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Microbial communities present in marine sediments play a central role in nitrogen bio-
geochemistry at local to global scales. Along the oxidation–reduction gradients present in
sediment profiles, multiple nitrogen cycling processes (such as nitrification, denitrification,
nitrogen fixation, and anaerobic ammonium oxidation) are active and actively coupled to
one another – yet the microbial communities responsible for these transformations and the
rates at which they occur are still poorly understood. We report pore water geochemical
(O2, NH+

4 , and NO−
3 ) profiles, quantitative profiles of archaeal and bacterial amoA genes,

and ammonia oxidation rate measurements, from bioturbated marine sediments of Catalina
Island, California. Across triplicate sediment cores collected offshore at Bird Rock (BR) and
within Catalina Harbor (CH), oxygen penetration (0.24–0.5 cm depth) and the abundance of
amoA genes (up to 9.30 × 107 genes g−1) varied with depth and between cores. Bacterial
amoA genes were consistently present at depths of up to 10 cm, and archaeal amoA was
readily detected in BR cores, and CH cores from 2008, but not 2007. Although detection of
DNA is not necessarily indicative of active growth and metabolism, ammonia oxidation rate
measurements made in 2008 (using isotope tracer) demonstrated the production of oxi-
dized nitrogen at depths where amoA was present. Rates varied with depth and between
cores, but indicate that active ammonia oxidation occurs at up to 10 cm depth in bioturbated
CH sediments, where it may be carried out by either or both ammonia-oxidizing archaea
and bacteria.
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INTRODUCTION
Marine sediments are Earth’s largest microbial habitat, harboring
an estimated 1031 microbial cells with a total biomass rivaling
that of all plants (Whitman et al., 1998). Sedimentary micro-
bial communities play a substantial role in global biogeochemical
cycles of carbon (C), nitrogen (N), and sulfur (S) – nearly 50%
of N removal from the ocean, for instance, occurs in sediments
(Codispoti et al., 2001; Deutsch et al., 2011). Coastal sediments
are particularly significant sites for N cycling due to human influ-
ence on the global N cycle: agricultural fertilizer use and fossil
fuel combustion have more than doubled the amount of N flow-
ing through terrestrial ecosystems, yet over 50% of this N is
removed in aquatic and coastal ecosystems before it reaches the
sea (Seitzinger et al., 2006; Gruber and Galloway, 2008). The over-
all size of the N sink in sediments (where N is converted by
anaerobic microbial processes into gaseous forms that may flux
out of the system) is nonetheless poorly constrained, leading to
debate about whether the oceanic N cycle is currently in bal-
ance (e.g., Codispoti et al., 2001; Gruber and Galloway, 2008;
Deutsch et al., 2011). In order for these outputs to occur via

denitrification – which is thought to dominate N loss in sediments
at water depths <100 m (Kuypers et al., 2006; Francis et al., 2007) –
N must be present in oxidized forms such as nitrite (NO−

2 ) or
nitrate (NO−

3 ). This is also the case for N loss via anaerobic ammo-
nium oxidation (anammox), as anammox uses NO−

2 as an electron
acceptor (Strous et al., 2006). Dissolved ammonium (NH+

4 ) must
therefore first be oxidized, or reduced N present within organic
material must be regenerated and subsequently oxidized, before N
can be removed anaerobically.

The oxidation of reduced N occurs via the two-step process
of nitrification: ammonia-oxidizing archaea (AOA) and bacteria
(AOB) oxidize reduced NH3/NH+

4 to NO−
2 , and nitrite-oxidizing

bacteria (NOB) oxidize nitrite to NO−
3 (Francis et al., 2007;

Erguder et al., 2009). Given the importance of nitrification to sed-
imentary and global N cycling, AOA and AOB have been studied
extensively in estuarine and coastal sediments (Freitag and Prosser,
2003; Mortimer et al., 2004; Bernhard et al., 2005; Francis et al.,
2005; Beman and Francis, 2006; Bernhard et al., 2007; Mosier and
Francis, 2008; Abell et al., 2010; Wankel et al., 2011) using 16S
rRNA or the ammonia monooxygenase subunit A gene (amoA)
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as molecular markers. Most of these studies have targeted surface
sediments, and few have examined variability in nitrifier distri-
butions and activity with depth. Surprisingly, Freitag and Prosser
(2003) and Mortimer et al. (2004) detected AOB 16S rRNA at
depths of up to 40 cm in sediments from Loch Duich in Scot-
land; based on this observation and detectable rates of nitrification
down to 8 cm depth, Mortimer et al. (2004) argue that this is evi-
dence of “anoxic nitrification,” possibly coupled to manganese
reduction. Dollhopf et al. (2005) also showed that sediment bio-
turbation supplies oxygen to AOB present at 6 cm depth in salt
marsh sediments.

