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INTRODUCTION

Trait-based microbial models show clear promise as tools to represent the diversity and
activity of microorganisms across ecosystem gradients. These models parameterize spe-
cific traits that determine the relative fitness of an “organism” in a given environment,
and represent the complexity of biological systems across temporal and spatial scales. In
this study we introduce a microbial community trait-based modeling framework (Micro-
Trait) focused on nitrification (MicroTrait-N) that represents the ammonia-oxidizing bacteria
(AOB) and ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) using traits
related to enzyme kinetics and physiological properties. We used this model to predict nitri-
fier diversity, ammonia (NH3) oxidation rates, and nitrous oxide (N,O) production across
pH, temperature, and substrate gradients. Predicted nitrifier diversity was predominantly
determined by temperature and substrate availability, the latter was strongly influenced by
pH. The model predicted that transient N, O production rates are maximized by a decou-
pling of the AOB and NOB communities, resulting in an accumulation and detoxification of
nitrite to N2, O by AOB. However, cumulative N, O production (over 6 month simulations) is
maximized in a system where the relationship between AOB and NOB is maintained. When
the reactions uncouple, the AOB become unstable and biomass declines rapidly, resulting
in decreased NH3 oxidation and N,O production. We evaluated this model against site
level chemical datasets from the interior of Alaska and accurately simulated NH3 oxidation
rates and the relative ratio of AOA:AOB biomass. The predicted community structure and
activity indicate (a) parameterization of a small number of traits may be sufficient to broadly
characterize nitrifying community structure and (b) changing decadal trends in climate and
edaphic conditions could impact nitrification rates in ways that are not captured by extant
biogeochemical models.
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these methodological developments (Prosser et al., 2007). Unlike

Understanding the interaction between ecology and biogeochem-
istry is an important frontier in environmental microbiology.
Temporal separation between cellular activity and trace gas flux
measurement has hampered efforts to connect, in field studies,
the composition, structure, and activity of microbial communities
to the biogeochemical processes they catalyze. Given the impor-
tance of prokaryotic diversity for ecosystem function (Kassen et al.,
2000), a greater understanding of how microbial communities
assemble, interact with the changing environment over time is
clearly required.

The application of next generation sequencing technology is
continually improving our understanding of the spatial and tem-
poral distribution of microorganisms (Caporaso et al., 2012),
while metabolomics and proteomics can help contextualize bio-
logical interactions with the environment and clarify relation-
ships within and between microbial functional groups (Kujaw-
inski, 2011; Schneider et al., 2012). In contrast, theoretical
approaches in microbial ecology have lagged significantly behind

macrofaunal ecology (Webb et al., 2010), mathematical relation-
ships are not routinely applied to explore the implications behind
experimental observations. The theoretical background to expand
numerical approaches in environmental microbiology could well
follow the trait-based approach implemented in models of marine
autotrophic phytoplankton (Litchman and Klausmeier, 2008; Fol-
lows and Dutkiewicz, 2011). These models have been shown to
be valuable tools for understanding how communities assemble
(Follows et al., 2007; Litchman et al., 2007), how they change over
time (Litchman and Klausmeier, 2006), and the interdependencies
between community dynamics and biogeochemistry (Dutkiewicz
et al., 2009).

In the current study we expand the trait-based approach to
study a critical component of the nitrogen cycle, nitrification.
Nitrification, the oxidation of ammonia to nitrite and then nitrate,
is a rate-limiting step in the microbially mediated N cycle (Ward,
2008). Nitrification alters the distribution of inorganic N in
soil and bridges the input of NH3 from N-fixation or organic
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matter (OM) decomposition to its loss as N,O or N; gas via
denitrification. In addition, nitrification is closely linked to the
carbon cycle as nitrifier activity determines the relative concentra-
tion of two major plant and microbial nitrogen sources: ammo-
nia and nitrate. The availability of these two nutrients in turn
affects N mineralization rates, soil OM decomposition, denitri-
fication, plant-productivity, and N-loss through leaching or gas
efflux.

The initial step of nitrification (NH3; — NO;) is catalyzed by a
phylogenetically restricted group of beta- and gammaproteobac-
teria (Kowalchuk and Stephen, 2001) and members of the thau-
marchaea (Brochier-Armanet et al., 2008). The distribution and
abundance of ammonia-oxidizing bacteria (AOB) and ammonia-
oxidizing archaea (AOA) in soils and sediments show broad pat-
terns related to substrate (i.e., NH3) concentration (Erguder et al.,
2009; Wertz et al.,, 2011), pH (He et al., 2007); (Nicol et al,
2008), OM concentrations (Konneke et al., 2005), dissolved oxygen
(Bouskill et al., 2012), and temperature (Avrahami and Bohannan,
2007; Tourna et al., 2008). In addition, while studies of the ecol-
ogy and biogeochemical importance of the AOA are still nascent,
certain ecological trends are evident, such as the ability to nitrify
at low pH and grow under oligotrophic substrate concentrations
(Erguder et al., 2009; Nicol et al., 2011).

The nitrite-oxidizing bacteria (NOB) belonging to five genera
(Nitrobacter, Nitrospira, Nitrococcus, Nitrospina, and Nitrotoga)
catalyze the second major step of nitrification (NO; — NO3).
Few NOB have been isolated from soil and the extent of eco-
physiological kinetic data for NOB significantly lags that of AOB.
Additionally, PCR primers targeting the functional gene involved
in nitrite oxidation (nitrite oxidoreductase) have only recently
become available (Vanparys et al., 2007), which has hindered
studies of NOB ecology and environmental distribution. Spatial
coupling of the two reactions (NH3 and NO, oxidation) is well
known (Okabe et al., 1999; Schramm et al., 1999) and reduces
the likelihood that toxic NO, will accumulate in soils. However,
these two oxidative processes can, and often do, become spa-
tially or temporally uncoupled by fluctuating redox or low NO,
concentrations selecting against NOB activity, resulting in NO,
accumulation. In the following section, we briefly introduce the
concept of disaggregating microbial functional groups by spe-
cific traits and discuss previous attempts to apply these ideas to
microbial ecosystems.

TRAIT-BASED MICROBIAL MODELS

Ecosystem activity is closely aligned to the structure and function
of endemic microbial communities. These communities catalyze
the bulk of biogeochemical reactions related to OM decompo-
sition and nutrient transformations. Although the majority of
ecosystem models acknowledge the contribution of prokaryotes
in determining the rate of C and N cycling, these models have
mainly focused their mechanistic representation on the role phys-
ical processes play in regulating biogeochemical cycles. Microbial
transformations are often implicitly represented (e.g., Manzoni
and Porporato, 2009, and references therein; Parton et al., 1987;
Jenkinson and Coleman, 2008) using a specified turnover time for
various pools of soil OM (e.g., slow, intermediate, and fast turnover
pools). To our knowledge, no modeling frameworks applied at

regional or larger scales attempt to represent how the dynamic
nature of microbial diversity and activity affects biogeochemical
cycling of C, N, or other compounds.

