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The human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus causing an aggressive T-cell
malignancy, adult T-cell leukemia (ATL). Although HTLV-1 has a compact RNA genome, it
has evolved elaborate mechanisms to maximize its coding potential.The structural proteins
Gag, Pro, and Pol are encoded in the unspliced form of viral mRNA, whereas the Env pro-
tein is encoded in singly spliced viral mRNA. Regulatory and accessory proteins, such as
Tax, Rex, p30II, p12, and p13, are translated only from fully spliced mRNA. For effective viral
replication, translation from all forms of HTLV-1 transcripts has to be achieved in concert,
although unspliced mRNA are extremely unstable in mammalian cells. It has been well
recognized that HTLV-1 Rex enhances the stability of unspliced and singly spliced HTLV-1
mRNA by promoting nuclear export and thereby removing them from the splicing site. Rex
specifically binds to the highly structured Rex responsive element (RxRE) located at the
3′ end of all HTLV-1 mRNA. Rex then binds to the cellular nuclear exporter, CRM1, via its
nuclear export signal domain and the Rex–viral transcript complex is selectively exported
from the nucleus to the cytoplasm for effective translation of the viral proteins. Yet, the
mechanisms by which Rex inhibits the cellular splicing machinery and utilizes the cellular
pathways beneficial to viral survival in the host cell have not been fully explored. Further-
more, physiological impacts of Rex against homeostasis of the host cell via interactions
with numerous cellular proteins have been largely left uninvestigated. In this review, we
focus on the biological importance of HTLV-1 Rex in the HTLV-1 life cycle by following the
historical path in the literature concerning this viral post-transcriptional regulator from its
discovery to this day. In addition, for future studies, we discuss recently discovered aspects
of HTLV-1 Rex as a post-transcriptional regulator and its use in host cellular pathways.
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INTRODUCTION
Human T-cell leukemia virus type 1 (HTLV-1) is widely accepted
as the causative agent of adult T-cell leukemia (ATL) and was dis-
covered almost a decade after the recognition of ATL as a disease
(Takatsuki, 2005). By the early 1970s, many clinicians recognized
the existence of a new type of human leukemia/lymphoma; how-
ever, an official description of ATL did not appear until 1977 in
Kyoto, Japan. In 1979, HTLV-1 was confirmed in the United States
(Gallo, 2005), and reported as the first human retrovirus (Poiesz
et al., 1980, 1981). Soon after the discovery of HTLV-1, a retro-
virus was also isolated from ATL patients in Japan and named
adult T-cell leukemia virus (ATLV; Yoshida et al., 1982). It was
then confirmed that ATLV and HTLV-1 were the same virus and
the description was modified thereafter to indicate that ATL is
caused by HTLV-1 (Popovic et al., 1982, 1983).

The genomic structure of the HTLV-1 provirus was thoroughly
investigated and published by Seiki et al. (1983), which acceler-
ated studies in biochemical and molecular aspects of HTLV-1 in
the late 1980s and resulted in the first review on the molecular biol-
ogy of HTLV-1 in 1995 (Franchini, 1995). Generally, RNA viruses
have evolved elegant mechanisms to maximize coding potential
and to precisely regulate the expression of encoded genes. Over-
lapping reading frames, internal ribosome entry sites, alternative

splicing, sub-optimal Kozak sequences, and ribosomal frame shift-
ing are among the varied mechanisms used to maximize genomic
coding potential and regulate expression of specific viral genes
(Balvay et al., 2007). HTLV-I has a compact genome RNA of 8685
nucleotides with two long terminal repeats (LTR) located at the 5′
and 3′ ends that function as the viral promoter. HTLV-1 encodes
more than 10 open reading frames (ORFs) by employing sev-
eral mechanisms to achieve appropriate and ordered expression
of these genes, including alternative splicing and programmed
ribosomal frame-shifting (PRF). In particular, gag and pol are
separated by pro, which overlaps both the 3′ end of gag and 5′
end of pol. The protein precursors, Gag-Pro and Gag-Pro-Pol,
share a common Gag initiator codon located at the 5′ end of gag,
and expression is translationally regulated by an in-frame read-
through and PRF. PRF is a mechanism frequently used by viruses
to alter the translational reading frame by shifting the ribosome
at a slippery site (Theis et al., 2008). The HTLV-1 RNA genome
has a −1 PRF at nucleotide 1718 and another at nucleotide 2245.
Moreover, HTLV-1 RNA genome contains two major splice sites.
Unspliced HTLV-1 RNA yields Gag, Pro, and Pol proteins and the
singly spliced RNA produces Env, whereas the functional proteins
derived from the pX region can be translated only from doubly
spliced mRNA.
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The 3′ end of the HTLV-1 genome was named the pX region at
the time the genomic structure of this virus was determined, since
the function of this region was unclear. Deciphering the over-
lapped ORFs in the pX region allowed us to examine the encoded
regulatory and accessory proteins of HTLV-1 in the pX region and
newly discovered findings of wide-ranged functions of those viral
proteins involved in the host cellular pathways have been quickly
accumulated. Information concerning the function of HTLV-1
accessory proteins including Rex in the regulation of viral repli-
cation has been accumulated and updated during the last decade
(Johnson et al., 2001; Franchini et al., 2003; Kashanchi and Brady,
2005; Taylor and Nicot, 2008; Kannian and Green, 2010). As a
retrovirus, HTLV-1 is composed of only RNA genome that con-
tains all the information necessary for self-replication; thus, the
expression of viral genes entirely relies on the host transcriptional
and translational machinery. Besides the structural proteins Gag,
Pro, Pol, and Env, HTLV-1 encodes several unique regulatory and
accessory proteins, such as Tax, Rex, P30II, p12, p13, and HTLV-1
basic leucine zipper factor protein (HBZ) coded in antisense ORF.
Here we start this review of HTLV-1 Rex by introducing the func-
tions of all viral accessory proteins before focusing on Rex, since
these proteins function in concert to achieve successful infection
and replication of HTLV-1 in the host cell. Thus, understand-
ing the overall viral mechanism is necessary to understand the
functional importance of Rex in the HTLV-1 life cycle.

SCHEDULED AND CONCERT FUNCTIONS OF VIRAL PROTEINS
FOR REGULATION OF VIRAL EXPRESSION
HTLV-1 has two major transcriptional regulators, Tax and Rex.
Tax is a strong trans-activator of HTLV-1 LTR promoter, which
enhances the expression of integrated HTLV-1 proviruses (i.e.,
viral replication) during the early phase of infection. Tax also
has a significant influence on host signal transduction, gene
expression, and cell cycle regulation by interacting with various
cellular proteins and plays a major role in immortalization and
leukemogenesis of the host T-cells (Matsuoka and Jeang, 2007;
Boxus et al., 2008). On the other hand, it is also well recognized
that Tax is expressed only during the early phase of infection
and not expressed, at least not at a detectable level, thereafter.
Consequently, it remains unclear how the “influence” of Tax is
maintained for decades and triggers transformation of infected
T-cells.

