
REVIEW ARTICLE
published: 23 October 2012

doi: 10.3389/fmicb.2012.00372

Nitric oxide and nitrous oxide turnover in natural and
engineered microbial communities: biological pathways,
chemical reactions, and novel technologies
Frank Schreiber1,2*, Pascal Wunderlin3, Kai M. Udert3 and George F. Wells3,4

1 Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
2 Department of Environmental Systems Sciences, Eidgenössische Technische Hochschule, Zurich, Switzerland
3 Department of Process Engineering, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
4 Department of Civil, Environmental and Geomatic Engineering, Eidgenössische Technische Hochschule, Zurich, Switzerland

Edited by:

Boran Kartal, Radboud University,
Netherlands

Reviewed by:

Robbert Kleerebezem, Delft
University of Technology,
Netherlands
Kartik Chandran, Columbia
University, USA

*Correspondence:

Frank Schreiber, Department of
Environmental Microbiology,
Eawag-Swiss Federal Institute of
Aquatic Science and Technology,
Überlandstrasse 133, P.O. Box 611,
8600 Dübendorf, Switzerland.
e-mail: frank.schreiber@eawag.ch

Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is
an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric
oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric
concentration requires an understanding of the mechanisms that lead to its formation
in natural and engineered microbial communities. N2O is formed biologically from the
oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−

2 ) to NO and further to
N2O. Our review of the biological pathways for N2O production shows that apparently all
organisms and pathways known to be involved in the catabolic branch of microbial N-cycle
have the potential to catalyze the reduction of NO−

2 to NO and the further reduction of
NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing
bacteria (AOB). In addition to biological pathways, we review important chemical reactions
that can lead to NO and N2O formation due to the reactivity of NO−

2 , NH2OH, and nitroxyl
(HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance
imposed on a system. Thus, understanding NO formation and capturing the dynamics
of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we
discuss novel technologies that allow experiments on NO and N2O formation at high
temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis
of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy
(QCLAS). In addition, we introduce other techniques that use the isotopic composition
of N2O to distinguish production pathways and findings that were made with emerging
molecular techniques in complex environments. Finally, we discuss how a combination
of the presented tools might help to address important open questions on pathways and
controls of nitrogen flow through complex microbial communities that eventually lead to
N2O build-up.

Keywords: isotopic signature, microsensors, molecular tools, dinitrogen oxide, nitrogen monoxide, pathway

identification, quantum cascade laser absorption spectroscopy (QCLAS), site preference

INTRODUCTION
Nitric oxide (NO) and nitrous oxide (N2O) are atmospheric trace
gases that influence atmospheric chemistry and the greenhouse
effect. Biological and chemical processes produce N2O on the
earth surface (Crutzen, 1979). Entering the stratosphere, N2O is
converted to NO by photo-oxidation. NO together with nitrogen
dioxide (NO2) participate in a set of reactions that transfer ozone
(O3) to molecular oxygen (O2), thereby leading to O3 layer deple-
tion. In fact, N2O is and will remain the dominant O3-depleting
substance in the twenty-first century (Ravishankara et al., 2009),
since the use of chlorofluorocarbons has been restricted by the
Montreal Protocol. In addition, N2O is a potent greenhouse
gas. The infrared radiative forcing of one N2O molecule is 206
times that of one carbon dioxide (CO2) molecule (Stein and
Yung, 2003). Together with the long atmospheric lifetime of N2O
(∼120 years) this results in a ∼300 times higher global warming

potential of N2O than that of CO2 on a per molecule basis.
Overall, N2O contributes 6–8% to the anthropogenic green-
house effect, despite its relatively low atmospheric concentration
(∼322 ppbv) (Montzka et al., 2011).

Over the last 100 years atmospheric N2O concentrations
have been steadily increasing due to the massive introduc-
tion of fixed nitrogen into the environment by humans (IPCC,
2001). Counteracting the further increase of N2O in the atmo-
sphere will rely on (1) decreasing the introduction of fixed
nitrogen into the environment by humans, (2) exactly quan-
tifying the important environmental sources of N2O, and (3)
implementing effective strategies to mitigate its formation in
nitrogen-transforming, man-made ecosystems such as agricul-
ture and wastewater treatment. Thus, there is an urgent need to
understand the mechanisms that underpin the formation of N2O
in natural and engineered microbial communities.
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In this review, we will outline the current state-of-the-art on
biological and chemical processes that can produce and consume
N2O and NO—an important precursor of N2O in many biological
pathways. We will discuss pathways that produce NO and N2O in
natural and engineered microbial communities and experimental
approaches that can be used to distinguish between different
pathways in these systems. Importantly, NO and N2O formation
can be highly dynamic and occur at small spatial scales. Thus, we
will further introduce two novel technologies that provide such
data and how they can lead to mechanistic insight: (1) NO and
N2O microelectrodes and (2) the analysis of the site preference
(SP) in N2O measured with quantum cascade laser absorption
spectroscopy (QCLAS). In addition, we discuss the challenges of
incorporating molecular biological techniques in this scheme.