A deterrent to the explicit representation of microbial com-
munity dynamics is a lack of understanding of how microbial
communities assemble and respond to changing environmental
conditions. Microbial communities are extraordinarily diverse,
with thousands of different taxa seemingly inhabiting the same
environment (Gans et al., 2005; Delong et al., 2006). This diver-
sity can be attributed to a small subset of microorganisms being
selected for by the prevailing environmental conditions (Hutchin-
son, 1961). Selection can be due to a combination of genomic
and physiological traits that elevate the fitness of some organisms
over their competitors. Therefore, functional diversity is a tran-
sient ecosystem property, and as environmental conditions change
over time so can microbially mediated reaction rates (e.g., Carney
et al., 2007). These changes can have important implications for
ecosystem model structure and parameterization.

Trait-based modeling approaches have been reviewed else-
where (McGill et al., 2006; Green et al., 2008; Webb et al., 2010)
and previously applied in ecology (Laughlin, 2011). In micro-
biology, these models have been used to depict communities
of functionally important groups (Allison, 2012) and address
questions that field and laboratory experiments are unable to
sufficiently answer (Monteiro et al., 2011). These trait-based
approaches have attempted to numerically characterize key phys-
iological parameters that contribute toward an ecological strat-
egy.

Nitrifiers are ideal candidates for building and refining trait-
based models. They are autotrophic with a simple metabolism
largely defined by central physiological processes, such as substrate
acquisition (NH3 and NO,) and substrate use efficiency (number
of moles of substrate required to fix one mole of CO,). Sev-
eral decades of ecophysiological studies using different nitrifiers
have produced a wealth of data that can be used to mathemat-
ically characterize different nitrifier guilds. While heterotrophic
organisms can also carry out nitrification (Schimel et al., 1984),
at the present time, too little is understood about the distrib-
ution, importance and physiology of these organisms (De Boer
and Kowalchuk, 2001). Therefore, in this manuscript we describe
the development of a microbial community trait-based modeling
framework (MicroTrait) to simulate the physiology and ecology of
autotrophic nitrifiers (MicroTrait-N), including an explicit repre-
sentation of the rates of NH3; and NO, oxidation, N, O production,
and nitrogen pool transformations. We apply MicroTrait-N to
examine predicted patterns in nitrifier community diversity and
activity across several geochemical gradients.

MATERIALS AND METHODS

EMERGENT COMMUNITY ECOSYSTEM MODEL DESCRIPTION
(MICROTRAIT-N)

MicroTrait-N resolves intra-functional group diversity of the nitri-
fier populations (AOB, AOA, NOB) by parameterizing multiple
guilds spanning a range in the trait-space (Figure 1). Although this
nitrifier model will be integrated in an ecosystem model that allows
for a wide range of interactions (Tang et al., submitted), we focus
here on resolving nitrifier diversity in a competitive environment
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FIGURE 1 | Schematic representation of the model. Model abbreviations. DOM, dissolved organic matter; DON, dissolved organic nitrogen; AOB/AOA,

across a range of conditions, including pH, O,, substrate type
(NH3 or urea), and temperature. Our approach is general enough
that it can be applied to nitrifier populations in freshwater and
aquatic environments and flexible enough to be used within soil
pores. The model is written in Matlab (Matlab R2011b, Natick,
MA, USA).

Our guild approach simulates seven lineages of Betaproteobac-
terial AOB as individual guilds, three NOB guilds, and one AOA
guild. The smaller number of NOB and AOA guilds reflects the lack
of relevant ecophysiological studies of these groups. Intra-guild
diversity is parameterized by allowing a range of values for each
trait (Table 1), based on previous ecophysiology studies (Loveless
and Painter, 1968; Suzuki, 1974; Suzuki et al., 1974; Drozd, 1976;
Belser, 1979; Belser and Schmidt, 1979; Glover, 1985; Keen and
Prosser, 1987; Prosser, 1989; Nishio and Fujimoto, 1990; Verha-
gen and Laanbroek, 1991; Laanbroek and Gerards, 1993; Jiang and
Bakken, 1999; Schramm et al., 1999; Gieseke et al., 2001; Koops
and Pommerening Roser, 2001; Cébron et al., 2003; Martens-
Habbena et al., 2009; Schreiber et al., 2009). Further information
concerning the derivation of trait values is given in the supple-
mental material. Given the paucity of within-guild information,
we assumed a uniform probability density of trait values across
each trait range. We can increase the number of guilds as more
information becomes available to distinguish intra-guild diver-
sity. We performed several types of simulations investigating the
role of pH, temperature, decoupling nitrite, and ammonia oxida-
tion, and pulsed NHj inputs, by: (1) using the mean value of each
trait; (2) performing Monte Carlo (MC) simulations to account
for intra-guild diversity; and (3) running the model in equilibrium
and dynamic steady state cycle modes to characterize the impact
of temporal forcing variation on predicted emergent microbial
community structure.

REPRESENTING AUTOTROPHY

In the model, the biomass of each nitrifier guild is repre-
sented with five variables: (1) total cell biomass (denoted Br,
which may represent the ammonia-oxidizing organism (AOO,
i.e., AOB+ AOA) as Bta or the NOB, Bry); (2) carbon biomass
(Bc); (3) nitrogen biomass (By); (4) Cellular quotas for carbon
(Qc); and (5) cellular quotas for nitrogen (Qy). The latter two are
defined relative to total biomass (i.e., Qc = Bc/Bt; Qn = Bn/Br).
Carbon biomass increases by fixing CO, through the ribulose-
bisphosphate enzyme using energy produced during the oxidation
of either NH3 or NO, (Figure 1). Cell division of the AOO and
NOB is governed by Droop kinetics (Droop, 1973):

) Qmin
d};,j = max (1 - QBi’] ,O) (1)

B,j

where Qlig’- represents the biomass quota (i.e., Q¢ or Q) of the
ith guild for the jth element. Here j represents either C or N. The
minimum quota for carbon is 1 and for nitrogen is 1/13.2 (accord-
ing to the Redfield Ratio). The carbon and nitrogen constraints are
then applied to regulate the cell division rate (Dg) with Liebig’s
law of the minimum (van der Ploeg, 1999):

Dy = ufmx min {d;} Br (2)

where pB_ (d7!) is the nitrifier maximum specific growth
rate (Table 1). Ammonia oxidation in AOO is modeled with
Briggs—Haldane kinetics (Koper et al., 2010):

[NH3] (O]

O
K + N (L) K+ 102

VNH3 — VNH3

AOB max Bra  (3)
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Table 1 | Trait values across the different guilds.