Rex is an mRNA binding protein, which specifically binds to the
Rex responsive element (RxRE) and acts as a post-transcriptional
regulator of HTLV-1 mRNA. Since RxRE locates to the U3 and R
regions, all HTLV-1 transcripts (i.e., unspliced, singly spliced, and
doubly spliced mRNA) have RxRE. The most important func-
tion of Rex is selectively binding to unspliced and partially spliced
HTLV-1 mRNA in the nucleus and quickly exporting them to
the cytoplasm, thereby preventing further splicing and enhancing
effective translation of the structure proteins (Hidaka et al., 1988;
Adachi et al., 1990, 1992; Hamaia et al., 1997).

A second HTLV-1 RNA binding protein, p30II, specifically
binds to doubly spliced tax/rex mRNA and retains it in the nucle-
olus. Therefore, p30II reduces Tax and Rex expression levels (and
thus, overall viral activity), which eventually leads the virus to
enter the latent period (Nicot et al., 2004; Ghorbel et al., 2006;

Sinha-Datta et al., 2007; Bai et al., 2010). Rex directly binds to
p30II and rescues tax/rex mRNA retention by p30II to promote
viral replication (Sinha-Datta et al., 2007); thus, switching between
replication and latency is modulated by p30II and Rex interactions.
In addition, p30II interacts with a number of cellular proteins and
represses expression from HTLV-1 LTR by binding to p300, an
important co-activator of LTR, probably by competing with Tax
(Michael et al., 2006). This viral protein enhances the transform-
ing activity of cMyc through interactions with a transforming
co-activator, TIP60 (Awasthi et al., 2005). Recently, p30II was
reported to enhance inappropriate DNA repair (Baydoun et al.,
2011). The authors speculated that this new role of p30II may
result in accumulation of DNA lesions during transformation of
an infected cell. Anupam et al. (2011) also suggested an important
role of p30II in enhancement of cellular survival under DNA dam-
age through modulation of ataxia telangiectasia mutated (ATM)
level, which is a key regulator of the cell cycle checkpoint initiated
by a double-strand DNA break. The authors also demonstrated
that REGγ, which stimulates the proteolytic activity of the 20S
core proteasome independent of ubiquitination and ATP, unex-
pectedly enhanced p30II expression. Overall, p30II has multiple
functions via interactions with both viral proteins/transcripts and
cellular proteins and maintains a balance between viral latency and
spread, as well as between cellular survival and transformation.

The small HTLV-1 accessory proteins, p12 and p13, are not
essential for viral replication, but they play important roles in
escaping from the host immune system and transformation of
infected T-cells (Koralnik et al., 1993; Nicot et al., 2005). Finally,
HBZ, a product of the antisense strand of HTLV-1 RNA genome,
is known to promote viral replication and cellular proliferation
(Matsuoka and Jeang, 2011) and induces T-cell lymphoma and
chronic inflammation in vivo (Satou et al., 2011). The importance
of this antisense-coded protein in the viral life cycle remains vague,
although Arnold et al. (2006) showed that HBZ was dispensable
for cellular immortalization in vitro, whereas it enhanced viral
infectivity in vivo in a rabbit model. A new perspective of this
antisense gene-coded product as a non-coding RNA was recently
proposed, since HBZ has not been observed at detectable levels
in HTLV-1 carriers and ATL patients, and a large portion of hbz
mRNA was shown to accumulate in nucleus (Rende et al., 2011).

After HTLV-1 entry and integration into the host human
genome, proviral expression is initiated and the viral regula-
tory/accessory proteins function in concert with a precise schedule.
Such well-organized regulation of HTLV-1 expression has been
investigated by many researchers in the field of molecular and
cellular virology and it was also recently confirmed by kinetic cal-
culations (Corradin et al., 2010). Figure 1 shows the time-course
of HTLV-1 expression postinfection. Expression of the HTLV-1
provirus relies entirely on the host cell machinery and during
the initial stage of infection, the viral mRNA is fully spliced to
tax/rex mRNA. Since Tax has a stronger Kozak sequence than Rex,
translation of Tax is initially superior to that of Rex (Green and
Chen, 1990). Tax boosts transcription by LTRs and Rex gradu-
ally accumulates. Once a sufficient level of Rex is pooled in the
host cell, Rex blocks splicing of viral mRNA and exports the
unspliced and singly spliced viral mRNA to the cytoplasm for
selective translation of Gag, Pro, Pol, and Env, resulting in active
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FIGURE 1 | Concerted functions of viral proteins for HTLV-1 expression.

Postinfection, the HTLV-1 provirus expresses viral proteins at appropriate
times to control the early productive phase and the late shut-down phase
leading to latency in the HTLV-1 life cycle. At the very beginning, without
Rex, the viral transcripts are fully spliced and thus, Tax and Rex are
selectively translated (stage 1). Tax transactivates HTLV-1 LTR promoter
activity, whereas Rex inhibits splicing and actively exports the unspliced
and singly spliced viral mRNA from the nucleus resulting in the expression
of structural proteins and production of viral particles (stage 2). In the late
phase, p30II from a minor, doubly spliced transcript binds to tax/rex mRNA
and confines it to the nucleoli (stage 3) resulting in decreased Tax/Rex
protein levels leading to latency. N, nucleus; C, cytoplasm; Nu, nucleolus.

viral replication. Selective nuclear export of unspliced and par-
tially spliced viral mRNA by Rex eventually reduces the export of
fully spliced tax/rex mRNA, resulting in a decrease in Tax expres-
sion. Finally, p30II, with a strong nucleolar localization signal
(NoLS), is expressed from the minor doubly spliced viral mRNA
and retains tax/rex mRNA in the nucleoli, thus preventing their
expression and avoiding immune evasion to initiate latency. The
time course of HTLV-1 expression was thoroughly investigated by
Li et al. (2009) in HTLV-1-expressing 293T cells. Such time-lagged
operations of the positive (Tax and Rex) and negative (p30II) reg-
ulators of HTLV-1 promotes the early infectious phase followed
by a rapid shut-down in the late infectious phase to escape from
the host immune surveillance against pathogens (Figure 1).

During the course of viral expression, the small viral acces-
sory proteins p13 and p12 also function to optimize the cellular

environment for the viral spread and facilitate viral persis-
tence in infected cells. p13, a short isoform corresponding to
the C-terminal 87 aa of p30II is localized primarily in the
mitochondrial inner membrane and increases mitochondrial per-
meability to K+ and activates the electron transport chain.
This results in increased mitochondrial production of reactive
oxygen species, which induces genetic instability and apopto-
sis (Silic-Benussi et al., 2010a,b; Biasiotto et al., 2010). p13 also
localizes to the nucleus and is ubiquitinated by Tax for stabi-
lization; thus, HTLV-1 balances viral expression and silencing
through negative feedback (Andresen et al., 2011). The balance
between T-cell activation and silencing is achieved by HTLV-1
p12 and p8, which are encoded in the singly spliced viral
mRNA at minor splicing sites. p12, which mainly localizes to
the endoplasmic reticulum (ER) and modulates T-cell activa-
tion and proliferation by interacting with the β and γ chains of
the interleukin-2 receptor (IL-2R) and leading to activation of
the Janus kinase/signal transducer and activator of transcription
5 (Jak/Stat5) signal transduction pathway to provide a mito-
genic signal (Prooyen et al., 2010a,b). p12 also decreases surface
expression of major histocompatibility complex I via proteasomal
degradation, thus contributing to the rescue of HTLV-1-infected
cells from being targeted by CTL. p12 also interacts with cal-
reticulin and calnexin resulting in increased Ca2+ release from
the ER and activation of the nuclear factor of activated T-cells
(NFAT), a mitogenic pathway in T-cells. On the other hand,
p8, which is cleaved from p12 in the ER, travels to the cell sur-
face and induces T-cell anergy. p8 also increases cell-to-cell viral
transmission through the formation of immunological synapses
(Prooyen et al., 2010a,b).