In contrast to AOB, however, the depth distribution of the
recently discovered AOA in sediments is largely unknown. Sulfide
inhibits sedimentary nitrification (Joye and Hollibaugh, 1995),
but Erguder et al. (2009) argue that AOA tolerate higher concen-
trations of sulfide than AOB based in part on their presence in

sulfidic sediments (Caffrey et al., 2007). In an underground coastal
aquifer, Santoro et al. (2008) found that AOA and AOB appear
to shift in relative dominance based on salinity and ammonium
concentrations (Santoro et al., 2008). Based on pyrosequencing
of 16S rRNA, AOA comprised 35% of archaeal sequences in an
oxic coral reef sediment sample, but formed a smaller proportion
(<10%) of the archaeal community in an anoxic sample (Gaidos
et al., 2011). Few other data are available from sediments. Quan-
tifying the distribution of AOA relative to AOB and in relation
to nitrification rates may therefore enhance our understanding of
sedimentary N biogeochemistry, as no study has collected sedi-
ment depth profiles of AOA, AOB, and ammonia oxidation rates
in parallel.

The purpose of this study was consequently to quantify AOA,
AOB, and ammonia oxidation rates in sediment cores from
Catalina Island, California, USA (Figure 1). In a previous

FIGURE 1 | Location of Catalina Island along the coast of California (B),
and of Catalina Harbor and Bird Rock sampling locations (A). Catalina
Harbor sediment sampling location is shown in (C) with scale bar at

lower left, and collection of Bird Rock sediments is shown in (D).
Burrow density at Catalina Harbor in 2008 was ∼120 burrow opening
per square meter.
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study of Catalina Island sediments, Bertics and Ziebis (2009)
detected increases in pore water nitrate where decreases in pore
water ammonium concentrations were also observed; canonical
correspondence analysis revealed that changes in the microbial
community with sediment depth were correlated to changes in
ammonium concentrations – indicating that ammonium is a key
factor influencing microbial communities in Catalina Island sed-
iments. In the present study, AOA and AOB amoA genes were
quantified in sectioned, triplicate cores collected at two loca-
tions, and cores were collected during two sampling periods
at one of these locations. Coupled biogeochemical measure-
ments included microsensor oxygen profiles, measurements of
dissolved nitrogen in pore waters, and nitrification rate mea-
surements using 15N isotopically labeled ammonium. Measurable
rates of nitrification were found throughout two cores, and
both AOA and AOB amoA genes were present at depths of
up to 10 cm.

MATERIALS AND METHODS
SITE DESCRIPTION
Samples were collected from two locations on or near Catalina
Island, California, USA. The first site, “Catalina Harbor” (CH; 33◦
27.080′N, 118◦ 29.293′W), was a shallow (<2 m) intertidal lagoon
in CH on the western side of the island (Figure 1). The lagoon
was a low energy, highly bioturbated area consisting of muddy
sand with the majority of grains being <500 μm (Bertics et al.,
2010). The two most abundant burrowing macrofauna were the
bay ghost shrimp Neotrypaea californiensis, Dana, 1854 (Crustacea:
Decapoda: Thalassinidea) and the Mexican fiddler crab Uca crenu-
lata, Lockington, 1877 (Crustacea: Decapoda: Ocypodoidea). N.
californiensis inhabits intertidal areas stretching from Alaska to
Baja California, and is known to build complex branching bur-
rows that extend to ∼76 cm depth and have several openings to the
surface (MacGinitie, 1934; Brenchley, 1981; Swinbanks and Mur-
ray, 1981). U. crenulata is found from Santa Barbara, California
to Central Mexico and typically maintains simple J-shaped bur-
rows with a single entrance and that extend to a depth of ∼20 cm;
U. crenulata frequently leaves these burrows during low tide to
forage on algae, bacteria, and detritus on the sediment surface
(Zeil et al., 2006).

The second site, “Bird Rock” (BR; 33◦ 25.788′N, 118◦
30.314′W), was located 1.5 km off the eastern shore the island
in ca. 20 m of water. This site consisted of regions with boul-
ders lying on top of more permeable sandy and gravel sediment
(Nelson and Vance, 1979), and regions of rocky outcrops – the
largest of which extends out of the water and forms a small island
named BR. The sandy region where sampling occurred supported
dense patches of the giant kelp Macrocystis pyrifera and other
brown algae, along with associated meio- and macrofaunal com-
munities. Typical water velocities in the area range from 1 to
7 m s−1 and the swell surrounding BR ranges from 1 to 3 m
in height (Morrow and Carpenter, 2008), making this site an area
of high tidal activity in contrast to CH.

SAMPLE COLLECTION
In 2007, sediment samples from CH were collected on 19 Novem-
ber during high tide, as a minimum of 10 cm of water above the

sediment was required to allow for coring, while samples from BR
were collected on 21 November below the sea surface via SCUBA
in an area near a large rock formation. At both sites, sediment
samples were collected using 5 cm diameter, 39 cm length acrylic
cores; three intact sediment cores of 5–25 cm sediment depth were
collected at each site, and cores were placed in an ice chest at ambi-
ent temperature for transport back to the laboratory. In 2008, six
sediment cores were collected in approximately the same location
in CH as was sampled in 2007, with three parallel cores collected
for 15N measurements on 14 April, and three parallel cores col-
lected for nutrient measurement, oxygen measurements, and DNA
sampling on 15 April.