GUILD DON  Vmiiday™") Ky (M) pmax(day-')  K92(wM)  Ren Temperature  Phylogenetic affiliation
optimum (K)

AOB(1) — 0.38-1.1 30-61 0.02-0.09 6.9-176 0.04-0.08 290-95 Nitrosomonas europaea

AOB(2) — 0.24 14-43 0.01-0.06 3.6-12.4 0.08-0.09 287-99 Nitrosomonas communis

AOB(@3) + 0.4-0.9 19-46 0.04* 4.2-14 0.06* 287-99 Nitrosomonas nitrosa

AOB(4) AOB(5) + 0.4-0.8 1.9-4.2 0.06-0.08 1.4-4.7 0.02-0.05 287-99 Nitrosomonas oligotropha
+ 1.0-1.04 50-52 0.018 11-23 0.04-0.07 287-99 Nitrosomonas marina

AOB(6) + 0.8-1.2 42-59 0.04* 11-23 0.02-0.03 275-86 Nitrosomonas cryotolerans

AOB(7) + 0.42-0.9 1.4-11 0.07-0.08 0.7-1.2 0.06 285-99 Nitrosospira spp.

AOA ? 0.4-0.8 0.01-0.02 0.09-0.11 0.015 0.05 285-99 Nitrosopumilus maritimus

NOB(1) - 0.8-1.9 4-10 0.3-0.7 40-80 0.01-0.03 285-95 Nitrospina spp.

NOB(2) - 2-3.2 45-260 0.8-1.0 60-120 0.04-0.07  275-302 Nitrobacter spp.

NOB(3) - 0.4-4 24-120 0.5-0.7 35-70 0.03-0.06  273-84 -

Column headers represent the following; DON, ability to use dissolved organic nitrogen (“?” indicates the ability to use DON is unknown. In this case the guild is

assumed to be unable to use DON); V,(AVZQ , maximal substrate uptake rate; KgHs, half saturation constant for NHs, pyax, maximum growth rate; KA‘;Z , half saturation

constant for O,, Rey, substrate use efficiency, ratio of NHs moles required to fix one mole of CO,, *indicates this value has not been measured and it's derivation is

based on an average across the values for different guilds.

Here, Vr§,§3 (MS - 1) is the maximum substrate (NH3) uptake
rate, Ky is the half saturation constant for NHs or O, (wM;
Table 1), and KiNH3 is the NHj3 inhibition constant for AOB (uWM;
Table 1). Substrate concentrations are in M (molL™!). CO, uptake
follows Michaelis—Menten kinetics:

cO, co [CO,]

Vios = P (4)
AOB max K,%OZ + [COz]

where V92 is guild-specific and depends on energy yielded by

ammonia oxidation and the efficiency of CO, fixed relative to
NH3; oxidized:

YN Ve
= ————max|1-—

Qn

CO,
Vmax

5)

max __ ,min’

reN — 1o 0)
cN CN
where Ylg 2 (unitless) is the guild-specific substrate use efficiency
(number of moles of NH3 oxidized per mole of CO; fixed, Table 1)
and represents the C:N ratio (i.e., the Redfield ratio; Redfield, 1958)
of each nitrifier guild and rg}\i]n = 6.6and r&7* = 13.2, which are
use to reflect the autotrophic nature of the nitrifiers.

Growth of the ith AOB biomass over time is calculated as:

dBr,

o (6)

_ . Co
= WL min () By — ABp, — 5 (DANO2 + DEO)

Here, A (s™!) is the first order microbial mortality rate and
D, is biomass loss (M s~!) attributable to the detoxification
of NO, following the uncoupling of AOB and NOB mediated
reactions (see below). Total biomass loss is the sum of that
required to convert NO; — NO and NO — N,0O, and the 1/4
represents the stoichiometric relationship between biomass and
NO, detoxification (i.e., 4ANO, + CH,O — 4NO + CO; + 3H,0;
8NO + 2CH,;0 — 4N,0 + 2CO;, + 2H,0).

The NOB gains energy to fix CO; to biomass via the oxidation
of NO; — NOs. NO, uptake rate is modeled by:

NO,
max

[NO, | [02] Brx )

VNOZ -
Ky + [NOy Ky + [02]

NOB =

where the different terms in Eq. 7 are analogous to those in Eq. 3.
The uptake of CO; occurs via the same pathway as for AOO (Eqs
4 and 5) and the biomass of the ith NOB guild varies as:

dBL , , , _
% = Wnax Min {di} By — ABpy (8)
NITROUS OXIDE PRODUCTION

N,O is produced by AOO via two distinct pathways: (1) decom-
position of the hydroxylamine intermediate and (2) the likely
more significant mechanism of NO; detoxification (Figure Al
in Appendix; Frame and Casciotti, 2010; Kool et al., 2011; Stein
and Klotz, 2011). Under the first pathway, N,O production is
modeled as a linearly related fraction of hydroxylamine decompo-
sition (Frame and Casciotti, 2010). The second pathway simulates
the detoxification of accumulated NO, as the two steps of nitri-
fication become uncoupled. This decoupling can occur because
NOB have a lower affinity for O, than the AOB; therefore as O,
is consumed during nitrification (or in low O, environments),
the two reactions may become spatially or temporally uncou-
pled. NO; toxicity stimulates a detoxification pathway converting
NO; to N,O via NO. This detoxification pathway is poten-
tially the more significant mechanism by which AOB produce
N;O. AOA have recently been shown to produce N,O (San-
toro et al., 2011), although the mechanism has not yet been
elucidated. Therefore, in the present version of the model we
predict AOA N,O production using the same relationships as
for AOB.

As NO; concentrations become toxic to AOO, their growth and
NHj; uptake decline. We represent these transitions by modifying

Frontiers in Microbiology | Aquatic Microbiology

October 2012 | Volume 3 | Article 364 | 4


http://www.frontiersin.org/Aquatic_Microbiology
http://www.frontiersin.org/Aquatic_Microbiology/archive

Bouskill et al.

