for the fine-tuning of E6
activities.

SA3358 is utilized in both the early and late phases of viral
replication to produce HPV16 E1∧E4 mRNA. A strong splicing
enhancer was identified downstream of SA3358, and it accelerated
the polyadenylation at AE and suppressed the late gene expression
in the early phase (Figure 5A). In undifferentiated cells, SA3358
competed with the late splicing signals for the splicing factors

(SRp20, hnRNPL etc.), which might contribute to the suppression
of late gene expression (Rush et al., 2005; Jia et al., 2009).

The late mRNAs are transcribed from the late promoter, and a
major splicing event occurs between SD880 and SA3358 in HPV16.
For the production of L1 mRNA, additional splicing between
SD3632 and SA5639 is required. The mRNAs for L1 and L2 are
poly-cistronic, and the mechanism for bypassing the upstream
ATG remains to be explained.

SD3632 in HPV16 is used exclusively for late mRNA produc-
tion. SD3362 is located close to SA3358 and AE, and the usage
of SD3362 was suppressed by a splicing suppressor in dividing
cells. It was indicated that the polypyrimidine tract-binding pro-
tein (PTB) interfered with the splicing suppressor in differentiated

FIGURE 5 | Regulatory mechanisms for mRNA processing. The HPV16
genome with the promoters, the poly(A) signals, and the splicing signals are
shown at the top of the figure. Open triangles indicate splicing acceptors and
filled triangles indicate splicing donors. (A) HPV16 splicing regulatory
elements are indicated as filled stars (splicing enhancers) or filled circles

(splicing silencers). (B) HPV16 polyadenylation regulatory elements are
indicated as filled hexagons (polyadenylation stimulatory elements) and a
filled rectangle (polyadenylation inhibitory element). (C) The regulatory
elements for the instability and nuclear export of HPV16 late mRNA are
indicated. This figure is cited from a review (Schwartz, 2008).
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cells, which potentiated late gene expression (Figure 5A; Somberg
et al., 2008).

A late phase-specific SA5639 in HPV16 was reported to be reg-
ulated by the cis-acting elements found in the L1 coding region
(Zhao et al., 2004). A splicing enhancer was identified in the 3′
region of SA5639. Although the enhancer was activated in divid-
ing cells, its function was hindered by multiple splicing suppressors
located in the L1 coding region. It was reported that hnRNP A1
is associated with those multiple splicing suppressors (Figure 5A;
Zhao et al., 2007).

To produce the late mRNAs, it is essential to bypass the
polyadenylation at AE. Enhanced utilization of AE could, there-
fore, inhibit the late gene expression. The 5′ 400 nt of the HPV16
L2 ORF was reported to enhance the polyadenylation at AE, where
multiple-G-motifs are located (Oberg et al., 2005). The hnRNP
H interacted with the G-motifs and accelerated the polyadeny-
lation at AE, and the expression of hnRNP H decreased as the
cell differentiation progressed. CstF-64 was also reported to bind
the L2 coding region of HPV31 and enhance the polyadeny-
lation at AE, and the expression of CstF-64 diminished dur-
ing the cell differentiation process (Figure 5B; Terhune et al.,
2001).

Within the 3′UTR of the late mRNA (late UTR), a motif highly
homologous to the U1snRNA was identified. It was reported
that U1-70K, a component of U1snRNP, bound to the U1snRNA
motif of BPV1 and interfered with the polyadenylation (Furth
et al., 1994). Although U1-70K binding was not detected with
HPV16, CUG binding protein 1 (CUGBP1) was reported to
interact with the late UTR element of HPV16 and inhibit the
polyadenylation process (Figure 5B; Goraczniak and Gunderson,
2008).

CONTROL OF LATE mRNA STABILITY
There are RNA instability elements within the L1 and L2 cod-
ing mRNAs of HPV16, which function in undifferentiated cells
(Mori et al., 2006), although the mechanism for RNA destabi-
lization remains to be clarified (Sokolowski et al., 1998; Collier
et al., 2002). There is a GU-rich negative regulatory element (NRE)
in the late UTR of HPV16, which is a RNA instability element
(Kennedy et al., 1991). Various factors,ASF/SF2, CstF064, U2AF65,
hnRNPA1, and HuR, are reported to regulate the differentiation-
dependent events of HPV replication through binding to the NRE
(Figure 5C; Dietrich-Goetz et al., 1997; Koffa et al., 2000; Cheunim
et al., 2008).