Following oxygen analyses (see below), each of the nine cores
was sub-sampled for ammonium and nitrate concentration anal-
yses and DNA extraction. One-centimeter slices were taken from
each core starting at the surface down to 10 cm for the CH
cores (CH1–CH6) and 5 cm for the BR cores (BR1–BR3). BR
cores extended to a depth of only 5 cm owing to the difficulty
in obtaining longer cores from porous sediments via SCUBA.
Pore water was collected from each 1-cm slice by centrifuga-
tion (10 min at 5000 × g) using 50 ml Macrosep® Centrifugal
Devices (Pall Corporation, Life Sciences) flushed with nitro-
gen gas. The recovered pore water (∼3 ml) was immediately
frozen at −20◦C for later determination of dissolved nitrogen
compounds.

PORE WATER AMMONIUM AND NITRATE ANALYSES
AND MICROSENSOR OXYGEN PROFILES
Pore water ammonium concentrations were determined by flow
injection analysis modified for small sample volumes (Hall and
Aller, 1992); 50 μl of pore water was injected for each sediment
slice in triplicate. The sum of nitrate and nitrite was deter-
mined spectrophotometrically after reduction of samples with
spongy cadmium (Jones, 1984). One milliliter of pore water
from the respective core slices was used for the colorimetric
analysis of nitrite concentrations, and nitrite + nitrate concen-
trations (after reduction) on a spectrophotometer (Strickland and
Parsons, 1972).

Each of the nine intact cores was analyzed for oxygen con-
tent on the vertical axis using a Unisense oxygen microsensor – a
miniaturized amperometric sensor with a guard electrode (Revs-
bech and Jørgensen, 1986; Unisense© 2007). For each core, three
high-resolution microprofiles of oxygen were measured in ver-
tical intervals of 200–250 μm using Clark-type amperometric
oxygen sensors (Revsbech and Jørgensen, 1986; Revsbech, 1989;
Unisense©, Aarhus, Denmark) following a two-point calibra-
tion. Sensors were attached to computer-controlled motorized
micromanipulators (Märzhäuser, Wetzlar, Germany) and driven
vertically into the sediment in micrometer steps. Signals were
amplified and transformed to millivolt (mV) by a two-channel
picoammeter (PA 2000; Unisense©) and directly recorded on a
computer using the software Profix® (Unisense©).

DNA EXTRACTION AND QUANTIFICATION AND QUANTITATIVE
PCR ANALYSES
For DNA extraction, ca. 500 mg of sediment from each 1 cm depth
interval was stored at −80◦C, and DNA was extracted from 200 to
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700 mg of sediment using the ZR Soil Microbe DNA Kit (Zymo
Research, Irvine, CA, USA; 2007 samples) or the MP Biomedicals
FastDNA Spin Kit for Soil (MP Biomedicals, Solon, OH, USA;
2008 samples). DNA was quantified using the PicoGreen assay
and the manufacturer’s protocol (Life Technologies Corporation,
Carlsbad, CA, USA).

Quantitative PCR (qPCR) analyses were identical to those used
by Beman et al. (2012). Archaeal amoA qPCR assays used the fol-
lowing reaction chemistry: 12.5 μL SYBR Premix F (Epicentre
Biotechnologies, Madison, WI, USA), 2 mM MgCl2, 0.4 μM of
each primer, 1.25 units AmpliTaq polymerase (Life Technologies
Corporation, Carlsbad, CA, USA), 40 ng μL−1 BSA (Life Tech-
nologies Corporation, Carlsbad, CA, USA), and 1 ng DNA in a final
volume of 25 μL. β-AOB were quantified using the same reaction
chemistry but without additional MgCl2. Primers (and relevant
references for primer sequences), cycling conditions, qPCR stan-
dards, standard curve correlation coefficients, and PCR efficiencies
are listed in Table 1. All qPCR assays were performed on a
Stratagene MX3005P qPCR system (Agilent Technologies, La Jolla,
CA, USA).

15NH+
4 OXIDATION RATE MEASUREMENTS

Ammonia oxidation rates were measured by injecting 99 atom
percent (at%) 15NH+

4 solution to a concentration of 33 μmol L−1

through small silicone-sealed holes drilled into the acrylic core
cylinder. The accumulation of 15N label in the oxidized NO−

2 +
NO−

3 pool was measured after incubation for ∼24 h. The δ15N
value of N2O produced from NO−

2 + NO−
3 using the “denitri-

fier method” (Sigman et al., 2001) was measured using methods
described in Popp et al. (1995) and Dore et al. (1998): N2O pro-
duced from NO−

2 + NO−
3 was transferred from the reaction

vial, cryofocused, separated from other gases using a 0.32 mm
i.d. × 25 m PoraPLOT-Q capillary column at room tempera-
ture, and introduced into ion source MAT252 mass spectrometer
through a modified GC-C I interface. Isotopic reference materi-
als (USGS-32, NIST-3, and UH NaNO3) bracketed every 12–16
samples and δ15N values measured on-line were linearly corre-
lated (r2 = 0.996–0.999) with accepted reference material δ15N
values.