Trait-based nitrification model (MicroTrait-N)

an organism’s affinity for NH3 as a function of NO;, NO, and O,
concentrations:

NH NH [C]

KN = g NHs [1 R } ©)
M [02]

where KNH3 is the base NHj affinity, K" is the affinity con-

stant for N02 or NO during detoxification, and [C] represents the
concentration (M) of either NO, or NO. Energy for detoxification
is assumed to come from the degradation of microbial biomass
resulting in the output of CO,.

NUTRIENT POOL TRANSFORMATIONS
The dynamic aqueous NH3 concentration ([NH3z] (M) depends

on a balance between losses from oxidation (Vﬁm), uptake

into biomass of AOO (V£H3>, and NOB (VIEI\II%B) , and inputs
resulting from biomass breakdown during detoxification summed
across the total number of AOO guilds (14 ) and NOB guilds (nx):

d[NH;] i= nA I=nN  NOB
T _Z (Vi + Vim,) — 21:1 VNH;

Hi 2 (2% +020)

where the 1/4 represents the stoichiometry of the detoxification
reaction using biomass for energy. The dynamic NO, concentra-
tion depends on uptake by NOB to generate energy and losses via
detoxification by AOB:

i=np i=nN E
V. —
21—1 NH3 Zizl NO;

MODEL EVALUATION

Resolution of nitrifier diversity across geochemical gradients

We tested MicroTrait-N by examining how nitrifier diversity varies
across geochemical gradients in pH, substrate concentration [i.e.,
(NH3)], and temperature and compared predictions of this diver-
sity against published studies. Accuracy of modeled communities
was gaged by relating the steady state modeled nitrifier diversity to
its likely phylogeny based on literature sources of the derived trait
values. In addition, an evenness statistic (J*) is ascribed to each
community;

(10)

d[NOZ] DN (11

>
i=

S

=2 e

i-1

Pl ln Pl
In (S)

where represents the relative proportion of the ith species, and S
is the species richness (Mulder et al., 2008). The evenness statistic
varies between 0 and 1, with 1 indicating an equal contribution
of each guild to the total biomass. The model also predicts rates
of NHj oxidation and N,O production that we report as 30 days
running averages.

Physicochemical impacts on nitrifier diversity and activity

We applied a step-wise approach to analyze the impacts of geo-
chemical variables, temporal dynamics of substrate inputs, and
combinations of these variables on nitrifier diversity and activity.

The five groups of modeling scenarios include sensitivity analyses
of the impacts of (i) pH; (ii) temperature; (iii) decoupling during
NO; detoxification; and (iv) dynamic substrate inputs. For the
fifth modeling scenario, (v) we computed predicted community
structure with a limited set of available observations.

pH impacts. pH is a determinant of nitrifier diversity, in part,
due to its regulation of NH3 concentrations. The NH4:NHj3 ratio
increases as pH decreases (Li et al., 2012), possibly selecting for
nitrifiers adapted to low substrate concentrations. We performed
model simulations across pH gradients spanning neutral to slightly
acidic conditions (7.8—4.5). For each guild, the model was run with
an integration time of 6 months, which allowed the community
biomass to come to a steady state. Simulations were initialized with
1 x 107> M NHj3 and non-limiting concentrations of O, and CO,
(both 1M x 1073 M). Two further substrate pulses (of 1 x 107°
NH3) following 2 and 4 months were necessary to prevent the
communities becoming substrate limited and maintain them at
steady state.

Temperature impacts. Temperature has also been shown to play
an important role in determining the diversity of ammonia-
oxidizing communities in terrestrial and aquatic ecosystems
(Erguder et al., 2009; Prosser, 2011). We applied in the model a
temperature-activity relationship based on previously published
data (Ratkowsky et al., 2005; Follows et al., 2007) that accounts
for a different temperature optima across the guilds (Table 1). We
simulated a temperature range of 5 to 30°C in 5°C increments
under initial conditions of NH3 =5 x 107> M and pH =7.8.

Decoupling nitrification reactions. We simulated the forced
reduction of NO; to N, O during AOO detoxification by initializ-
ing the model to steady state over 6 months under initial conditions
of 1 x 10> M NH3, pH = 7.8 and temperature = 20°C. At steady
state, the NOB activity was turned off and then simulations were
run for a further 6 months. A simultaneous control experiment
extended the steady state for a further 6 months maintaining NOB
activity.

Pulsed substrate inputs. NH3 availability is considered to be a
major determinant of AOO diversity (Bouskill et al., 2011; Prosser,
2011) and the rate of N, O efflux (Elberling et al., 2010). Nitrifiers
show wide physiological breadth with respect to enzyme kinetics
(V max and K ) and different communities dominate based on the
magnitude of substrate inputs (Mahmood et al., 2006). We tested
the impact of NH3 availability by simulating community diversity
and activity in response to pulsed NHj3 input events. Under a con-
stant pH (7.8) and temperature (25°C), NH3 was initially input at
a concentration of 1 x 107® M and increased on 2-month cycles
t05x 107> M.

Comparisons with observed data. We tested the baseline
MicroTrait-N predictions by comparing against published data
from five Alaskan ecosystems (Petersen et al., 2012). That dataset
combines nitrification rate measurements with a quantification of
the different nitrifier groups (AOB and AOA) facilitating a direct
comparison with the output of our model. Petersen et al. (2012)
also report a comprehensive list of chemical data, which satisfy the
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input requirements of the simulation’s initial conditions. Further-
more, in contrast to our earlier simulations evaluating community
composition at a fixed substrate concentration and low pH (down
to 4.5), this dataset represents low pH soils (4.8—4.3) with high
substrate concentrations. For these simulations initial conditions
are given in Table Al in Appendix with temperature = 15°C and
simulations were run for 6 months. The model was initialized with
mean trait values and then simulations were replicated using the
MC approach and five analogs per guild (with each analog repre-
senting a stochastically chosen set of trait values across the uniform
probability distribution. For comparison, data from two of the sites
are replicated using an MC code with a normal distribution. Using
the normalized distribution of traits produces little effect on the
model output. See appendix).

RESULTS

PHYSICOCHEMICAL IMPACTS ON NITRIFIER DIVERSITY AND ACTIVITY
In this subsection we describe results from our modeling scenarios
and comparison of predicted data with observations.

