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The human APOBEC3 (A3) family (A, B, C, DE, F, G, and H) comprises host defense factors
that potently inhibit the replication of diverse retroviruses, retrotransposons, and the other
viral pathogens. HIV-1 has a counterstrategy that includes expressing the Vif protein to
abrogate A3 antiviral function. Without Vif, A3 proteins, particularly APOBEC3G (A3G) and
APOBEC3F (A3F), inhibit HIV-1 replication by blocking reverse transcription and/or integra-
tion and hypermutating nascent viral cDNA. The molecular mechanisms of this antiviral
activity have been primarily attributed to two biochemical characteristics common to A3
proteins: catalyzing cytidine deamination in single-stranded DNA (ssDNA) and a nucleic
acid-binding capability that is specific to ssDNA or ssRNA. Recent advances suggest that
unique property of A3G dimer/oligomer formations, is also important for the modification
of antiviral activity. In this review article we summarize how A3 proteins, particularly A3G,
inhibit viral replication based on the biochemical and structural characteristics of the A3G
protein.
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INTRODUCTION
Productive infections of primary human lymphocytes, monocytes,
and certain T-cell lines by HIV-1 require a virally encoded gene
product, Vif (originally named “Sor” or “A”; Fisher et al., 1987;
Strebel et al., 1987). In early work on Vif, vif-deficient virions
produced in non-permissive cells were found to be significantly
impaired in their ability to complete reverse transcription (Sova
and Volsky, 1993; von Schwedler et al., 1993), and they were 100- to
1000-fold less infectious than wild type (WT) virions (Fisher et al.,
1987; Strebel et al., 1987; Fouchier et al., 1996). Sheehy et al. (2002)
identified A3G as the cellular enzyme that restricts the replication
of vif-deficient HIV-1.

The human A3G protein is a cellular cytidine deaminase
that belongs to the APOBEC3 family, which comprises seven
members (A3A, B, C, DE, F, G, and H; LaRue et al., 2009).
These proteins contain one (A3A, A3C, and A3H) or two (A3B,
A3DE, A3F, and A3G) zinc-cluster domains with the consensus
sequence (H/C)XE(X)23–28CXXC (Wedekind et al., 2003). Among
the APOBEC3 family members, A3G is the most potent inhibitor
of HIV-1 but only in the absence of Vif. HIV-1 Vif counteracts A3G
by promoting its polyubiquitination through the recruitment of a
Cullin5-based E3 ubiquitin ligase complex (Yu et al., 2003), which
targets A3G proteins for rapid proteasomal degradation in infected
cells.

The specific A3G degradation is determined by the capability of
Vif to bind with A3G in the E3 ubiquitin ligase complex (reviewed
in Kitamura et al., 2011). The region in A3G responsible for HIV-1
Vif interaction was identified by the studies on the species speci-
ficity of Vif-mediated A3G degradation, which is determined by a
single amino acid difference in human A3G, D128 versus K128 in

the A3G of African green monkeys (Bogerd et al., 2004; Mangeat
et al., 2004; Schrofelbauer et al., 2004; Xu et al., 2004). Subsequent
mutational analyses have confirmed that the 128DPD130 motif of
A3G, located near the zinc-coordinating residues of NTD, is crucial
for direct binding to HIV-1 Vif (Huthoff and Malim, 2007; Russell
et al., 2009; Lavens et al., 2010). This motif is just downstream of
residues 124YYFW127, which are involved in A3G’s ability to bind
nucleic acids (Huthoff and Malim, 2007).

The primary mechanism by which A3G inhibits vif-deficient
HIV-1 replication requires its expression in virus producer cells
and its incorporation into virions (Mariani et al., 2003; Marin
et al., 2003; Sheehy et al., 2003; Stopak et al., 2003; Svarovskaia
et al., 2004). During reverse transcription in the target cells, the
virion-packaged A3G deaminates cytidine to uridine in the viral
minus-strand DNA (Harris et al., 2003a; Lecossier et al., 2003;
Mangeat et al., 2003; Zhang et al., 2003; Suspène et al., 2004;
Yu et al., 2004). Subsequent incorporation of adenines instead
of guanines in the plus-strand results in extensive G-to-A hyper-
mutation and inactivation of the viral genome. Shortly after A3G
was suggested as the key restriction factor against vif-deficient
HIV-1, it was proposed that A3G-mediated deamination might be
a lethal trigger, eventually leading to the degradation of reverse-
transcribed viral DNA through a base-excision pathway and/or the
reduced replication of progeny viruses by introducing premature
stop codons and/or amino acid changes (Cullen, 2003; Goff, 2003;
Harris et al., 2003a,b; KewalRamani and Coffin, 2003). Indeed, the
catalytic center of the A3G protein is clearly essential for its antivi-
ral functions (Mangeat et al., 2003; Navarro et al., 2005; Iwatani
et al., 2006; Browne et al., 2009). However, several lines of recent
evidence have indicated that the catalytic activity of A3G is not
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sufficient to explain its full antiviral activity. What is the funda-
mental mechanism(s) of A3G antiviral activity that explains the
observation by von Schwedler et al. (1993), that the reverse tran-
scription of vif-deficient HIV-1 is impaired when produced from
A3G-expressing “non-permissive” cells?