HBZ was the first viral protein found to be encoded in the
antisense ORF of HTLV-1. HBZ is known to interact with cAMP
response element-binding protein 2 (CREB-2) and suppresses Tax-
mediated viral transcription. HBZ also enhances viral replication
(Matsuoka and Jeang, 2011). On the other hand, previous reports
demonstrated that HBZ expression does not affect the ability of
HTLV-1 to immortalize T-lymphocytes in culture (Arnold et al.,
2006), and that hbz mRNA enhanced T cell proliferation in culture
and transgenic mice (Satou et al., 2006). These reports proposed
the possibility that HBZ proteins and hbz mRNA may have differ-
ent functions. Choudhary and Ratner (2011) demonstrated that
hbz mRNA destabilizes p30ii mRNA, thus increasing Tax expres-
sion. Rende et al. (2011) showed that hbz mRNA remains in the
nucleus and speculated that hbz mRNA may have an important
physiological role as a functional non-coding mRNA. Further
investigations are necessary to clarify the involvement of HBZ and
hbz mRNA in the HTLV-1 life cycle.

Overall, the interactions and positive and negative feedbacks
among HTLV-1 Tax, Rex, p30II, and HBZ control the activation
and inhibition of HTLV-1 expression, whereas p13, p12, and p8
organize a cellular environment suitable for viral retention.

HTLV-1 Rex: THE CONDUCTOR OF VIRAL
POST-TRANSCRIPTIONAL EXPRESSION
HTLV-1 Rex is a viral RNA binding protein of approximately
27 kDa and is essential for nuclear export of viral mRNA. Rex
is also known to stabilize and export unspliced and singly spliced
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viral mRNA that code structural proteins; thus, Rex is considered
essential for viral replication (Inoue et al., 1986, 1987; Hidaka et al.,
1988; Gröne et al., 1996). It has been speculated that Rex inter-
acts with the host splicing machinery in the nucleus to prevent
splicing and stabilizes unspliced and partially spliced viral mRNA.
However, the exact molecular mechanisms have not been fully
elucidated to date.

As a viral post-transcriptional regulator, Rex binds to the RxRE
of the viral transcript with high affinity. The RxRE sequence spans
255 nt from the U3 to R region of the 3′LTR and forms a sta-
ble secondary structure consisting of four stem loops (Ahmed
et al., 1990). RxRE is not only a landmark for Rex binding,
but it is also essential for optimal positioning of the polyA sig-
nal and polyA binding site in the HTLV-1 transcript, which
are otherwise separated by the RxRE sequence (Ahmed et al.,
1991). The cis-acting repressive sequence (CRS) is another reg-
ulatory sequence of HTLV-1 mRNA, located at both ends of
HTLV-1 LTRs. Seiki et al. (1990) described the CRS in the U5
region for the first time and concluded that the CRS suppresses
R activity, thereby enhancing RNA expression from the LTR. In
agreement with their hypothesis, the authors demonstrated that
the CRS in the U5 region significantly suppressed the expression
of unspliced HTLV-1 mRNA only, but not spliced mRNA, since
splicing within the R region removes the U5 element from the
spliced mRNA. Interestingly, the function of Rex in protection
of unspliced mRNA from splicing is CRS-independent. Thus, the
CRS can be viewed as a post-transcriptional repressor, whereas
Rex stabilizes unspliced viral RNA by directly interacting with the
splicing machinery in addition to evacuating the unspliced viral
mRNA to compartments not accessible to the splicing machinery.
More recently, the other CRS in the 3′LTR region overlapping
the RxRE sequence was identified by King et al. (1998). They
examined the functions of 5′ and 3′CRSs separately and clari-
fied that 5′CRS hampers nuclear export of only unspliced viral
mRNA, whereas 3′CRS does so for all spliced and unspliced viral
mRNA. This is rather reasonable, since 5′CRS remains only in
unspliced mRNA, whereas 3′CRS is conserved in all forms of
viral mRNA. They also found that deletion of both CRSs induced
the constitutive nuclear export of reporter transcripts indepen-
dent of Rex. Recently, Li et al. (2012) demonstrated that nuclear
export of unspliced gag/pol mRNA and singly spliced env mRNA of
HTLV-1 was Rex-dependent, whereas that of alternatively spliced
mRNA was not. According to their conclusion, the unspliced
and singly spliced HTLV-1 mRNA, containing RxRE/CRS and a
functional splice donor site, are nuclear-exported in a Rex/RxRE-
dependent manner, whereas the fully spliced mRNA is not, even
though it contains a 3′RxRE/CRS. Their results are somewhat
different from those of Bai et al. (2012), who demonstrated that
tax/rex mRNA was also nuclear-exported in a Rex/RxRE/CRM1-
dependent manner. All together, nuclear export of unspliced and
spliced mRNA of HTLV-1 seems to be fine-tuned by nuclear
retention activity of CRS and selective nuclear exporting activity
of Rex.

Rex is a phosphoprotein; therefore, its activity is determined
by the state of phosphorylation at the several serine/threonine
residues (Kesic et al., 2009a). Adachi et al. (1990) demonstrated
for the first time that Rex is activated by phosphorylation, since

the treatment of an HTLV-1-infected cell line, HUT102, with a
protein kinase C inhibitor, H-7 [1-(5-isoquinolinyl-sulfonyl)-2-
methylpiperazine], resulted in decreased levels of unsliced viral
mRNA and Gag-p19 protein. They also determined Rex phos-
phorylation sites at S70, S177, and Th174 (Adachi et al., 1992),
although the kinase(s) responsible for Rex phosphorylation have
not yet been identified. Recently, Kesic et al. (2009a) thoroughly
examined Rex phosphorylation sites by conducting phospho-
ryl mapping and discovered five other phosphorylation sites at
Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. On the other hand,
they were unable to confirm the phosphorylation of Ser-177 as
reported by Adachi et al. (1992) and concluded that Rex has seven
phosphorylation sites in total. They also evaluated the importance
of each phosphorylation site by a reporter assay using RxRE-
dependent HIV-1 p24 Gag expression plasmids and concluded
that phosphorylation of Ser-97 and Thr-174 most significantly
influenced the expression level of the reporter plasmid, i.e., the
RxRE-dependent nuclear export of reporter mRNA by Rex.