PH impacts

We simulated a pH gradient from approximately neutral
(pH=7.8) to acidic (pH =4.5) conditions and recorded diversity
and activity (NH3 oxidation rate and N,O production). During
the hydrolysis reaction of NHs3, the ratio NH4:NHj3 increased
hyperbolically as pH decreased. Thus, at pH <5, the extremely
low [NH3] encouraged the growth of oligotrophic ammonia oxi-
dizers. Both baseline (i.e., fixed trait values, Figures 2A,B) and
MC (Figures 2C,D) approaches showed a decline in AOB com-
munity evenness with decreasing pH. The highest evenness val-
ues are predicted around neutral values where AOB guilds 7
[AOB(7)] and 4 [AOB(4)] dominate. As pH decreases, community
diversity declines until the AOA guild dominates. Although both
simulations had similar trends in diversity, the multiple analog
experiments (Figures 2C,D) predicted more variability in com-
munity diversity, as evidenced by more variable evenness values.
Predicted nitrifier activity (as indicated by NHj3 oxidation rates
and N,O production) also declined with decreasing pH from a
maximum NHj oxidation rate of 1.9 M N day~! to less than 0.1 M
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N day~!. Predicted N,O production was linearly related to NH;
oxidation (data not shown, r =0.98, p=0.001, slope = 0.94) indi-
cating the AOB and NOB reactions were coupled regardless of the
pH and N, O was primarily by hydroxylamine decomposition.

Temperature impacts

Maximal rates of ammonia oxidation were simulated at 25°C
(Figure 3B). Maximal oxidation rates coincided with the high-
est community evenness. At low temperature, AOO communities
were dominated by the cold-adapted AOB(6) guild (Table 1,
Figure 3A), which represents Nitrosmonas cryotolerans. The AOA
guild was also important at this temperature (Figure 3A). With
increasing temperatures up to 25°C, the AOB(3) and AOB(7)
guilds became more competitive and began to dominate the com-
munity. When the temperature reached 30°C, the AOB(1) guild
dominated. N,O production mirrored that of NHj3 oxidation
indicating that N,O production resulted from hydroxylamine
decomposition under these conditions.

Decoupling nitrification reactions
We simulated N,O production through two pathways described
above (Figure Al in Appendix). After running the simulations
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FIGURE 3 | Mean trait-value AOO community diversity and activity
across a temperature gradient. (A) Stacked bar chart depicts community
diversity as a proportional contribution to the total community biomass. The
evenness value is given above the plot. (B) Rates of NH; oxidation (bar
chart) and gross N,O production (line graph). Error bars are the result of
multiple simulations (n=23).

to steady state biomass, the NOB were removed allowing rapid
accumulation of NO; and invoking a detoxification response in
the AOO. NO; was rapidly converted to N, O, via NO, using cel-
lular biomass as an energy source. This conversion resulted in
a transient N, O production rate significantly higher than in the
scenarios with a steady state community and when the NOB were
present (ANOVA, p < 0.05; Figure 4A). Despite a higher N, O pro-
duction rate in the absence of NOB, cumulative production of
N,O over 6 months was significantly (ANOVA, p < 0.05) lower
than when NOB were present (Figure 4B) due to the creation of
an unstable half reaction (lacking NO, oxidation) resulting in a
rapid crash in AOO community biomass (data not shown).

Pulsed substrate input

We simulated the response of our imposed simple community
(seven AOB guilds; one AOA guild; and three NOB guilds) to
pulsed input of substrate over a 9-month period (Figure 5).
Over time, and with evenly spaced pulsed events, the evenness
of the community declines slightly from 0.76 to 0.58 as one guild,
AOB(7), begins to dominate. Pulses of NHj3 are drawn down more
quickly as the biomass of AOB increases. However, the second
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FIGURE 4 | N,O production under a coupled AOB-NOB nitrification
reaction and also as the AOB-NOB reaction becomes uncoupled and
the detoxification reaction is activated. (A) Maximal rate of N,O
production (B) Cumulative N,O production over the 6-month simulation.
Error bars are the result of three simulations per temperature.
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pulse of NH3 results in its most rapid drawdown due to a high
cumulative biomass and greater diversity of AOO (Figures 5A,B).
As NOB biomass increases, NO, demand increases, and the NO,
is oxidized as rapidly as it is produced (Figure 5C). In the present
simulation we did not allow for diffusion, and this resulted in an
accumulation of N, O (Figure 5D), nevertheless, the rate at which
it is produced reflects the pulses of NH3 into the system. The initial
pulse elevates NH;3 concentrations from 1 x 1077 to 5 x 10~ and
results in a five-fold increase in the biomass of AOB(7), a four-fold
increase in AOB(5), and a small response in AOB(1). As NHj3 is
drawn down to lower concentrations (<1 x 107° M) AOA briefly
become the dominant nitrifiers. While AOA biomass peak when
substrate concentrations are low, they are inhibited by subsequent
substrate pulses.

Comparison with environmental data

The dataset presented by Petersen et al. (2012) examined AOO
community diversity across five-plant community types charac-
teristic of the interior of Alaska. These soils were characterized by
high substrate concentrations (range = 7.3 x 1073 to 0.1 M NH;3)
and low pH (4.3—4.8). These observations therefore provide a com-
parison to our earlier examination of a pH gradient with a fixed
substrate concentration. The model predicted that, in contrast

to our previous predictions at low pH and NHj3 substrate levels
(Figure 2), bacteria dominated the AOO community at these sites
(Figure 6A). Using mean values for traits, the Black Spruce and Bog
Birch sites were dominated by AOB(7) and AOB(3) in the case of
the Bog Birch site. The Tussock Grassland, Emergent Fen, and Rich
Fen also showed lower evenness and were generally dominated by
one guild [AOB(1)] accounting for approximately 90% of the total
AOB biomass. The AOA guild was never a significant component
of the community diversity under these conditions (data not
shown). Within-guild diversity was represented using MC sim-
ulations that stochastically assigned traits to multiple analogs of
each guild. The community composition that emerged when using
this approach was different than when traits were represented by
their mean values. For example, the AOA became more prominent
in the MC simulations, although they were still only a relatively
small proportion (2-4%) of the Fen communities and Tussock
grassland (Figure 6A).

Predicted trends in NHj; oxidation rates (Figure 6B) corre-
lated with the observed data (Figure 6B; r =0.96, p=0.007). The
highest oxidation rates were associated with the highest NH3 con-
centrations at the Emergent Fen site (4.9 x 107* M N day~!) and
with the lowest rates at the Black Spruce and Bog Birch sites
(9% 107> and 9 x 10"®* M N day ™! respectively). MicroTrait-N
predictions of N, O production also correlated with NH3 concen-
trations and oxidation rates (Figure 6C), albeit not significantly
(r=0.69, p=0.19), and were 85 times higher at the Emergent Fen
site (3.6 x 107* M N day~!) than the Black Spruce (4.3 x 1078 M
N day™1).