BIOCHEMICAL PROPERTIES OF A3G
The zinc coordination of A3 family proteins is mediated by a
histidine and two cysteines, which form a catalytic center for
cytidine deaminase activity. In A3G, the zinc-binding motif at
the C-terminal domain (CTD) is primarily associated with cyti-
dine deaminase catalysis whereas the N-terminal domain (NTD)
does not catalyze deamination (Figure 1A; Haché et al., 2005;
Navarro et al., 2005; Iwatani et al., 2006; Friew et al., 2009). The
A3G enzyme converts deoxycytidine (dC) residues to deoxyuri-
dine (dU), and acts preferentially on residues that are preceded
by another dC, with a much higher preference for the 5′-CCCA-
3′ sequence in single-stranded DNA (ssDNA; Beale et al., 2004;
Suspène et al., 2004; Yu et al., 2004). During retroviral reverse tran-
scription, A3G deaminates dC to dU in the viral minus-stranded
DNA, and the subsequent incorporation of deoxyadenines (dA)
instead of deoxyguanines (dG) in the plus-strand results in G-to-
A hypermutation of the nascent viral DNA (Harris et al., 2003a;
Lecossier et al., 2003; Mangeat et al., 2003; Zhang et al., 2003;
Suspène et al., 2004; Yu et al., 2004). The ssDNA-specific deami-
nation by A3G appears to be determined by a structural groove,
presumably accommodating ssDNA, that positions the cytosine
for deamination (Chen et al., 2008; Holden et al., 2008).

The nucleic acid-binding property of A3G is also a major bio-
chemical feature. The minimum unit of A3G for binding to ssDNA
is a monomer (Chelico et al., 2010) and/or a dimer (Bennett et al.,

2008), as illustrated in Figure 1B. The apparent equilibrium dis-
sociation constant (Kd) for A3G (to ssDNA) is between 52 and
238 nM (Chelico et al., 2006; Iwatani et al., 2006, 2007), whereas
the Kd for HIV-1 nucleocapsid protein (NC) binding to RNA
is approximately 23–320 nM (Shubsda et al., 2002; Levin et al.,
2005), suggesting that the nucleic acid-binding affinity of A3G
is as high as that of NC. A3G binds preferentially to ssDNA or
ssRNA (Figure 1B; Yu et al., 2004; Iwatani et al., 2006; Shlyakht-
enko et al., 2011), especially dT or dU residues of ssDNA and
AU-rich regions in ssRNA,respectively (Jarmuz et al., 2002; Iwatani
et al., 2006). Interestingly, the substrate specificities and nucleotide
preferences of the A3G protein differ for its deaminase and nucleic
acid-binding activities, as is the case for APO1 (Anant et al., 1995;
Navaratnam et al., 1995; Anant and Davidson, 2000). Because
mutations that disrupt zinc coordination at the NTD, such as
the substitution of the C100 residue with a serine, abrogate the
nucleic acid-binding affinity of A3G (Navarro et al., 2005; Iwatani
et al., 2006), some local conformation near the zinc coordination
of NTD might be responsible for its recognition of single-stranded
nucleotides.

The formation of an A3G homo-multimer is the third unique
feature of A3G. The intrinsic propensity of A3G multimerization
has been verified by biochemical and structural studies (Jarmuz
et al., 2002; Navarro et al., 2005; Burnett and Spearman, 2007;
Bennett et al., 2008; Bulliard et al., 2009; Friew et al., 2009;
Huthoff et al., 2009; Chelico et al., 2010; McDougall et al., 2011).
Because the full-length A3G structure has not been determined,
the A3G interface for multimerization remain unclear. However,
structural analyses by SAXS (small-angle X-ray scattering), co-
immunoprecipitation assays (Wedekind et al., 2006; Bennett et al.,
2008), and X-ray crystallography (Shandilya et al., 2010) have

FIGURE 1 | Biochemical characteristics of A3G. (A) A3G consists of
an NTD and CTD. The NTD is responsible for the nucleic acid-binding
affinity of A3G and has no detectable deaminase activity. In contrast,
the CTD is solely involved in deaminase activity and has less affinity for
nucleic acids than the NTD. (B) A3G specifically binds to single-stranded