The HTLV-1 Rex, a protein of 27 kDa, contains several func-
tional domains which play essential roles to induce the function
of Rex as a nuclear–cytoplasmic mRNA transporter. The loca-
tions and physiological importance of each Rex domain are well
described in several review articles (Younis and Green, 2005;
Baydoun et al., 2008). A highly basic N-terminal RNA-binding
domain located within aa 1–19 is essential for RxRE binding. This
domain also serves as a nuclear localization signal (NLS), as well
as a binding domain for p30II. The nuclear export signal (NES)
spans from aa 66 to 118. Rex binds to Exportin-1 (CRM1), a cel-
lular nuclear export protein through the NES; thus, this domain
is essential for Rex function. The multimerization domains are
located at the N- and C-terminal ends of NES (aa 57–66 and 106–
124). The importance of NES and multimerization domains in
Rex was well studied by Hakata et al. (1998, 2001). Based on a
series of experiments investigating the interaction between CRM1
and Rex mutants in NES or in N′-multimerization domains, the
authors found that NES is critical for interactions with CRM1.
Thus, a multimer-deficient mutant Rex was translocated to the
cytoplasm by CRM1; however, the multimer-deficient mutant Rex
was not able to stabilize unspliced viral mRNA. Moreover, they
revealed that rat CRM1 (rCRM1) was unable to support the func-
tion of Rex as an mRNA transporter because of its poor ability
to induce multimerization of Rex, although rCRM1 can bind and
export nuclear Rex proteins to the same extent as human CRM1.
Accordingly, they concluded that the Rex protein needs to be both
a multimerized and nuclear-exported to achieve its function, and
that CRM1 was involved in multimerization and translocation of
Rex. Recently, a stability domain was identified at the very end of
the Rex C-terminus (aa 170–189; Kesic et al., 2009a,b; Xie et al.,
2009). They showed that deletion of this segment resulted in a
decreased half-life of Rex; however, the activity of Rex without the
stability domain (SD), at least in translation from RxRE containing
HIV-1 p24 gag mRNA, was not significantly influenced.

To regulate viral expression through host machinery, Rex
interacts with several host cellular proteins (Figure 2). To date,
interaction of Rex with the following cellular proteins have
been confirmed: CRM1 as already mentioned, the heteroge-
neous nuclear ribonucleoprotein A1 (hnRNP A1), the splicing
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FIGURE 2 | Molecular mechanism of HTLV-1 Rex function. HTLV-1 Rex
specifically binds to the RxRE motif of HTLV-1 transcripts. Rex also
interacts with the cellular nucleocytoplasmic shuttling protein, CRM1,
through its NES. Consequently, the Rex–viral mRNA complex is exported
from the nucleus by CRM1. In the cytoplasm, Rex subjects viral transcripts
to the cellular translational machinery to enhance viral production. Released
Rex binds to importinβ via its NLS and returns to the nucleus by the
importin complex shuttling activity. P30II binds to Rex through its NLS and
retains Rex in the nucleolus for suppression. Rex not only transports viral
transcripts, but also inhibits splicing of viral mRNA that encode structural
proteins. hnRNP A1, which governs the processing/splicing of pre-mRNA
and transport of mature mRNA, was found to bind to RxRE in a competing
manner against Rex. Another major splicing factor, SF2/ASF, was found to
influence the processing of HTLV-1 mRNA (i.e., overexpression of SF2/ASF
resulting in differential pX splice site utilization), although the direct
physiological interaction to the viral proteins has not been examined.
Recently, Rex was shown to directly interact with Dicer and inhibit its
processing of shRNA to siRNA (Abe et al., 2010). Overall, interactions
between Rex and other cellular mRNA processing proteins may lead to an
unknown molecular mechanism of Rex in the inhibition of the splicing
machinery. N, nucleus; C, cytoplasm; Nu, nucleolus.

factor SF2, importinβ, and nucleolar protein B-23. hnRNPs are
heterogeneous nuclear RNA (hnRNA) binding proteins associ-
ated with pre-mRNA in the nucleus that influence the process-
ing/splicing of pre-mRNA and the transport of mature mRNA.
hnRNP A1 was shown to bind to the RxRE sequence of HTLV-1
viral mRNA in competition with Rex (Duc Dodon et al., 2002).
Suppression of hnRNP A1 expression in HTLV-1-infected C91PL
cells resulted in increased Rex-dependent nuclear export of

unspliced and singly spliced mRNA, as well as in accumulation
of unspliced mRNA (Kress et al., 2005). The authors confirmed
that hnRNP A1 inhibits the function of Rex in a dose-dependent
manner and proposed that hnRNP A1 may enhance the splic-
ing processes of viral mRNA. Moreover, the authors found that
the basal level of hnRNP A1 is lower in HTLV-1-producing cell
lines (C91PL, MT2, and HUT102) when compared with non-
HTLV-1-infected T-cell lines (CBL and Jurkat), indicating that
HTLV-1 may induce the down-regulation of hnRNP A1, which
is not conducive to viral replication. Another major splicing fac-
tor, SF2/ASF, also influences the processing of HTLV-1 mRNA,
although direct physiological interactions with viral proteins have
not been examined (Princler et al., 2003). SF2/ASF is considered to
be involved in all splicing reactions in the cell and plays a critical
role in splice site selection in a concentration-dependent man-
ner. Indeed, overexpression of SF2/ASF resulted in differential pX
splice site utilization, whereas hnRNP A1 caused HTLV-1 exon
2 skipping (Princler et al., 2003). HTLV-1-infected cells and ATL
cells have different profiles of cellular transcripts, as they accumu-
late alternatively spliced transcripts compared to uninfected cells.
Such observations may denote lesions in the splicing machinery
in HTLV-1-infected cells.

Translocation of cellular proteins into the nucleus is due to
interaction between cis-acting NLSs in the protein and nuclear
transport receptor complex (the importin complex). Usually,
importinα serves as a bridge between the NLS and the import
receptor importinβ. It was demonstrated that the NLS of Rex
directly bound to importinβ (Palmeri and Malim, 1999; Figure 2).
The authors found that Rex was nuclear-imported by interac-
tions with importinβ and independent of importinα. Nucleolar
phosphoprotein B-23, also known as nucleophosmin (NPM),
is a phosphoprotein mainly localized in nucleoli. Previously, it
was determined that B-23 bound to the N′-terminal NLS/NoLS
of Rex (Adachi et al., 1993). As described above, the Rex–viral
mRNA complex is transported to the cytoplasm by CRM1. The
authors speculated that B-23 may assist the return of Rex to the
nuclei/nucleoli, which is necessary for further export of unspliced
viral mRNA from the nucleus by Rex (Adachi et al., 1993). Recently,
interactions between Rex and Dicer were reported by Abe et al.
(2010). Their experiments demonstrated that Rex directly inter-
acted with Dicer and inhibited its function in processing short
hairpin RNA (shRNA) to small interfering RNA (siRNA).

IMPACT OF Rex ON THE HOST CELLULAR HOMEOSTASIS
Viruses, including HTLV-1, utilize and direct host cellular mech-
anisms to facilitate viral replication through the whole life cycle.
Such hijacking is achieved by direct interactions of viral and cellu-
lar proteins. The interactome and impacts of HTLV-1 Tax on the
host cellular physiology have been well studied and described else-
where, whereas those for Rex have not been thoroughly explored
to date, even though numerous reports showed that Rex interacts
with a wide variety of cellular proteins as mentioned above.