DISCUSSION

Oxidation of NH3 to NOj is an important process that couples
N-inputs and losses via denitrification and influences the avail-
ability of N in terrestrial and marine environments (Ward, 2008;
Prosser, 2011) with important implications for carbon cycling
(Doney et al., 2007). A better understanding of the ecological
factors that determine the activity and diversity of the chemoau-
totrophic nitrifiers will therefore improve our understanding of
N-transformations and N-emissions. To that end we describe here
amodel simulating nitrifier community development as a function
of environmental conditions, allowing both community diver-
sity and the rate of nitrification to change across environmental
gradients.

GUILD CHARACTERIZATION

MicroTrait-N simulates nitrifier diversity using a guild model
loosely based on phylogenetic affiliations (Koops and Pommeren-
ing Roser, 2001), with differences in key ecophysiological char-
acteristics (e.g., DON usage, Ky values). Several of the results
across gradients showed plausible representation of the dominant
nitrifiers guilds emerging on the basis of environmental condi-
tions (discussed below). Our guild characterization recognizes
several guilds of the Nitrosomonas [AOB(1-6)], one guild of the
Nitrosospira [AOB(7)] and the AOA, and three guilds of the NOB.
The guilds resolve broadly into oligotrophic and copiotrophic
groups (Kassen et al., 2000; Lauro et al., 2009). For example, the
AOB(5) and AOB(7) guilds have copiotrophic-like characteris-
tics, responding rapidly to substrate pulses (Figure 5A), while the
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AOA guild is only competitive as substrate is either drawn down
to concentrations <1 wM (Figure 5A) or when pH reduces NH3
availability (Figure 2).

The MicroTrait-N model structure is currently weighted in
favor of guilds with cultured members and likely under-represents
the importance of the AOA. The AOA are known to be in high
abundance in both oceanic (Bouskill et al., 2012) and terrestrial

(Leininger et al., 2006) environments. However, while it is likely
that marine AOA are chemoautotrophic organisms and play an
important role in marine nitrification, AOA possibly span a more
complicated functional space in terrestrial systems. Attempts to
draw correlations between the abundance of terrestrial AOA and
NH; oxidation rates have produced mixed results (Di et al,
2009); (Jia and Conrad, 2009). In MicroTrait-N, parameterization
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of AOA Kkinetics is extrapolated from a few published cultures
(Martens-Habbena et al., 2009; Lehtovirta-Morley et al., 2011).
The model consequentially represents the AOA as oligotrophs,
dominating nitrifying conditions under low NH3 concentrations,
and becoming outcompeted or possibly inhibited under higher
NH3. The AOA:AOB relationship provides some support for the
idea that AOA are oligotrophic, with ratios increasing as substrate
concentrations decrease (Mosier and Francis, 2008; Bouskill et al.,
2012), while AOA have generally been reported in low abun-
dance within engineered systems of high NHj concentrations
(Wells et al., 2009). However, the AOA are also abundant in terres-
trial ecosystems with high NHj3 concentrations (Verhamme et al.,
2011). This diversity might suggest that the physiological breadth
of the AOA has yet to be fully uncovered, and that the notion of
the AOA as oligotrophic K-strategists might be challenged through
isolation of organisms from high NH3 environments. On the other
hand, several studies have demonstrated metabolic diversity of
the terrestrial AOA (i.e., mixotrophy; Mufimann et al., 2011), and
have proposed that although the abundance of the AOA is high,
their contribution to ammonia oxidation is perhaps minimal. Cur-
rently, MicroTrait-N is only capable of representing organisms
growing autotrophically, and does not represent the abundance of
organisms with alternative metabolisms. Therefore, if an appre-
ciable proportion of the AOA community at neutral pH is not
actively oxidizing ammonia, they will not be predicted in the
current model structure. Further studies into the physiology of
the AOA will likely yield data that should help to constrain the
models.

GEOCHEMICAL GRADIENT SIMULATIONS
MicroTrait-N attempts to predict trends in community diversity
across gradients in substrate concentration, pH, and temperature.

pH impacts

Few studies offer an experimental analog to the simulations pre-
sented here, however, Nicol et al. (2008) examined AOA and AOB
dynamics along a pH gradient (7.5-4.9) in an agricultural soil. The
results of that study did not necessarily support predictions from
our simulations (e.g., the AOA were observed to be the numerically
dominant nitrifiers across neutral to acidic conditions), however
several similarities occurred. Quantification of transcript abun-
dance found the AOA:AOB ratio decreased with increasing pH,
suggesting that the relative importance of the AOB to ammonia
oxidation increases with increasing pH. Furthermore, Nicol et al.
(2008) also noted the taxonomic diversity of AOB to decrease
with decreasing pH. This relationship was mainly attributable to
the loss of most of the Nitrosomonas species and several of the
Nitrosospira clusters. Additionally, at pH < 5.0 the Nitrosospira
were the dominant bacterial nitrifying group. Our simulations
reproduced some of these observations, including a drop in bac-
terial diversity and an increasing prominence of the AOB(7) guild
(for which kinetic parameters were derived from the Nitrosospira)
with decreasing pH.

The dominance of the AOA guild at low pH is supported by
several studies (Nicol et al.,2008; Gubry-Rangin etal.,2010). How-
ever, there is also evidence of the AOA dominating nitrifier groups
across a range of pH (from 8.7 to 3.5; Gubry-Rangin et al., 2011).

It is not clear if this dominance is due to a physiological adap-
tation to low pH or to substrate availability. Nitrification rates
have previously been shown to be high at low pH where rates of
mineralization (and hence substrate availability) are high (Booth
etal.,2005), however, (Gubry-Rangin et al.,2011) did not explicitly
measure substrate concentrations in their study.

Temperature impacts

MicroTrait-N also simulates the relationship between tempera-
ture and the kinetics of the ammonia-monoxygenase enzyme,
which purportedly has a stronger effect on the ammonia oxi-
dation rate than substrate availability (Groeneweg et al., 1994).
The MicroTrait-N relationship between temperature and activity
(ammonia oxidation) was based on a previously published square-
root relationship for the growth rate of bacteria (Ratkowsky et al.,
1983, 2005). In the present model, nitrifier diversity and activity
was highest at 25°C while the rate of N, O production tracked the
rate of ammonia oxidation. Several laboratory and field experi-
ments have recorded a significant positive relationship between
temperature and the activity of nitrifiers (Stark, 1996; Jiang and
Bakken, 1999; Avrahami and Bohannan, 2007; Bouskill et al., 2011)
with a few studies noting that the relationship continues up to
and above 30°C (Stark and Firestone, 1996). Understanding the
relationship between temperature and nitrification is crucial to
predicting future N, O effluxes (Avrahami and Bohannan, 2009)
and future simulations should account for complex interactions
between temperature, substrate, and soil moisture, all of which
play a significant role in N,O fluxes (Avrahami and Bohannan,
2009).