Initial at% enrichment of the substrate at the beginning of
the experiment (nNH+

4
, see Eq. 1) was calculated by isotope mass

balance based on NH+
4 concentrations assuming that the 15N

activity of unlabeled NH+
4 was 0.3663 at% 15N. Rates of ammonia

oxidation (15Rox) were calculated using an equation modified
from Ward et al. (1989):

15Rox = (nt − noNO−
x
) × [NO−

3 + NO−
2 ]

(nNH+
4

− noNH+
4
) × t

, (1)

where nt is the at% 15N in the NO−
3 + NO−

2 pool measured at
time t, noNO−

x
, is the measured at% 15N of unlabeled NO−

3 +NO−
2 ,

noNH+
4

is the initial at% enrichment of NH+
4 at the beginning of

the experiment, nNH+
4

is at% 15N of NH+
4 , and [NO−

3 + NO−
2 ]

is the concentration of the NO−
x pool. All statistical analyses were

conducted in MATLAB.

RESULTS
MICROSENSOR OXYGEN PROFILES AND PORE WATER
DISSOLVED NITROGEN CONCENTRATIONS
Oxygen concentrations in overlying water were similar in both
CH and BR sediments in 2007 (typically 150–210 μM), but oxy-
gen concentrations declined to 0 μM at a depth of 2400 μm in
CH cores (Figure 2), whereas more permeable BR sediments con-
tained >114 μM O2 at 2400 μm, and oxygen was detectable down
to a depth of 5000 μm (0.5 cm; Figures 2A–C). In CH cores
collected in 2008, oxygen penetrated up to 3000 μm, consistent
with what was observed in 2007. There was substantial variation
among measurements made in individual cores, however, and
among many of the cores. For example, triplicate measurements
in BR core 1 (Figure 2A), CH core 1 (Figure 2D), and CH core
6 (Figure 2I) exhibit high variation, and measured oxygen pro-
files differed across cores collected at the same time in the same
sampling location.

Dissolved nitrogen in pore water also differed between the
two sampling locations, but displayed consistent patterns between
sampling periods in CH (Figure 3). In BR pore water, ammo-
nium (NH4

+) was maximal at 1 cm and declined from 28 to 9.9
μM moving into the sediments. Combined nitrate and nitrite
(NO−

3 + NO−
2 ) concentrations exhibited moderate variation with

depth in BR cores, ranging from 23 to 33 μM. CH sediments dif-
fered from BR in absolute values and observed trends of dissolved
nitrogen with depth: in 2007, NH+

4 increased with depth, from 23
to >100 μM; NO−

3 + NO−
2 was typically low in CH pore water

and reached a maximum value of 14 μM at 1 cm, plateaued at 10–
12 μM from 4 to 6 cm, and was below 3.5 μM from 2 to 3 and 7

Table 1 | Primers (and relevant references for primer sequences) cycling conditions used for qPCR, qPCR standards and standard curve

correlation coefficients, and qPCR efficiencies.

Assay Primers (reference) Cycling conditions qPCR standard r2 Efficiency (%)

Archaeal amoA Arch-amoAF and Arch-amoAR

(Francis et al., 2005)

95◦C (4 min); 30× of 95◦C (30 s),

53◦C (45 s), 72◦C (60 s with detection

step); dissociation curve

Clone GOC-G-60-9

(GenBank accession no.

EU340472) dilution series

0.989–0.994 83.1–101

Betaproteobact

erial amoA

amoAF and amoA2R

(Rotthauwe et al., 1997)

95◦C (5 min); 40× of 94◦C (45 s),

56◦C (30 s), 72◦C (60 s), detection

step at 81◦C (7 s); dissociation curve

Clone HB_A_0206_G01

(GenBank accession no.

EU155190) dilution series

0.973–0.998 85.7–109
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FIGURE 2 | Microsensor profiles of oxygen in sediment cores.

Data from Bird Rock cores from (A–C), and Catalina Harbor cores
from 2007 (D–F) and 2008 (G–I) are shown; vertical axis depicts
depth in sediment (0 μm depth represents the sediment surface

and negative values represent overlying water) and the horizontal
axis displays oxygen concentrations in micromolar. Error bars denote
one standard deviation of triplicate microsensor profiles taken for
each core.

to 10 cm. The same overall pattern was observed in CH sediments
in 2008: NH4

+ increased from 6.6 to 76 μM with depth whereas
NO−

3 + NO−
2 concentrations were always less than 10 μM, and

exceeded 5 μM only at 2, 5, and 6 cm depth in the cores. On aver-
age, concentrations of both NH+

4 and NO−
3 + NO−

2 were lower
in 2008 compared with 2007, but these differences were not sig-
nificant owing to variability between replicate cores. Inter-core
variability was generally much higher for NO−

3 + NO−
2 than NH+

4

in both 2007 and 2008: NO−
3 + NO−

2 varied from 3.3 to 33 μM
at 6 cm depth in 2007, and from 2.6 to 15 μM at 5 cm depth
in 2008.