Rex up-regulates il-2rα mRNA expression, although the under-
lying mechanism has not been clarified. IL-2Rα overexpression in
HTLV-1-infected and ATL cells influences the response efficiency
to IL-2. Rex is capable of stabilizing il-2rα mRNA up to fivefold
(Kanamori et al., 1990, 1994); thus, the overexpression of this gene
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in HTLV-1-infected and ATL cells can be explained, at least partly,
by the function of Rex. White et al. (1991) found that the NoLS of
Rex (aa 1–19) was critical for stabilization of il-2rα mRNA. The
molecular mechanism of il-2rα mRNA stabilization by Rex still
needs to be elucidated. If Rex stabilizes general mRNA metabolism
of the cell, including that of il-2rα mRNA, it is highly possible that
Rex influences the expression levels of other cellular transcripts.

Fyn is a proto-oncogene that belongs to the membrane-
associated tyrosine kinase family and has been implicated in
malignant pathological processes, especially in melanoma progres-
sion, neuroblastoma genesis, and carcinoma invasion. Compared
to its implications in carcinogenesis, the physiological significance
of Fyn in hematological malignancy has not been investigated.
Fyn protein has two major isoforms, Fyn-B and Fyn-T, which are
derived from exon 7A and 7B, respectively. Fyn-B is expressed in
brain tissue, whereas Fyn-T is expressed exclusively in hematopoi-
etic cells. Exon 7 of fyn encodes the linker region involved
in intra-molecular interactions controlling Src tyrosine kinase
regulation. Thus, the two isoforms have distinct functions in sig-
nal transduction and transforming capacity. Picard et al. (2004)
reported that under pathological conditions, such as in acute lym-
phoblastic leukemia or chronic lymphocytic leukemia, expression
of Fyn-B was significantly increased, as confirmed in cell lines and
fresh patient cells. The author also mentioned that fyn-b mRNA
levels are significantly increased in the HTLV-1-infected cell line,
C91. Indeed, several years earlier, Weil et al. (1999) found for the
first time that fyn-b mRNA is up-regulated in C91 cells and Rex
is responsible for the down-regulation of alternative exon usage.
Thus, abnormal exon selection of fyn mRNA is widely observed
in various hematopoietic malignancies; however, the viral Rex
protein may induce dysregulation in the host splicing machinery
in HTLV-1-infected cells. The detailed molecular events explain-
ing the implication of Rex in alternative splicing of Fyn and the
physiological impacts of Fyn-B overexpression in T-cells have not
been investigated. However, since Rex is an RNA binding protein,
which has been implicated in the splicing machinery by several
researchers, it is possible that Rex has the capacity to influence
the splicing preference, resulting in an altered expression ratio of
Fyn-B and Fyn-T in infected T-cells.

SIMILARITIES AND DIFFERENCES BETWEEN
HTLV-1 Rex AND HTLV-2 Rex
HTLV-1 and HTLV-2 belong to the same genus (Vandamme et al.,
1998) and share a high homology in genomic structure (Figure 3).
Both are able to infect human T-cells and induce immortality. In
spite of a high similarity in the genome and life cycle, there is a sig-
nificant difference in pathogenesis between retroviruses. The most
outstanding difference is that HTLV-1 induces a severe hematopoi-
etic malignancy (ATL), whereas HTLV-2 does not (Figure 3). It is
unclear as to why there is such a significant difference in outcomes
from similar genomic structures. Nevertheless, current knowledge
indicates that the differences in properties and functions of acces-
sory and regulatory proteins expressed from the pX region of the
virus are critical for the distinct pathological differences between
the HTLVs.

Both HTLV-1 and HTLV-2 encode Tax and Rex, the major
transcriptional and post-transcriptional regulators. Tax-1 from

FIGURE 3 | Similarities and differences between Rex-1 and Rex-2. The
phylogenetic tree of HTLV, which is drawn based on the report by
Vandamme et al. (1998), shows that the major branches of PTLV-1 and
PTLV-2 separated at an early stage. Sub-branches of STVL-1 and HTLV-1 or
STLV-2 and HTLV-2 were separated within each major branch thereafter. Yet,
the genomic structures of HTLV-1 and HTLV-2 are very similar and both
viruses encode Tax and Rex, the major transcriptional and
post-transcriptional regulators, respectively. Both Tax-1 and Tax-2 have NLS,
NES, and ATF/CREB binding domains, whereas only Tax-1 has a distinct
NF-κB activating domain and p300 binding domain, as well as a number of
PTM sites, for phosphorylation, ubiquitination, and SUMOylation, resulting
in stronger transactivation and transforming activities than those of Tax-2.
Both Rex-1 and Rex-2 are phosphoproteins sharing 60% similarity with
overlapped major functional domains, such as NLS, NES, and SD at the
3′-terminus. The RxRE motif of HTLV-1 mRNA (RxRE-1) is located in the
U3/R region and all HTLV-1 mRNA have intact RxRE-1s in the 3′UTRs. On
the other hand, the RxRE of HTLV-2 (RxRE-2) is located at the R/U5 region
and only unspliced mRNA maintains the intact RxRE-2. Thus, Rex-1 is
capable of transporting all viral mRNA including tax/rex mRNA and
enhancing the expression of Tax for further transactivation of LTR, whereas
Rex-2 is not. Overall, Rex-1 may have a stronger impact on viral replication
through the enhancement of Tax-1 expression compared with Rex-2.
Different roles of Tax and Rex may be related to the differences in
pathophysiologies of HTLV-1 and HTLV-2.

HTLV-1 shows transforming ability, whereas Tax-2 from HTLV-2
does not. Thus, the different transforming activity of Tax deter-
mines the malignant pathology of this virus (Feuer and Green,
2005). Both Tax-1 and Tax-2 consist of NLS, NES, and ATF/CREB
binding domains. On the other hand, only Tax-1 has a distinct
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NF-κB activating domain and p300 binding domain, as well as a
number of post-translational modification (PTM) sites, such as
phosphorylation, ubiquitination, and small ubiquitin-like mod-
ifier (SUMO)ylation (Rende et al., 2012). Generally, Tax-1 has
stronger transactivation and transforming activities than Tax-2
(Figure 3).

Rex-1 encoded in HTLV-1 is a 27-kDa (189 aa) protein,
whereas Rex-2 from HTLV-2 consists of 170 aa and its molec-
ular weight ranges between 24 and 26 kDa depending on the
phosphorylation-induced conformational changes (Kesic et al.,
2009b; Xie et al., 2009). Rex-1 and Rex-2 share 60% similar-
ity with overlapped major functional domains, such as RNA
binding domain (RBD)/NLS at the N-terminus region, two mul-
timerization domains, activity domain (AD)/NES, and SD at the
3′-terminus. In Rex-2, the inhibitory domain (ID) is overlapping
with SD. Both Rex proteins are phosphoproteins and their activ-
ities are regulated by their phosphorylation status. Furthermore,
Rex-1 and Rex-2 have isoforms derived from alternative splic-
ing. p21Rex is the N′-truncated form of p27Rex, which lacks
78 aa of the N-terminus region, including RBD/NLS and the
N′-multimerization domain (Kiyokawa et al., 1985). Alternative
splicing inclusion of exon 2 yields p27Rex, whereas exon 2 skip-
ping yields p21Rex (Orita et al., 1993). Since p21Rex does not
have a NLS, it localizes to the cytoplasm. However, the functional
importance of this isoform has not yet been elucidated. p21Rex
transcripts are constitutively expressed in HTLV-1-infected cell
lines and in primary peripheral blood mononuclear cells from
HTLV-1 carriers and ATL patients (Berneman et al., 1992; Orita
et al., 1992; Saiga et al., 1996). Thus, it is expected that p21Rex
plays a role in the HTLV-1 life cycle, probably as a dominant
negative form of p27Rex. Exon 2 skipping in HTLV-2 also yields
N′-terminus-truncated forms of Rex-2 (tRex). Translation from
the first AUG codon located within the x-III ORF results in two
major protein isoforms of 22 and 20 kDa, as well as a minor
protein isoform of 18-kDa depending on PTMs, whereas transla-
tion from the second AUG of the x-III ORF produces a 17-kDa
protein (Rende et al., 2012). Ciminale et al. (1997) reported that
tRex inhibited the function of the wild type Rex-2 by influenc-
ing the phosphorylation status and consequently, the subcellular
localization of Rex-2.