A highly U-rich region was located in the early UTR of HPV16
and reduced mRNA stability; a U-rich region is a signature feature
of unstable mRNA (Jeon and Lambert, 1995; Barreau et al., 2005).

NUCLEAR EXPORT OF LATE mRNAs
The L1 mRNA of HPV16 was retained in the nucleus in undiffer-
entiated W12 epithelial cells (Koffa et al., 2000), suggesting that the
nuclear export of late mRNAs was inhibited in the dividing cells.
Although the factor(s) that mediates the nuclear export of late
mRNAs has not been identified, candidates include HuR, hnRNA,
and ASF/SF2, which are proteins shuttling between the nucleus
and cytoplasm (Figure 5C; Carlsson and Schwartz, 2000; Koffa
et al., 2000; McPhillips et al., 2004; Zhao et al., 2004).

TRANSLATIONAL CONTROL OF LATE GENE EXPRESSION
As the inhibitory mechanism for late gene expression, the involve-
ment of translational inhibition was also reported. Translation
efficiency was suppressed with in vitro translated RNA containing
the late UTR of HPV1, suggesting the late UTR had the poten-
tial to inhibit the translation. For the inhibition, poly(A)-binding
protein (PABP) was considered to be responsible (Wiklund et al.,
2002). It was also reported that poly(C) binding protein 1 and 2
(PCBP-1 and -2) and hnRNP K bound to the L2 coding region of
HPV16 mRNA and inhibited the in vitro translation (Collier et al.,
1998). The rare codon usages found in L1 and L2 might also con-
tribute to the inhibition of late gene translation (Gu et al., 2004).
In terminally differentiated cells, the altered expression ratios of
tRNA species could compensate for the inhibitory effect of the rare
codon usages (Fang et al., 2007).

REGULATION OF VIRAL DNA REPLICATION
E1 and E2 have essential roles in the HPV genome’s replication
(Kadaja et al., 2009). E2 is a DNA-binding protein that recognizes
E2-binding sites (E2BSs) located in the LCR (Figure 3). E2 has
transcriptional transactivator activity, as well as the capacity to
bind to the viral DNA replication factor E1. E1 has DNA helicase
and ATPase activities and weak DNA-binding capacity. Through its
interaction with E2, E1 is recruited to the replication origin (ori),
which is essential for the initiation of viral DNA replication (Chi-
ang et al., 1992a,b). E2 also contributes to the segregation of viral
DNA in the cell division process by tethering the viral DNA to the
host chromosome through interaction with Brd4 and/or ChlR1,
both of which can bind to chromatin (McBride et al., 2006). Accu-
rate segregation of the viral genome is essential to maintain the
HPV infection in the basal cells, in which the copy number of the
viral genome is very low.

The replication potential of E1 is regulated by its interac-
tion with cellular proteins. p56, one of the interferon stimulated
genes (ISGs), directly interacts with E1 and translocates it to the
cytoplasm, which might contribute to the interferon-mediated
inhibition of HPV replication (Terenzi et al., 2008). The inter-
action of WD repeat protein p80 (WDR80) with E1 is reported to
be required for the efficient maintenance of the viral genome in
undifferentiated keratinocytes (Côté-Martin et al., 2008).

As mentioned, the expression levels of E1 and E2 increase in
association with the differentiation of the epithelial cells, which
could be responsible for the vegetative genome amplification.

Recently, it was reported that E6 and E7 activated the ATM DNA
damage pathway in differentiation-dependent manner, by which
Chk2 was activated. Chk2 potentiated caspase-3 and -7, and the
caspases in turn cleaved the E1 protein, which might be required
for viral DNA amplification in the differentiated cells (Moody
et al., 2007; Moody and Laimins, 2009).

Nuclear accumulation of E1 blocks cell cycle progression in
early S-phase and triggers the activation of a DNA damage
response (DDR) and of the ATM pathway (Fradet-Toucotte et al.,
2011), and the activation of DDR might facilitate HPV DNA
replication (Sakakibara et al., 2011). The nuclear accumulation
of E1 is regulated by phosphorylation of the nuclear export signal
(NES) found in E1 via Cyclin E/A-Cdk2 (Fradet-Toucotte et al.,
2010).
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DNA replication of HPV utilizes the replication mode with a
“θ-structure” in undifferentiated cells, and the mode changes to
“rolling circle replication” in differentiated cells, which enables the
rapid synthesis of multiple copies of viral DNA. The molecular
mechanism supporting the DNA replication in the differentiated
cells, however, has not been fully explained (Flores and Lambert,
1997).