QUANTIFICATION OF AOA AND AOB
To examine whether ammonia oxidizers were present in these sed-
iments, we extracted DNA and quantified the abundance of AOA
and AOB based on amoA genes. AOA amoA genes, AOB amoA
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2007 (A), Catalina Harbor in 2007 (E), and Catalina Harbor in 2008 (I), and
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3 + NO−
2 ] is shown for Bird Rock (B), Catalina Harbor in 2007

(F), and Catalina Harbor in 2008 (J). Archaeal amoA genes (g-sediment−1) are
shown for individual cores collected at Bird Rock (C), Catalina Harbor in 2007
(G), and Catalina Harbor in 2008 (K). Bacterial amoA genes (g-sediment−1)

are shown for individual cores collected at Bird Rock (D), Catalina Harbor in
2007 (H), and Catalina Harbor in 2008 (L). In (C–L), dashed lines denote
depths were data values are omitted due to qPCR inhibition of samples, and
color shading denotes different cores. Light green/light blue denotes BR1
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genes, or both, were present in all samples from all depths, sam-
pling locations, and time points (Figure 3). AOB amoA genes
were quantified in every sample collected in 2007 at CH and BR,
whereas AOA were undetectable in two of three CH cores collected
in 2007, and were present at lower abundance in two of three BR
cores. Both AOB and AOA amoA genes varied with depth in BR and
CH cores: AOA amoA genes ranged from 4.01 × 106 to 1.22 × 107

genes g−1 in BR core 3 and 2.03 × 104 to 1.73 × 105 genes g−1

in cores 1 and 2 (Figure 3), while AOB amoA genes ranged from
6.55 × 104 to 3.26 × 107 genes g−1 in the BR cores. AOA and AOB
amoA genes were highly variable across the replicate cores, how-
ever, and this pattern held for CH cores from both 2007 and 2008:
for most sediment depths, the coefficient of variation among repli-
cate cores was >1. This is clearly indicative of heterogeneity and
patchiness in amoA genes in these sediments, and most striking is
that fact that AOA amoA genes were undetected in two sediment
cores collected at CH in 2007, but were detected in the third repli-
cate separated by <50 cm. Another possibility is that the amoA
primers did not successfully amplify the archaeal amoA sequence
types present in these samples; if so, this indicates that entirely
different AOA communities inhabit these cores, and is consis-
tent with heterogeneity and patchiness of amoA genes in Catalina
sediments.

When AOA amoA genes were quantified in the CH3 core col-
lected in 2007, they were correlated with amoA genes from AOB
(r2 = 0.936, P < 0.001) with an AOB:AOA slope of 7.78 (Figure 3).
It is unlikely that this correlation is an artifact of different DNA
extraction efficiencies for different depths, as DNA was extracted
from 0.15 to 0.25 g of sediment at each core depth and yielded
316–741 ng of DNA, while both AOA and AOB amoA genes varied
by more than an order of magnitude. In 2008, AOA and AOB amoA
genes were more weakly related (r2 = 0.49–0.55, P < 0.05) in two
of the cores, and uncorrelated in the third (r2 = 0.03, P > 0.05). As
these relationships indicate, we observed relatively little variability
in AOB amoA:AOA amoA ratios with core depth in BR and CH
sediments, yet there were obvious differences between cores, sam-
pling locations, and sampling periods in the relative dominance of
AOB and AOA amoA genes. With a lone exception, AOB amoA was
1.9–46 times more abundant than AOA amoA in all BR samples (at
1 cm depth in BR core 3 AOA amoA was more numerous), while
the ratio of AOB to AOA amoA ranged from 0.24 (5 cm depth) to
8.6 (4 cm depth) in the CH3 core collected in 2007. AOA amoA
was not amplifiable in CH cores 1 and 2 from 2007 and AOB amoA
was therefore present in substantial greater amounts. In contrast,
AOA amoA genes were more abundant than AOB in the 2008 CH
cores, with AOA amoA:AOB amoA ratios ranging from 0.86 to
2.9 in CH core 4, 0.77 to 2.9 in CH core 5, and 0.5 to 5.1 in
CH core 6.