A major difference between HTLV-1 and HTLV-2 regarding
Rex function may be the position of RxRE in the viral tran-
scripts (Figure 3). The RxRE motif of HTLV-1 mRNA (RxRE-1)
is located in the U3/R region; consequently, all HTLV-1 mRNA
have an intact RxRE-1 in the 3′UTR. On the other hand, the
RxRE of HTLV-2 (RxRE-2) is located in the R/U5 region and
only unspliced mRNA maintains an intact RxRE-2 (Rende et al.,
2012). The principal function of Rex is selective nuclear export
of unspliced or partially spliced viral mRNA. Recently, Bai et al.
(2012) demonstrated that the nuclear export of the doubly spliced
tax/rex mRNA of HTLV-1 was also enhanced by Rex-1 in a
RxRE-1/CRM1-dependent manner. Considering the position of
RxRE in the two HTLVs, Rex-1 may be capable of transport-
ing all viral mRNA including tax/rex mRNA and enhancing
Tax expression for further transactivation of LTR, whereas Rex-
2 is not. Although Rex-1 and Rex-2 have similar capacities as
RNA binding proteins, Rex-1 may have a stronger impact on

viral replication through the enhancement of Tax expression
(Figure 3).

The stability and efficiency of nuclear export of viral mRNA
are determined by two cis-acting elements, RxRE and CRS, which
function in a competing fashion. CRS is a nuclear retention sig-
nal that induces destabilization and inefficient nuclear-export of
viral mRNA, although other proteins binding to CRS, either viral
or cellular, have not yet been identified. The CRS is localized
in the 5′LTR of HTLV-1 (Seiki et al., 1990) and HTLV-2 (Black
et al., 1991). In both HTLVs, the 5′LTR CRS spans from the R
region to the U5 region; thus, only unspliced viral mRNA con-
tains intact CRS in either virus. HTLV-1 contains a second CRS at
the 3′LTR overlap with RxRE-1 (King et al., 1998) resulting in all
HTLV-1 mRNA containing intact RxRE-1 and CRS in the 3′LTR.
The CRS overlaps with RxRE in both HTLV-1 and HTLV-2; there-
fore, it is possible that binding of Rex to RxRE might modulate
the fate of viral mRNA (i.e., nuclear retention by CRS or nuclear
export by Rex). Overall, it seems that Rex-1 might influence
viral mRNA trafficking in a broader range compared with Rex-
2 which targets only the unspliced htlv-2 mRNA in terms of RxRE
and CRS.

SIMILARITIES AND DIFFERENCES BETWEEN
HTLV-1 Rex AND HIV-1 Rev
HTLV-1 and HIV-1 are evolutionally distinct, but both belong to a
family of complex retroviruses sharing tropism for human CD4+
T-cells. Although they have similar genetic structures and encode
homologous viral proteins, the overall life cycle, controlled by viral
accessory and regulatory proteins, are clearly different. This results
in different disease associations [i.e., ATL by HTLV-1 and acquired
immune deficiency syndrome (AIDS) by HIV-1]. Both viruses
encode transactivators, HTLV-1 Tax and HIV-1 Tat, and post-
transcriptional regulators, HTLV-1 Rex and HIV-1 Rev. Although
Tax and Tat transactivate their respective LTRs, they act though dif-
ferent mechanisms and cannot be replaced by each other. On the
other hand, even though the homology in the sequence of HTLV-1
Rex and HIV-1 Rev is low, they play similar functions through
common cellular pathways (Baydoun et al., 2008; Suhasini and
Reddy, 2009). A major similarity is that both Rex and Rev are RNA
binding proteins and specifically bind to respective viral mRNA
with high affinity through RxRE for Rex and the Rev responsive
element (RRE) for Rev (Figure 4). Both Rex and Rev have arginine-
rich sequences that are necessary for binding to their respective
responsive elements. They stabilize unspliced or partially spliced
viral mRNA and actively transport them to the cytoplasm for
selective translation of viral structural proteins. The functional
similarities and differences between HTLV-1 Rex and HIV-1 Rev
were extensively investigated from late 1980s to the early 1990s.

Rimsky et al. (1988) first reported that the function of HIV-1
Rev could be replaced by that of HTLV-1 Rex. Rev induces trans-
lation of shorter forms of the Tat protein from the unspliced
form of tat mRNA using a stop codon within the intron of
tat mRNA, meaning that Rev suppresses splicing and stabilizes
unspliced tat mRNA (Malim et al., 1988). Rimsky et al. (1988)
also demonstrated that HTLV-1 Rex overexpression resulted in the
stabilization of unspliced tat mRNA and enhanced translation of
the truncated Tat protein. They also demonstrated that depressed
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FIGURE 4 | Similarities and differences between HTLV-1 Rex and HIV-1

Rev. HTLV-1 and HIV-1 are evolutionally distinct, but both belong to a family
of complex retroviruses. Both viruses encode transactivators, HTLV-1 Tax
and HIV-1 Tat, and post-transcriptional regulators, HTLV-1 Rex and HIV-1
Rev. Although Tax and Tat transactivate their respective LTRs, they act
though different mechanisms and cannot be replaced with each other. On
the other hand, even though the homology in the primary sequence of
HTLV-1 Rex and HIV-1 Rev is low, they carry out similar functions through
common domains, such as NES, NLS, and multimerization domains. They
are RNA binding proteins and specifically bind to respective viral mRNA
with high affinity through RxRE for Rex and RRE for Rev. They stabilize
unspliced or partially spliced viral mRNA and actively transport them to the
cytoplasm via CRM1 binding for selective translation of viral structural
proteins and return to the nucleus by interactions with Importinβ. Rex can
function through RRE, while Rev cannot bind to RxRE. HTLV-1 Tax is
translated only from fully spliced viral mRNA; thus, stabilization and active
nuclear transport of unspliced HTLV-1 mRNA by Rex reduces the relative
expression rate of Tax. On the contrary, HIV-1 Rev does not suppress Tat
activity, since it enhances truncated, yet active, Tat proteins. Thus, it is
expected that HTLV-1 Rex favors reduction of viral production, whereas
HIV-1 Rev may support active viral production. N, nucleus; C, cytoplasm;
Nu, nucleolus.