INVOLVEMENT OF CELLULAR TRANSCRIPTION FACTORS IN VIRAL DNA
REPLICATION
It was reported that the binding of hSkn-1a to its recognition site
proximal to the ori region was required for the viral genome repli-
cation of HPV16 (Kukimoto et al., 2008). In other HPV types, Sp1
and TATA box binding protein (TBP) inhibit viral genome repli-
cation, in which competition between E2 and Sp1 or TBP may
be involved (Demeret et al., 1995; Hartley and Alexander, 2002).
These transcription factors might alter the chromatin structure,
which could inhibit the access of E1 to the origin (Demeret et al.,
1995). The inhibition of STAT-1 expression by E6 and E7 was also
reported to be important for viral genome amplification (Hong
et al., 2011).

VIRION PRODUCTION
A report described that HSP70 was activated in response to the
keratinocyte differentiation and co-localized with HPV31 L1 in
the differentiated layer of epithelium (Song et al., 2010). It was
reported that the disulfide bond among the HPV16 L1 pentamer
was formed in a differentiation-dependent manner and had an
important role in virion stability (Conway et al., 2011), indicat-
ing that virion production was regulated not only by the quantity
of the late gene products but also by a differentiation-dependent
mechanism.

THE MODULATION OF CELL PROLIFERATION/
DIFFERENTIATION BY HPV GENE PRODUCTS
As described above, HPV replication is strictly regulated by the dif-
ferentiation program of the host cells. Conversely the HPV infec-
tions modulate the proliferation/differentiation status of the host
cells, indicating tight communication between the virus and the
host cell, which is required for completion of the viral replication.

ACCELERATION OF CELL PROLIFERATION AND INHIBITION OF CELL
DIFFERENTIATION
The acceleration of cell proliferation and inhibition of differenti-
ation are induced by the expression of E6 and E7 (Longworth and
Laimins, 2004; Moody and Laimins, 2010). E7 inhibits the func-
tions of the pocket protein family, activates the E2F-dependent
promoter, and induces S-phase-specific gene expression (Moody
and Laimins, 2010). E7 maintains Cyclin E or Cyclin A–CDK2
activity in differentiated cells by targeting p21 and p27, impor-
tant regulators for growth arrest in the differentiation process. E6
mediates ubiquitination of p53 in association with E6AP, causing
the proteasomal degradation of p53 (Moody and Laimins, 2010),
and disturbs p53-mediated growth arrest. The association between
E6 and histone acetyltransferases (HATs) might be also involved
in the inhibition of p53 function (Moody and Laimins, 2010). E6
was reported to target cellular PDZ proteins, which might con-
tribute to the immortalization of the infected cells (Thomas et al.,

2008). E6 was reported to activate telomerase activity by inducing
the overexpression of c-Myc and by modulating the expression of
NFX1-91, which also contributed to the immortalization process
(Gewin et al., 2004).

The functions of E6 and E7 in the activation of the DNA repli-
cation machinery of the host cell are required to ensure the viral
genome’s replication in the differentiated cells (Thomas et al.,
1999), resulting in the aberrant proliferation and the retarded
differentiation of the host cells. With a transgenic mouse model
expressing HPV16 E6 and/or E7 under the K14 promoter, dysplasia
was observed at the stratified epidermis (Griep et al., 1993).

Although the normal differentiation of keratinocytes is not fully
understood, reports describe the involvement of Notch, MAPK,
NF-κB, p63, the AP2 family, C/EBP, IRF6, GRHL3, and KLF4
(Blanpain and Fuchs, 2009). There are also papers describing the
contribution of c-Myc to the differentiation of epithelial stem cells,
and differentiation-dependent demethylation at histone H3K27
(Blanpain and Fuchs, 2009). Recently, some of these factors were
found to be associated with HPV gene products (Lathion et al.,
2003; Chakrabarti et al., 2004; An et al., 2008; Melar-New and
Laimins, 2010), and it is reasonable that these associations modify
the cell differentiation program of the infected cells.

INHIBITION OF THE APOPTOTIC INDUCTION
The aberrant proliferation and/or DNA replication in the HPV-
infected cells induce p53-dependent apoptotic cell death. The
inactivation of pRb by E7 also potentiates the p53 activity. The
p53-dependent apoptosis is counteracted by E6 activity (Garnett
et al., 2006; Moody and Laimins, 2010). E6 induces the proteaso-
mal degradation of p53. It has also been reported that E6 directly
binds to p53 and inhibits its DNA-binding potential (Lechner and
Laimins, 1994), and that E6 interacts with HDAC p300, ADA3,
and/or CREB-binding protein (CBP),which destabilizes p53 (Patel
et al., 1999; Zimmermann et al., 1999; Kumar et al., 2002). The
HPV-infected cells also escaped from anoikis by the E6-mediated
expression of FAK and the phosphorylation of paxillin, which
activates FAK (McCormack et al., 1997). It was reported that inter-
action between E7 and p600 was involved in the inhibition of
anoikis (Huh et al., 2005).