Decoupling nitrification reactions

N,Oisalong-lived greenhouse gas and stratospheric ozone deplet-
ing substance (Bange, 2008). The atmospheric mixing ratio of N, O
has increased 20% since 1750 (MacFarling Meure et al., 2006)
with terrestrial ecosystems the principle sources of N, O emissions
(Pérez et al., 2001). The annual contribution of nitrification to
the global N,O budget is currently unknown, however, in previ-
ous models the ratio of N, O formed to NH3 oxidized is generally
about 0.1% (Frame and Casciotti, 2010). This relationship does
not account for differences in the pathways of N, O production via
nitrification (Frame and Casciotti, 2010).

In the current model, we simulated N,O production via NO,
detoxification and hydroxylamine decomposition. The maximal
rate of N,O production was recorded under NO; detoxifica-
tion, and was approximately 150 times higher than it had been
directly before NOB removal and seven times higher than the
N,O production rate when NO; did not accumulate (i.e., NOB
were present and N,O was produced by hydroxylamine decom-
position). This result might suggest that NO, detoxification sub-
stantially increased N,O production by ammonia oxidizers upon
uncoupling of the nitrification reactions. However, the toxic effect
of NO, reduces AOO biomass to the point where the popula-
tions crash and NHj3 oxidation declines. This biomass change is
reflected in the cumulative N, O production data over the 6 month
simulation, which is approximately 5 times lower than that formed
during full nitrification (i.e., hydroxylamine decomposition).
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These model predictions are supported by previous experimen-
tal work. For example, Graham et al. (2007) observed evidence
of chaotic instability in the AOB-NOB relationship resulting in
significant accumulation of NO; in a chemostat experiment.
Furthermore, Frame and Casciotti (2010) examined pathways
of N,O production in the marine ammonia oxidizer, Nitro-
somonas marina. They found that the presence of excess NO,
in the growth medium increased N,O yields by an average
of 70-87%, while stable isotope and '°N-site preference mea-
surements determined that nitrifier-denitrification (analogous
to our detoxification pathway) was responsible for the major-
ity of N,O production at low oxygen (Frame and Casciotti,
2010).

Comparison with environmental data

We also tested our model against site-collected data from a recent
study in a high-latitude site (Petersen et al., 2012). Petersen et al.
(2012) sampled five-plant communities characteristic of inte-
rior Alaska, and measured the abundance of functional genes
affiliated with nitrification (i.e., bacterial and archaeal ammonia
monooxygenase) and potential nitrification rates. The sites were
characterized by high ammonium concentrations (0.2-2.9 gm™2)
and low pH (4.8-4.3). These sites therefore present a contrast
to the earlier pH gradient analysis under a lower substrate con-
centration. In our pH gradient simulation the AOA dominated
the low pH possibly due to low substrate availability. Conversely,
at higher substrate concentrations Petersen et al. (2012) found
AOB to be the dominant nitrifier in these Alaskan soil plots and
the AOB amoA gene abundance best explained observed nitrifica-
tion rates. The AOA were only minor components of the AOO
communities. Recreating the initial conditions from data col-
lected in Alaska (Carney et al., 2007; Petersen et al., 2012), we
resolved plausible trends in both relative community composi-
tion (i.e., AOB biomass was higher than that of the AOA) and
NHj3 oxidation rates. Predicted NHj3 oxidation rates correlated
with NH3 concentrations. That the AOB dominated these com-
munities over the AOA supports the earlier data suggesting AOO
community composition is largely determined by substrate con-
centrations. N,O production generally tracked NHj3 oxidation,
indicating that N,O was predominantly produced via hydroxy-
lamine decomposition. The exception was at the Bog Birch site
where predicted N,O production was higher than a rate con-
sistent with hydroxylamine decomposition. This result is signif-
icant given predictions of higher N, O production in high-latitude
ecosystems dependent on N-availability (Elberling et al., 2010)
and further work is warranted to understand these MicroTrait-N
predictions.

In addition to replicating field studies, a major objective of any
modeling approach is to test existing hypotheses. For example, our
mechanistic model may be used to test existing ecological theory
of the controls on ecosystem processes (in this case nitrification).
At the present time, two competing hypotheses describe the rela-
tionship between community structure and ecosystem processes:
The “diversity” hypothesis and the “mass-ratio” hypothesis (Grime,
1998; Green et al., 2008; Laughlin, 2011).

The “diversity hypothesis” postulates that the richness of func-
tional groups determines the rate of ecosystem processes by a

complementary association between different functional groups
(e.g., Tilman et al., 1996; Laughlin, 2011). On the other hand,
the “mass-ratio” hypothesis proposes that ecosystem processes
are controlled by the relative abundance of different functional
groups.

Our results show that these two hypotheses are both valid but
at different stages of the evolving nitrifier ecosystem. Organisms
achieving maximal fitness under the initial conditions can rapidly
increase their biomass to dominate the nitrification process. Other
guilds decline sometimes to extinction. These dynamics seemingly
lend support to the “mass-ratio” hypothesis. However, as condi-
tions change (i.e., as substrate concentrations fall), the diversity of
the community becomes more important, as guilds more suited
to the new conditions become numerically prominent and domi-
nate nitrification. At the present time, we are unaware of any field
studies in microbial ecology that exclusively test these theories
in situ. The functional diversity of microbial communities, and
redundancy in those communities, in addition to limitations in
current methods limitations, make it difficult to attribute activity
to specific groups. These limitations might be overcome in future
through continued development of isotope labeling and spec-
troscopy methods (Hall et al., 2010) and transcriptomics (Moran
etal., 2012).