viral production from HIV-1-ΔRev was rescued by co-transfection
with HTLV-1 Rex-expressing plasmids. The authors emphasized
the importance of the cellular post-transcriptional pathways for
viral expression, which is shared by structurally distinct HIV-1
Rev and HTLV-1 Rex. Later, it was found that Rex functions
through RRE (Hanly et al., 1989); however, Rex and Rev target dif-
ferent sequences within RRE (Solomin et al., 1990). Interestingly,
although Rex can function through RRE, Rev cannot bind to

RxRE (Hanly et al., 1989). Nevertheless, HTLV-1 Rex and HIV-1
Rev function through a similar mechanism for stabilization and
active nuclear export of unspliced mRNA and the distinct genomic
structures of these retroviruses furnish Rex and Rev with different
expression levels of the transactivators Tax and Tat, respectively.
Since Tax is translated only from fully spliced viral mRNA, stabi-
lization and active nuclear transport of unspliced HTLV-1 mRNA
by Rex eventually reduces the relative expression rate of Tax
(Hidaka et al., 1988); thus, Rex might play an important role in the
establishment of viral latency. On the other hand, HIV-1 Rev does
not suppress Tat activity but enhances a truncated, yet active, Tat
protein, as described above (Malim et al., 1988). Thus, the overall
biological function of these viral post-transcriptional regulators
in the viral life cycle may not be totally overlapped (Figure 4).

The arrangements of primary Rex and Rev structures are dis-
tinctive; however, both viral RNA binding proteins have NLSs and
NESs and also use the same cellular nucleocytoplasmic shuttling
machinery (Pollard and Malim, 1998; Kesic et al., 2009a; Figure 4).
After translation, the NLSs of both Rex and Rev bind to importinβ

and the complexes are then translocated to the nucleus (Palmeri
and Malim,1999; Truant and Cullen,1999; Yoneda,2000). Another
key player of Rex/Rev nuclear import is B-23, a nucleolar phos-
phoprotein, and probably because of binding to B-23, these viral
proteins localize strongly to the nucleoli. In the nucleolus, Rex and
Rev bind to RxRE- and RRE-containing viral mRNA, respectively,
and the viral RNA complex is exported to the cytoplasm for trans-
lation by CRM1 binding through NESs of Rex or Rev. Monomeric
Rev has the highest affinity to RRE, but additional binding of up
to 12 Rev molecules is required for effective nuclear export by
CRM1 (Zapp et al., 1991; Zemmel et al., 1996). On the other hand,
although monomeric Rex retains its ability to shuttle between
the cytoplasm and nucleus, multimerization is essential for the
function of Rex in stabilization and transport of viral unspliced
RNA and CRM1 is involved in the multimerization process of Rex
(Hakata et al., 1998, 2001; Baydoun et al., 2008). p30II, a negative
post-transcriptional regulator of HTLV-1 (Nicot et al., 2004), has
multiple NoLSs, and retains tax/rex mRNA as well as Rex proteins
in the nucleoli. Therefore, p30II is considered to suppress HTLV-1
expression (Ghorbel et al., 2006; Sinha-Datta et al., 2007). There
is no counterpart of p30II in HIV-1. Thus, it can be speculated
that Rev alone has a NoLS strong enough to retain itself in nucle-
oli and multimerization is necessary for interacting with multiple
CRM1s to be exported from the nucleolus. On the other hand,
Rex may have less powerful NoLSs and without p30II, monomeric
Rex can be exported by CRM1, although multimerization is nec-
essary for this protein to interact with RxRE-containing viral RNA
(Figure 4).

Involvement of both Rex and Rev in the cellular splicing
machinery is expected, since both protect unspliced viral RNA.
HIV-1 Rev strongly interacts with the splicing co-factor p32
(Tange et al., 1996). The p32 protein is one of three polypeptides
composing active SF2/ASF in HeLa cells, which are involved in
many splicing events and are required for splice site selection in
a concentration-dependent manner (Krainer et al., 1991). Later,
SF2/ASF was also shown to bind to RRE in a Rev-dependent
manner (Powell et al., 1997). Therefore, p32 may function as a
bridge between Rev and SF2/ASF to recruit an optimal amount
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of SF2/ASF to RRE in order to inhibit splicing of HIV-1 mRNA,
although the molecular mechanism of Rev in inhibition of splicing
has not been fully clarified.

HTLV-1 Rex is also known to inhibit the early phase of splic-
ing (Younis and Green, 2005) through interactions with SF2/ASF,
although the pathways have not been extensively examined com-
pared with HIV-1 Rev. hnRNA binding proteins (hnRNPs)
associated with pre-mRNA in the nucleus influence pre-mRNA
processing/splicing and transport of mature mRNA. hnRNP A1
was demonstrated to bind to RxRE in a competing manner to
Rex (Duc Dodon et al., 2002) and inhibit the function of Rex
(Kress et al., 2005). The authors found that the basal level of
hnRNP A1 was lower in HTLV-1-producing cell lines (C91PL,
MT2, and HUT102) compared with non-HTLV-1-infected T-cell
lines (CBL and Jurkat), proposing that HTLV-1 may have evolved
a mechanism to down-regulate hnRNP A1 because it is not ben-
eficial to viral replication. Several reports indicated that Rex was
involved in post-transcriptional regulation of the host genome.
For example, Rex stabilizes il-2ra mRNA, with its NLS playing an
important role (Kanamori et al., 1990; White et al., 1991). Fur-
ther, Rex enhances the alternative usage of exon 7 in fyn mRNA
to yield the brain-type Fyn-B, instead of T-cell-type Fyn-T (Weil
et al., 1999). The underlying mechanism by which Rex influences
cellular post-transcriptional regulation has not yet been fully clari-
fied. It is possible that Rex interacts with cellular splicing factors to
enhance viral replication, which may cause incidental alterations
in host transcriptional homeostasis.

Although HTLV-1 Rex and HIV-1 Rev are structurally distinct,
they have evolved a similar function, i.e., inhibition of splicing and
stabilization and nuclear-export of unspliced viral mRNA through
interactions with common cellular factors. On the other hand, the
difference between these two post-transcriptional regulators might
be reflected in the different pathophysiological characteristics of
HTLV-1 and HIV-1.