DNA (ssDNA) or RNA (ssRNA) but not to double-stranded nucleotides.
A monomeric and/or dimeric A3G bind to ssDNA or ssRNA as the
minimum unit. (C) The A3G protein forms homodimers or higher-order
homo-oligomers through interactions between its NTDs (head–head) or
CTDs (tail–tail).
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demonstrated an interaction between the A3G CTDs (tail–tail), as
illustrated in Figure 1C. In addition, homo-dimerization through
the NTDs also occurs (head–head), as shown in Figure 1C, and this
interaction appears to depend on the presence of RNA (Friew et al.,
2009; Huthoff et al., 2009). These observations were supported by
an analytical ultracentrifugation study that showed a predominant
dimer form of A3G in equilibrium with minor monomeric and
tetrameric species under RNA-depleted conditions (Salter et al.,
2009).

Chelico et al. (2006, 2008, 2010) have used an in vitro system
to demonstrate that A3G has a 3′ to 5′ catalytic orientation speci-
ficity for the deamination of naked ssDNA (Feng and Chelico,
2011). The preferred asymmetric direction for A3G catalysis likely
yields an approximately 30-nt “dead” zone located at the 3′ end
of ssDNA that is much less efficiently deaminated by A3G (Che-
lico et al., 2008, 2010). However, we need further investigations
on how significant the length of dead zone is because the cen-
tral CCC motif of ∼40-nt ssDNA can be deaminated efficiently
by A3G in our or the other in vitro deamination assay systems
(Beale et al., 2004; Yu et al., 2004; Iwatani et al., 2006). The for-
mation of tetramers and higher-order homo-oligomers of A3G
on ssDNA is required for efficient deamination (McDougall et al.,
2011).

ANTIVIRAL MECHANISMS OF A3G AGAINST VIF -DEFICIENT
HIV-1
A3G exerts its inhibitory activity by being encapsidated into virus
particles of vif-deficient HIV-1. During the subsequent infection
cycle, A3G has been proposed to interfere with reverse tran-
scription and/or integration through one or more molecular
mechanisms (Figure 2). Based on whether the enzymatic activ-
ity is involved or not, there are two separable mechanisms, i.e.,
deaminase-dependent and -independent mechanisms.

Although the catalytic center of A3G is clearly critical for its
antiviral effect (Mangeat et al., 2003; Navarro et al., 2005; Iwatani
et al., 2006; Browne et al., 2009), the precise molecular mech-
anisms underlying the inhibition of the further processing of
A3G-deaminated DNA products in cells remain unclear. A3G-
mediated hypermutation of viral genomes is clearly detrimental
to further spreading the infection because mutations in the viral
structural and/or the regulatory genes may trigger defects in the
production of infectious progeny virus (“1” in Figure 2). For
example, because the preferred sequences of A3G include TGG
(a codon for tryptophan within the viral orf), many G-to-A muta-
tions may incidentally produce premature stop codons, such as
TAG (or TGA), resulting in viral inactivation (Simon et al., 2005;
Pace et al., 2006).

In its second mechanism, A3G reduces the efficiency and speci-
ficity of primer tRNA processing and removal, resulting in proviral
DNA ends that are aberrant substrates for integration and plus-
strand DNA transfer (Luo et al., 2007; Mbisa et al., 2007; “2” in
Figure 2). In this mechanism, the presumed deamination sites are
located at the plus primer-binding site (PBS), which is annealed
by the tRNA. Considering the biochemical characteristics of A3G,
it remains unclear how the A3G enzyme deaminates cytidine
residues on the DNA/RNA duplex and near the 3′ end of the plus-
strand transfer donor DNA, which is supposed to be a presumed

“dead” zone for A3G-mediated deamination (Chelico et al., 2008,
2010).

It was hypothesized that the antiviral functions of A3G might
be associated with the uracilation of the nascent reverse transcripts
(Harris et al., 2003a; Zhang et al., 2003), resulting in their degrada-
tion through the activity of cellular DNA glycosylases, e.g., UDG2
(uracil DNA glycosidase 2) and SMUG1 (single-strand selective
monofunctional uracil DNA glycosylase). However, several groups
have revealed that neither uracil DNA glycosidase affected the
antiviral effect of A3G (Kaiser and Emerman, 2006; Mbisa et al.,
2007; Langlois and Neuberger, 2008), although one study showed
that UDG2 is involved in the degradation of nascent reverse tran-
scripts (Yang et al., 2007). In addition, we cannot exclude the
possibility that other unidentified DNA repair enzymes might
participate in the degradation mechanism. Therefore, further
studies will be required to elucidate the potential factors that pre-
cede the degradation of uracilated DNA following A3G-mediated
deamination (“4” in Figure 2).