CONCLUSION

Trait-based microbial ecology can potentially link the observa-
tions of experimental environmental microbiology, theoretical
energy, and mass exchange considerations, and quantitative mod-
eling with an emphasis on depicting microbial diversity across
spatial and temporal scales. Previous applications of the microbial
trait-based approach have been successful in predicting rates of
primary productivity (Follows et al., 2007), heterotrophic activity
(Hall et al., 2008), and litter decomposition (Allison, 2012). We
demonstrate here that trait-based representation of nitrifiers can
be used to connect community diversity with activity, improve
understanding of environmental controls on NH3 oxidation, and
test hypotheses centered around the ecology of NHjz-oxidizers
and N, O production, issues that temporal and financial restric-
tions on field studies are often unable to address. An important
avenue for future research is to focus on whether the integration
of these microbiological diversity modules into ecosystem models
can improve site, regional and global predictions of carbon and
nutrient cycling.
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APPENDIX

MATERIALS AND METHODS

Derivation of trait values

Numerical values for five different traits [Ky(NHjz), Ky (O2),
Vmax(NH3), wmax, Rcen] were taken from ecophysiological
studies following an extensive literature review (Loveless and
Painter, 1968; Suzuki, 1974; Suzuki et al., 1974; Drozd, 1976;
Glover, 1985; Belser and Schmidt, 1979; Keen and Prosser, 1987;
Prosser, 1989; Nishio and Fujimoto, 1990; Verhagen and Laan-
broek, 1991; Laanbroek and Gerards, 1993; Jiang and Bakken,
1999; Schramm et al., 1999; Gieseke et al., 2001; Koops and Pom-
merening Roser, 2001; Cébron et al., 2003; Martens-Habbena
et al., 2009; Schreiber et al., 2009). Where possible the traits
were derived from the same study, however, efforts were made to
ensure that the similar methodologies were used to calculate trait
values (e.g., under similar pH and temperature). The different
ecophysiological traits were measured in batch cultures of strains
of Nitrosomonas, Nitrosospira, Nitrosopumilus, Nitrososphaera and
Nitrosotalea.

— Km(NH3)/Kym(02)/Vmax: Enzyme kinetics (e.g., affinity con-
stant and uptake) were calculated under substrate saturation
conditions (see: Loveless and Painter, 1968; Suzuki et al.,
1974; Drozd, 1976; Martens-Habbena et al., 2009). Affin-
ity constants have previously been measured in whole cells

as well as cell extracts and oxygen concentrations measured
using oxygen electrodes (Suzuki et al., 1974). Enzyme uptake
can be calculated using ammonia microprofiles and fitting to
the Michaelis-Menton equation (e.g., Schramm et al., 1999).
In the case of the AOA, Nitrosopumilus maritimus, affinity
constants were derived using oxygen microsensors (Martens-
Habbena et al., 2009), from multiple oxygen traces. Maximum
uptake rate was also calculated under substrate saturation. In
general, media with defined ammonia concentrations were
sub-sampled over time and substrate concentrations deter-
mined fluorometrically. Uptake rates were calculated from
oxygen profiles and fitted to a Michaelis Menton equation
(Martens-Habbena et al., 2009).

pmax: Maximum specific growth rate was generally estimated
by measuring the evolution of NO, as a proxy for growth
(e.g., Loveless and Painter, 1968; Keen and Prosser, 1987).
NO; increases exponentially during growth and the slope of
a semi-logarithmic plot of product evolution against substrate
concentration is equivalent to specific growth rate.

RNt The carbon yield from nitrification was determined in
continuous or chemostat cultures (e.g., Belser, 1979; Belser
and Schmidt, 1979; Glover, 1985; Keen and Prosser, 1987) by
measuring cell number (e.g., using a spectrometric bacterial
counter) and the production (AOB), or draw down (NOB), of
NO;.
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Table A1 | Initial inputs for model simulation of the Petersen dataset.

Plant community type pH NH3 (g m3) Potential nitrification rate 16s bacterial: archaea
Black spruce 4.8 0.2 2 15
Black bog 4.3 0.2 1 375
Emergent fen 4.5 2.9 18 10
Rich fen 4.7 1.1 5 3
Tussock grassland 4.7 1.5 7 10
Relative Magnitude of Guild Parameters
AOB(1)
AOB(2) s
AOB(3) E
AOB(4) €
AOB(5) g
AOB(6) 3
AOB(7) g
AOA u
NOB(1) °
X
NOB(2)
NOB(3)
$
&
FIGURE A1 | Relative magnitude of guild parameters.
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FIGURE A2 | Pathways of nitrous oxide production during nitrification. See text for detailed explanation.
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FIGURE A3 | Explicit relationship between trait parameters Ky, and jLax-

A :_QC: 100
g2 90
?(:3 g 80
s E 70
§¢8 60 ] ]
A n |
se 40 1 4
c o s 1 ! )
S ‘; 30 [ 1 { 1
v 20 ! | ] !
> =1 1 I
) 10 | 1 ! )
3 o 1 1 =
EMERGENT TUSSOCK
FEN GRASSLAND
Il AOB(1) 1 AOB(2) I AOB(3) ] AOB(4)
I AOB(5) ] AOB(6) Il AOB(7) H AOA
B
c
o [
5 &
As oy =
- o
A 5=
= 29
z2 tE
- w k=]
L8 =
3 ZE
[ c =
a 2
: 9
oo
EMERGENT TUSSOCK
FEN GRASSLAND
- Predicted ammonia oxidation rate
(Normal distribution)
o Predicted ammonia oxidation rate
(Uniform distribution)
[ Observed ammonia oxidation rate
FIGURE A4 | Simulations of the activity and diversity of AOB demarcate the different analogs/guild. A box outlines the boundaries of each

communities in high-latitude ecosystems. (A) Simulations of multiple AOB  guild’s biomass. Evenness statistic given above the bar plots. (B)

analogs (n="5 analogs per guild) across the different sites. These simulations Experimental observations reproduced from Petersen et al. (2012), showing
are based on a normalized distribution of trait values. Each guild is the trends in potential nitrification rates under a normal distribution, a uniform
represented by a distinct color. Subtle differences in the shade of that color distribution, and the observed NH; oxidation rates.

www.frontiersin.org October 2012 | Volume 3 | Article 364 | 17


http://www.frontiersin.org
http://www.frontiersin.org/Aquatic_Microbiology/archive

	Trait-based representation of biological nitrification: model development, testing, and predicted community composition
	Introduction
	Trait-based microbial models

	Materials and methods
	Emergent community ecosystem model description (MicroTrait-N)
	Representing autotrophy
	Nitrous oxide production
	Nutrient pool transformations
	Model evaluation
	Resolution of nitrifier diversity across geochemical gradients
	Physicochemical impacts on nitrifier diversity and activity
	pH impacts
	Temperature impacts
	Decoupling nitrification reactions
	Pulsed substrate inputs
	Comparisons with observed data



	Results
	Physicochemical impacts on nitrifier diversity and activity
	pH impacts
	Temperature impacts
	Decoupling nitrification reactions
	Pulsed substrate input
	Comparison with environmental data


	Discussion
	Guild characterization
	Geochemical gradient simulations
	pH impacts
	Temperature impacts
	Decoupling nitrification reactions
	Comparison with environmental data


	Conclusion
	Acknowledgments
	References
	Appendix
	Materials and methods
	Derivation of trait values