NEW TOPICS IN HTLV-1 Rex MOLECULAR
BIOLOGY FROM RECENT STUDIES
Cellular physiological pathways are achieved by functional com-
binations of cellular proteins. It has been clarified that such
protein–protein interactions are achieved through short linear
motifs (SLiMs) consisting of 3–13 aa, rather than large struc-
tural domains of each protein (Davey et al., 2012). Interestingly,
SLiMs were first identified in viruses and it was discovered later
that the viruses actually mimic the functional motifs of cel-
lular proteins to hijack the cellular pathways (Kadaveru et al.,
2009; Davey et al., 2011). SLiMs participate in all aspects of
cellular biology, such as protein–protein binding (SH3 domain
interactions), targeting (NLS and NES), PTMs (phosphoryla-
tion, SUMOylation, and ubiquitination), and cleavage, which
also overlap with the viral life cycle from entry to budding in
the host cells. However, viral mimicry of host SLiMs has not been
fully investigated. Davey et al. (2011) reviewed 52 viral mimicry
instances among approximately 150 reported eukaryotic motifs in
human papillomavirus (HPV), Epstein–Barr virus (EBV), human
T-cell lymphotropic virus (HTLV), adenovirus, human immun-
odeficiency virus (HIV), and influenza virus. Nevertheless, the
authors were expecting more extended mimicry by viruses. The

FIGURE 5 | Interactions of Rex with host pathways, uncovered and

covered. Besides the known interactions between Rex and CRM-1,
importinβ, and B-23, a number of potential interactions between Rex and
cellular proteins, based on the high-throughput yeast two-hybrid system,
were reported by Simonis et al. (2012). Rex is suspected of interacting with
a series of proteins that play crucial roles in mRNA surveillance,
nucleocytoplasmic shuttling, tumor growth regulation, and SUMOylation.
Air1 (ZCCHC7) is a component of the TRAMP complex, which is involved in
nuclear mRNA surveillance. NUP62 is one of three nucleoporins (NUP54,
58, and 62) composing the nuclear pore complex and is essential for
nuclear transport. LZTS2 is a tumor suppressor and its expression is
transcriptionally regulated by NF-κB. LZTS2 expression levels affect cell
proliferation and tumor growth through the Wnt/β-catenin pathway in
various cancer cell lines. An E2 SUMO ligase, UBC9, and an E3 SUMO
ligase, PIAS2, are also expected to interact with Rex. Rex is also expected
to interact with SP100, a major component of the nuclear body, which has a
transactivating function and is induced in stimulated and malignant cells.
Since Rex impacts the host cell through an unknown mechanism, such as
increasing il-2rα mRNA level and fyn-b mRNA expression level by
enhancing unusual exon 7 usage, unknown interactions between Rex and
cellular proteins may be related to Rex functions. Solid lines indicate
reported interactions. Dashed lines indicate potential interactions. N,
nucleus; C, cytoplasm; NB, nuclear body.

well-known viral mimicry of HTLV-1 Rex involves NLS and NES
in cellular nucleocytoplasmic shuttling. Since this viral post-
transcriptional regulator extensively functions by means of host
cellular pathways in various steps of the HTLV-1 life cycle, Rex
may have other mimicry motifs that have not yet been discovered.

Recently, comprehensive interactomes, based on the high-
throughput yeast two-hybrid system (Rual et al., 2005; Venkate-
san et al., 2009), between HTLV-1/HTLV-2 viral proteins and

www.frontiersin.org September 2012 | Volume 3 | Article 330 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Virology/archive


“fmicb-03-00330” — 2012/9/4 — 20:28 — page 10 — #10

Nakano and Watanabe HTLV-1 Rex in host cellular pathways

human proteins were reported by Simonis et al. (2012). The
authors discovered (including confirmation of previous reports)
87 and 79 interactions between HTLV-1- and HTLV-2-encoded
proteins, respectively, and 122 human proteins participated in
Ub-proteasome pathways, apoptosis, oncogenesis, and Notch
signaling. For HTLV-1 Rex, 18 novel interactions were identi-
fied, including an interaction with Dic2 (Rho-Gap protein) and
BHLHB2 (a transcription repressor) having an anti-apoptotic
function. Recently, it was demonstrated that BHLHB2 medi-
ated HIF-1α-induced microphthalmia-associated transcription
factor (MITF) suppression, which causes increased metastasis in
melanoma cells (Cheli et al., 2011). In addition, Rex is suspected
of interacting with a series of proteins that play crucial roles in
mRNA surveillance, nucleocytoplasmic shuttling, tumor growth
regulation, and SUMOylation (Figure 5). The cellular proteins
listed below potentially interact with Rex. Air1 (ZCCHC7) is
a component of the Trf4/Air2/Mtr4 polyadenylation (TRAMP)
complex, which is involved in nuclear mRNA surveillance (Fasken
et al., 2011). NUP62 is one of three nucleoporins (NUP54, 58,
and 62) composing of the nuclear pore complexes that are essen-
tial for nuclear transport (Solmaz et al., 2011). The interaction
between viral proteins and NUP62 has been reported in HIV-1,
herpes simplex virus, and EBV. In HIV-1, it is speculated that Rev
reorganizes the architecture of nuclear pore complexes, including
NUP62, for efficient viral RNA transport (Monette et al., 2011). In
addition, HIV-1 integrase interacts with NUP62 on chromatin for
integration of the viral genome (Ao et al., 2012). The HCV post-
transcriptional regulator ICP27 was demonstrated to directly bind
NUP62 to inhibit cellular trafficking and increase viral mRNA
transport (Malik et al., 2012). Finally, EBV BGLA4, a viral ser-
ine/threonine kinase, was shown to interact with NUP62 and
NUP153 and translocate itself to the nucleus even though this
protein does not have any clear NLSs (Chang et al., 2012). LZTS2,
a tumor suppressor, which is transcriptionally regulated by NF-κB,
and the modulation of LZTS2 expression affects cell proliferation
and tumor growth through the Wnt/β-catenin pathway in various

cancer cell lines (Kim et al., 2011). An E2 SUMO ligase, UBC9, and
an E3 SUMO ligase, PIAS2, are also expected to interact with Rex.
SUMOylation is a major PTMs (Seeler and Dejean, 2001; Gareau
and Lima, 2010), which modulates the function of a large number
of proteins, but its dysfunction is closely related to pathogenesis
(Wimmer et al., 2012). Rex also reportedly interacts with SP100, a
major component of a nuclear body (NB), which has a transacti-
vating function and is induced in stimulated and malignant cells.
The function of SP100 in modification of molecular dynamics of
a NB is regulated by SUMOylation (Riley et al., 2005; Bossis and
Melchior, 2006). As shown in Figure 5, there is a wide variety
of cellular proteins that potentially interact with Rex. Taken as a
whole, HTLV-1 Rex has a great potential to be involved in or even
direct unknown cellular pathways.

CONCLUSION
HTLV-1 Rex is a major post-transcriptional regulator of viral
expression, which is responsible for active viral replication in the
early phase of infection and for reduction of viral activity to estab-
lish latency in the late phase of infection. The molecular biology of
Rex was extensively investigated for a decade from the 1980s to the
early 1990s; however, once the molecular mechanisms of nuclear
export of unspliced viral mRNA by Rex was clarified, the major
interest was shifted to the function of Tax to understand HTLV-1
virology and pathology. Nevertheless, our understanding of vari-
ous aspects of HTLV-1 Rex inside and outside of the viral life cycle
is incomplete. For example, it is unclear how Rex inhibits splicing
of viral mRNA (and probably the host mRNA), and the extent of
the influence of Rex by making use of the cellular pathways for
viral benefits. We still do not know the underlying mechanism
by which Rex increases il-2rα mRNA or the impacts on the host
cell caused by unusual exon-usage for production of Fyn-B. Sev-
eral reports already proposed the possibility of unknown biology
of HTLV-1 Rex. Detailed and extended investigations based on
uncovered facts and recent knowledge may open new pathways to
discover hidden aspects of HTLV-1 Rex.
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