δ15N AND NITRIFICATION RATE PROFILES
δ15N of NO−

3 +NO−
2 in pore water was measured following a 24 h

incubation of intact cores collected in 2008 to calculate 15NH+
4

oxidation rates. δ15N of NO−
3 + NO−

2 in CH core 5 exhibited only
modest enrichment, ranging from 13.8‰ at the surface to 54.0‰
at 10 cm depth (Figure 4B). This pattern is typical for sediments
(e.g., Lehmann et al., 2007) where denitrification at depth pref-
erentially removes isotopically light N, enriching the remaining

NO−
3 +NO−

2 pool in 15N. Because the values we observed are in the
range expected for sedimentary denitrification, this suggests that
little or no ammonia oxidation occurred in this core (we enriched
the 15NH+

4 pool to 76.7 at%). Instead, the measured values effec-
tively represent in situ δ15N of NO−

3 +NO−
2 , and these values were

used to calculate 15NH+
4 oxidation rates in the other cores. (Two

exceptions were the lower δ15N values measured at 7 and 9 cm
depth, where we instead linearly interpolated the in situ δ15N val-
ues.) In contrast to the δ15N values observed in CH core 5, δ15N
of NO−

3 + NO−
2 in pore water exceeded 330‰ in CH cores 4 and

6 (Figures 4A,C). Pore water δ15N was highly variable throughout
each core, and between both cores, and spiked at several depth
intervals – indicating that labeled 15NH+

4 was being oxidized rela-
tively deep within the CH4 and CH6 cores (Figures 4D,E). 15NH+

4
oxidation rate profiles showed maxima at 6 cm in CH4, and at 3 cm
in CH6, where rates were also elevated at 5 and 7 cm (Figure 4). In
both cores, 15NH+

4 oxidation rates were readily detectable at 9 cm
depth. Rates ranged from 0 to 7.15 nmol L−1 day−1 in CH4 and 0
to 18.3 nmol L−1 day−1 in CH6.

DISCUSSION
GEOCHEMISTRY OF CATALINA SEDIMENTS
Oxygen typically penetrates only a few millimeters into coastal
sediments owing to rapid consumption during organic matter
degradation, or chemical re-oxidation of reduced compounds
(Revsbech et al., 1980; Gundersen and Jørgensen, 1990). However,
the depth of oxygen penetration can be increased via bioturba-
tion/bioirrigation (Aller, 1982; Ziebis et al., 1996a; Bertics and
Ziebis, 2009), sediment permeability and increased bottom water
flow velocity, and/or increased wave action (Booij et al., 1991;
Precht et al., 2004). Sediment topography features that generate
pressure differences can also lead to advective transport of oxy-
genated water into the sediment (Ziebis et al., 1996b). At BR,
sediments contained >114 μM O2 at 2400 μm and oxygen was
detectable down to a depth of 5000 μm (0.5 cm; Figures 2A–C).
This is consistent with oxygen transport via advective processes
several centimeters into the sediment, especially given the porous
nature of these coarse BR sediments. In contrast, in CH sediments,
oxygen was not detected below 2400 μm in 2007 (Figures 2D–F)
and 3000 μm in 2008 (Figures 2G–I) – suggesting that oxygen
diffuses to a consistent depth at CH. An important caveat to
this is the fact that macrofauna can transport oxygen more than
50 cm deep (Ziebis et al., 1996a) and bioturbation has been shown
to transfer oxygen multiple centimeters deep into CH sediments
(Bertics and Ziebis, 2009). The presence of bioturbation is there-
fore a likely explanation for the variation within and among many
of the CH cores – e.g., CH core 1 (Figure 2D) and CH core 6
(Figure 2I).

NO−
3 + NO−

2 profiles also differed between BR and CH
sediments, in that high concentrations (>20 μM) were seen
throughout BR cores while concentrations reached a maximum
value of 14 μM at 1 cm in CH cores from 2007 and were always
less than 10 μM in cores from 2008. However, several subsurface
peaks of NO−

3 + NO−
2 occurred in CH in both 2007 and 2008,

and may reflect either (1) transport of oxidized compounds into
the sediment via bioturbation, or (2) production of NO−

3 + NO−
2

in the sediment via the activity of nitrifying bacteria and archaea
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FIGURE 4 | Measured δ15N of pore water NO−
3 + NO−

2 following incubation with added 15NH+
4 label (A–C), and 15NH+

4 oxidation rates (D,E) in Catalina Harbor
in 2008. Note differences in scales in (A–C); oxidation rates were not calculated in Catalina Harbor core 5 owing to the lack of clear isotopic enrichment.

(i.e., in situ nitrification). CH cores displayed the typical increase
in NH+

4 that is expected with increasing sediment depth due to
microbial remineralization of organic material. Concentrations
of both NH+

4 and NO−
3 + NO−

2 were on average lower in 2008
when compared with 2007 – although these differences were not
significant owing to variability between replicate cores. A decrease
in recruitment of shrimp and a decrease in microbial mat for-
mation was previously observed in these sediments from 2007
to 2008 (Bertics et al., 2010) and may explain this shift in sedi-
ment geochemistry. Hence interannual variability in geochemical
conditions and microbial activity can occur in CH, but it occurs
against a backdrop of substantial spatial variability.