Several membrane-spanning death receptors have been iden-
tified, such as TNF receptor type 1 (TNFR1), FAS receptor, and
TRAIL receptor. The high-risk type E6 was reported to interact
with TNFR1 and suppress TNFα-induced apoptosis (Filippova
et al., 2002). E6 is also known to interact with FADD and caspase8,
which might inhibit the apoptosis mediated by FAS and TRAIL
(Filippova et al., 2004; Garnett et al., 2006). In addition, E6 was
reported to be associated with pro-apoptotic Bcl2 members, BAK
and BAX, and to interfere with intrinsic apoptosis (Garnett et al.,
2006). It was reported that E5 could inhibit FAS- and TRAIL-
mediated apoptosis (Garnett et al., 2006). In addition, there was
a paper that described the inhibitory effect of E7 on apoptosis, in
which the upregulation of cellular inhibitor of apoptosis protein
(c-IAP) by E7 was involved (Garnett et al., 2006).

THE MODULATION OF miRNA EXPRESSION THROUGH CELL
DIFFERENTIATION
Recently, it was reported that HPV E6 and E7 induced the aber-
rant expression of tumor suppressive miRNAs (Zheng and Wang,
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2011). E6 and E7 are known to target c-Myc, p53, and E2F, and
these transcription factors are reported to be involved in the
regulation of miRNA expression, so E6 and E7 could cause the
uncoordinated expression of those miRNAs. E6 and E7 target p53
and pRb, respectively, and cause the unregulated expression of the
miR-15/16 cluster, the miR-17-92 family, miR-21, miR-23b, miR-
34a, and the miR-106b/93/25 cluster. Such aberrant expression
was suspected to be involved in the development of cervical can-
cer. It was also reported that E6, E7, and E5 suppress the expression
of miR-203 which participates in the differentiation of epithelial
cells (McKenna et al., 2010; Greco et al., 2011). Through the sup-
pression of miR-203, the expression level of p63 is upregulated
in the differentiated cells, which might contribute to the genome
amplification and the late gene expression in the upper layers of
epithelium (Melar-New and Laimins, 2010).

EPIGENETIC ALTERATION INDUCED BY THE HPV INFECTION
There was a report describing the epigenetic alteration of cells
mediated by HPV gene expression (Hsu et al., 2011; Hyland
et al., 2011; McLaughlin-Drubin et al., 2011; Zheng and Wang,

2011). The epigenetic alteration induced by the HPV infection was
considered to modify the miRNA expression pattern, which might
change the cell differentiation program. Although there is a pos-
sibility that some epigenetic alteration occurs also in the normal
cell differentiation process, there has been no report related to it.

CONCLUSION
Human papillomavirus suppresses its replication to a “mainte-
nance level”or“latent infection mode” in the basal cells, and main-
tains the DNA synthesis potential of the infected cells detached
from the basal membrane to maintain viral genome replication.
In terminally differentiated cells, a tremendous level of genome
amplification and late gene expression takes place. After comple-
tion of virion assembly, the virions are released externally with
the cornified cells (the regulation of the differentiation-dependent
lifecycle of HPV is summarized in Figure 6). One of the reasons
for this unique lifecycle of HPV is escape from the immune-
surveillance system (Bodily and Laimins, 2011). Because both L1
and L2 could have immunogenicity, their expressions should be
suppressed until the infected cells move to the upper layer of the

FIGURE 6 | Regulatory mechanisms of the differentiation-dependent lifecycle of HPV.
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epithelium, where the host immune-surveillance system does not
well function. The hyperproliferation induced by E6 and E7 is
required for viral genome amplification and contributes to the
augmentation of progeny virion production by expanding the pool
of the infected cells.

Tight communication between the virus and the host cell
is a unique character of HPV biology, and raises the possibil-
ity of using HPV as a probe to investigate the development of
the stratified epithelium. In this review, we did not describe the
details of the cancer progression induced by HPV infections.

HPV-induced cancer is a good model for “multi-step carcinogen-
esis,” and the study of HPV biology provides novel insights into
cancer development.
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