Earlier studies on A3G suggested that G-to-A hypermutation
resulting in lethal mutations was the sole basis of the A3G antivi-
ral mechanism. However, more recent studies have demonstrated
that the catalytic activity of A3G may not wholly determine its
molecular mechanism, i.e., a deaminase–independent mechanism
might also be involved in A3G antiviral activity: (i) mutations of
the catalytic center do not completely abolish antiviral activity
against HIV-1 (Navarro et al., 2005; Iwatani et al., 2006; Holmes
et al., 2007; Luo et al., 2007; Miyagi et al., 2008); (ii) A3G inhibits
replication of hepatitis B virus without detecting significant G-to-
A hypermutation (Turelli et al., 2004; Bonvin and Greeve, 2007;
Nguyen et al., 2007; reviewed in Bonvin and Greeve,2008); and (iii)
other A3 proteins block the replication of HIV-1 (Luo et al., 2007;
Miyagi et al., 2010), mouse mammary tumor virus (Okeoma et al.,
2007), murine leukemia virus (Takeda et al., 2008), and parvovirus
adeno-associated virus (Narvaiza et al., 2009) and retrotranspo-
sition of LINE-1 and Alu (Bogerd et al., 2006; Muckenfuss et al.,
2006; Stenglein and Harris, 2006; Wissing et al., 2011) despite the
absence of editing activity.

Several groups have reported that the deaminase-independent
mechanisms of reverse transcription inhibition would involve
interference with tRNA primer annealing, initiation and elonga-
tion of DNA synthesis, and minus-/plus-strand transfer reactions
(Guo et al., 2006, 2007; Iwatani et al., 2007; Li et al., 2007; Luo
et al., 2007; Mbisa et al., 2007; Anderson and Hope, 2008; Bishop
et al., 2008; Zhang et al., 2008). Using enzymatically active recom-
binant A3G and the in vitro reconstituted systems of HIV-1 reverse
transcription, it has been demonstrated that A3G blocks all RT-
catalyzed DNA elongation processes in a deaminase-independent
manner, although the protein does not significantly interfere with
tRNA primer placement (Iwatani et al., 2007). Moreover, the analy-
sis of endogenous reverse transcription in cell-free HIV-1 particles
also indicated that A3G reduces HIV-1 viral DNA levels by inhibit-
ing the elongation of reverse transcription rather than by inducing
the degradation of the reverse transcripts (Bishop et al., 2008).
The block of RT elongation by A3G might be attributed to A3G’s
unique nucleic acid-binding ability (Iwatani et al., 2007). More
recently, Wang et al. (2012) have observed physiological and func-
tional interactions between RT and A3G, although our group
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FIGURE 2 | A3G blocks the reverse transcription and/or integration of
vif -deficient HIV-1. Packaging of A3G proteins into vif -deficient virus
particles is prerequisite for the inhibition of viral replication by A3G. Upon the
infection of target cells, A3G blocks the post-entry step of viral replication by
one or more of the following mechanisms: (1) Cytidine deamination of
nascent reverse transcripts by A3G enzymes could prevent progeny virus
production due to inactivating mutations in viral genes and/or proteins. (2)

A3G-mediated editing might create aberrant structures at viral DNA ends,
which might be inefficient substrates for integration. (3) The reverse
transcripts containing dU might induce DNA degradation by cellular DNA
repair pathways. (4) RT-mediated elongation could be blocked by the presence
of A3G on RNA or DNA templates. A3G might exert both deaminase
activity-dependent (1–3) and deaminase activity-independent (4) functions to
inhibit vif -deficient HIV-1 replication.

has been unable to detect direct interactions using recombinant
A3G and RT proteins (Iwatani, Y., and Levin, J. G., unpublished
observations). It might be interesting to know whether direct inter-
action is applicable to other A3 proteins and/or retroviral RTs, i.e.,
how the broad range of A3G’s inhibitory effect can be linked to
the specific interaction between RT and A3G. Further investiga-
tions are required to understand the molecular mechanisms of the
deaminase-independent pathway in more detail.

CONCLUSIONS
Studies over the past 10 years have established that human
APOBEC3 family proteins potently restrict retroviral replication.
However, the molecular mechanisms of the A3 family’s antiviral
activities remain unclear. Recent biochemical studies of A3G may
provide a better understanding of these mechanisms. Currently, it

is possible that the deaminase activity of A3G is largely required for
its antiviral activity against vif-deficient HIV-1, although it is not
known whether A3G-mediated deamination and/or the architec-
ture of the catalytic center in A3G are intrinsically required for its
inhibitory activity. Further investigations will provide the funda-
mental answers to explain the first observation by von Schwedler
et al., made when A3G had not yet been discovered.
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