ABUNDANCE OF AOA AND AOB IN CATALINA SEDIMENTS
Ammonia-oxidizing archaea and AOB were also highly variable in
Catalina Island sediments based on the abundance of amoA genes.

DNA extracted from sediments may not be derived from active or
viable microorganisms – indeed, it is possible to recover ancient
DNA from sediment cores (Coolen and Overmann, 1998) – yet
the presence of, and variability in, oxidized nitrogen at 4–6 cm
depth in CH cores is indicative of active production. We assessed
this using direct biogeochemical measurements (see below) rather
than extraction of RNA, yielding quantitative rates rather than
relative levels of gene expression. Our DNA data are neverthe-
less consistent with other studies profiling AOB in sediments:AOB
DNA has been detected at 40 cm depth in Loch Duich sediments
(Freitag and Prosser, 2003; Mortimer et al., 2004), 6 cm depth in
salt marsh sediments (Dollhopf et al., 2005), and at least 2 cm
depth in estuarine sediments from Plum Island Sound (Bernhard
et al., 2007), where potential nitrification was measured at up to
4 cm. In these studies, AOB typically ranged from 104 to 107 amoA
genes g−1, and our data are similar (3.6 × 104 to 9.3 × 107 amoA
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genes g−1). However, in addition to AOB, we report amoA genes
from AOA at up to 5 cm depth in BR sediment cores, and 10 cm
depth in CH sediment cores, where they ranged from 7.2 × 104 to
1.3 × 107 genes g−1.

Previous studies have shown that although AOA and AOB
are presumably functionally equivalent, their relative dominance
varies across gradients of salinity present in sediments (Caffrey
et al., 2007; Mosier and Francis, 2008; Santoro et al., 2008). Studies
in soils suggest that pH (Nicol et al., 2008) and NH4

+ concen-
trations (reviewed by Erguder et al., 2009) also alter the relative
abundance of AOA and AOB – more specifically, an exceptionally
high affinity for ammonia benefits AOA when NH4

+ concentra-
tions are low (Martens-Habbena et al., 2009). While we observed
relatively little variability in AOB amoA:AOAamoA ratios with
depth in BR and CH sediments, AOB amoA genes were more
abundant in BR sediments and CH sediments from 2007, while
AOA amoA genes were more abundant than AOB in the 2008
CH cores. Different DNA extraction kits were used for CH sed-
iments collected in 2007 and 2008, and it is possible that the
MP Biomedicals kit (used in 2008) is less effective in extracting
bacterial DNA and so explains the differences observed between
the two sampling periods. When comparing measured values,
however, 2008 values lie within the range of AOB and AOA
amoA gene abundances observed across both sites in 2007; this
argues against extraction bias, as one would expect much lower
or higher numbers for one or both of the genes. In any case, the
evidence for interannual variability in ammonia oxidizer popu-
lations is mixed, given that: (1) measured NH+

4 values are still
far in excess of Km value (123 nM) for the lone cultured marine
AOA, Nitrosopumilus maritimus (Martens-Habbena et al., 2009),
while Km values for some AOB are as low as 10 μM (Casciotti
et al., 2003 and references therein), and (2) high spatial varia-
tion within these sediments might obscure temporal trends. Put
another way, our data do not conclusively indicate whether AOA
or AOB are more dominant in these sediments, but are indicative
of substantial spatial variation and possibly temporal variation
as well. This parallels our geochemical results, but there was
little correspondence between AOA and AOB and nutrient and
rate data: no significant correlations were observed in the 2007
data (all P > 0.05), whereas AOA were negatively correlated

with NH+
4 – and positively correlated with NO−

2 – in 2008
(Table 2).

NITRIFICATION IN CATALINA SEDIMENTS
Ammonia oxidation rate measurements indicated that AOA and
AOB were actively nitrifying throughout two of the three collected
cores in 2008. Modest enrichment in the CH5 core suggests that
although we recovered amoA genes, either this DNA was not
derived from living organisms, or these organisms were inac-
tive during our incubation. Evidence for the later includes the
relatively low δ15N values measured at 7 and 9 cm depth, as
in a previous study conducted in the same location in 2008,
Bertics et al. (2010) found the highest rates of nitrogen fixation
at depth of 7 and 9 cm in the most bioturbated location they
sampled. Hence one possible explanation for the “light” δ15N
of NO−

3 + NO−
2 at these depths is the oxidation of recently

fixed nitrogen, i.e., while ammonia oxidation appeared inactive
at the time of our sampling, it may have been previously active
within or near these sediment layers. Another explanation for
these local minima in the pore water profile is that this rep-
resents NO−

3 and/or NO−
2 of differing δ15N that is present in

groundwater.
In the CH4 and CH6 cores, 15NH+

4 oxidation rates were readily
detectable at most depths up 9 cm in both cores, and up to 10 cm
depth in the CH6 core. Relatively few 15N-based rate measure-
ments have been conducted within sediments (Ward, 2008), but
our experimental approach was similar to that used by Mortimer
et al. (2004) and our measured rates (0–18.3 nmol L−1 day−1) were
similar to values of 4.86–89.6 nmol L−1 day−1 measured at 2–6
and 10–12 cm depth in Loch Duich (Mortimer et al., 2004). How-
ever, our measurements were much lower than the maximum rates
measured at 0–2 cm in Loch Duich (1.6 × 106 nmol L−1 day−1)
and most other measurements in the literature (Ward, 2008).
These results therefore capture active 15NH+

4 oxidation at depths
of up to 10 cm in Catalina Island sediments, but also indicate
that rates are generally low and variable with depth and between
replicate cores.

One possible explanation for measurable ammonia oxida-
tion at depth is the periodic supply of oxygen to aerobic
nitrifiers: previous work has shown that alteration of sediment by

Table 2 | Correlation coefficients (r2) for comparisons between qPCR data, nutrient concentrations, and 15NH+
4

oxidation rates averaged across

triplicate cores collected in Catalina Harbor in 2008.

Log AOA amoA AOA amoA Log AOB amoA AOB amoA [NH+
4

] [NO−
2

] [NO−
3

] 15NH+
4

oxidation rate

Log AOA amoA 0.19 0.07 0.55* 0.44* 0.22 0.28

AOA amoA 0.09 0.02 0.48* 0.54* 0.36 0.26

Log AOB amoA 0.08 0.03 0.01 0.06

AOB amoA 0.02 0.02 0.01 0.02

NH+
4 0.30 0.03 0.02

NO−
2 0.41* 0.01

NO−
3 0.10

*P < 0.05.
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macrofauna can alter redox chemistry and microbial communities
in CH sediments (Bertics and Ziebis, 2009, 2010; Bertics et al.,
2010), and burrows were present in the majority of the cores we
collected. Previous work by Dollhopf et al. (2005) in fact showed
that nitrification rates and AOB abundance were related to burrow
abundance. Abiotic “anoxic nitrification” (Mortimer et al., 2004)
may also explain oxidation of ammonia at up to 9 cm depth –
however, AOB have been detected at greater depths in other sedi-
mentary environments, and amoA genes from both AOB and AOA
were readily quantified where active ammonia oxidation was also
measured. As a result, our findings are consistent with previous
work indicating that bioturbation sustains nitrification by pro-
viding periodic intrusions of oxygen (Dollhopf et al., 2005; Ward,
2008, and references therein).

Hydrogen sulfide is a confounding issue for nitrification in
sediments because it can completely inhibit nitrification (e.g.,
Joye and Hollibaugh, 1995); yet in spite of relatively high sul-
fate reduction rates occurring in CH sediments (Bertics and
Ziebis, 2010), pore water hydrogen sulfide was not previously
detected (Bertics and Ziebis, 2009), possibly because dissolved
sulfide reacts with the high levels of iron (Bertics and Ziebis,
2009), leading to the precipitation of iron sulfides (Berner,
1970). Hydrogen sulfide may also be oxidized by sulfide oxidiz-
ers present in nearby sediments (Meyers et al., 1987) – in fact,
hydrogen sulfide is oxidized by organisms using nitrate as an elec-
tron acceptor in oceanic oxygen minimum zones (Canfield et al.,
2010). Some combination of these processes likely explains the
lack of sulfide inhibition of ammonia oxidation in cores CH4
and CH6.

However, the variation in 15NH+
4 oxidation rates that we

observed (e.g., between cores and with depth) may stem from
production of hydrogen sulfide: similar to the rate measurements
reported here, sulfate reduction rates are heterogeneous in CH
bioturbated sediments, with areas having sulfate reduction rates

of 790 nmol SO2−
4 cm−3 day−1 separated by only 3–5 cm from

areas displaying rates of <5 nmol SO2−
4 cm−3 day−1 (Bertics

and Ziebis, 2010). It is therefore possible that in some patches
of CH sediment, high sulfate reduction rates inhibit nitrifica-
tion, while in other areas, low sulfate reduction rates allow for
the presence of nitrification – thereby explaining the high levels of
variation in nitrification rates seen between replicate cores in CH.
This hypothesis is supported by Gilbert et al. (1998), in which the
authors found that bioturbation led to the close presence of oxic
and anoxic microenvironments, which in turn strengthened the
proximity and exchanges between nitrification and denitrification
in sediments.

Our results are consistent with ammonia oxidation being
broadly but patchily distributed in marine sediments, where
this key process may be coupled to anaerobic N cycling and
loss. The high degree of heterogeneity observed for substrates,
products, genes, and biogeochemical activity – laterally, with
depth, and through time – demonstrates that sedimentary N
cycling is extraordinarily complex. Understanding this complex-
ity and variability will be critical for balancing the N cycle
in an era of global change (Gruber and Galloway, 2008; Beman
et al., 2011).
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