BIOLOGICAL PATHWAYS FOR NO AND N2O PRODUCTION
The study of laboratory cultures for pathways and controls of NO
and N2O production in different organisms has generated con-
siderable knowledge, which was partly reviewed recently (Stein,
2011; Chandran et al., 2011). Figure 1 shows that the sequential
reduction of nitrite (NO−

2 ) to NO and further to N2O can be per-
formed by all organisms involved in the catabolic branch of the
N-cycle. While all N-cycle organisms can perform these reactions
it is currently believed that denitrifiers and ammonia oxidizing
bacteria (AOB) and ammonia oxidizing archaea (AOA) are the
most important environmental sources of N2O. However, in the
following section we additionally review the evidence for NO
and N2O production by nitrite oxidizing bacteria (NOB), anaer-
obic methane (N-AOM) and AOB (anammox), and bacteria that

FIGURE 1 | Biological pathways for NO and N2O turnover in the

catabolic branch of the N-cycle plus NO synthesis and detoxification.

Different colors are allocated to different microbial guilds or turnover
pathways: AOB (red), ammonia oxidizing bacteria; NOB (green), nitrite
oxidizing bacteria; anammox (orange), anaerobic oxidation of ammonia;
DNRA (blue), dissimilatory nitrate/nitrite reduction to ammonia; N-AOM
(purple), oxygenic nitrite-dependent anaerobic oxidation of methane. Key
enzymes of each microbial guild are depicted that are known to mediate
the conversion from one chemical N-species into another: AMO, ammonia
monooxygenase; HAO, hydroxylamine oxidoreductase; NXR, nitrite
oxidoreductase; Nar, membrane-bound nitrate reductase; Nap, periplasmic
nitrate reductase; NirK, copper-containing nitrite reductase; NirS,

cytochrome cd1 nitrite reductase; Nrf, cytochrome c nitrite reductase; NirB,
cytoplasmic nitrite reductase; cNor, nitric oxide reductase that accepts
electrons from c-type cytochromes; qNor, nitric oxide reductase that
accepts electrons from quinols; c554, cytochrome c554; NorVW,
flavorubredoxin, Hmp, flavohemoglobins; HZS, hydrazine synthase; HDH,
hydrazine dehydrogenase; Nos, nitrous oxide reductase; NOS, nitric oxide
synthase; unknown enzymes, nitric oxide dismutation to N2 and O2 during
N-AOM and nitrous oxide producing enzyme in NOB. Roman numbers in
brackets denote the oxidation state of the chemical N-species. The red and
the black box denote the isotopic composition (δ15N) and the site
preference (SP) in isotopomers of N2O produced by AOB and denitrifiers,
respectively.
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perform dissimilatory nitrate reduction to ammonia (DNRA).
Even though it is clear that these bacteria can produce NO and
N2O there is only few information on the controls, conditions
and magnitude for NO and N2O production by these bacteria
in the laboratory and in the environment. This should be an
important aspect of future research as e.g., DNRA and anam-
mox are the major N-conversion pathways in some important
environments.

DENITRIFICATION
The key enzyme for NO formation during denitrification is
nitrite reductase (Nir). Purification and characterization of Nir
from several bacteria revealed two entirely different periplasmic
enzymes: a heme-containing cytochrome cd1 Nir (NirS) and a
copper-containing Nir (NirK) as reviewed by Cutruzzolà (1999).
Reduction of NO to N2O is mediated by respiratory nitric oxide
reductases (Nor). Respiratory Nor proteins are integral mem-
brane proteins that fall into two groups: one is a cytochrome
bc complex that can use c-type cytochromes as electron donors
(cNor), whereas the other one lacks a cytochrome c component
and accepts electrons from quinols (qNor; sometimes termed
NorZ) (Hendriks et al., 2000; Zumft, 2005). Few bacteria use
qNor for classical denitrification. Rather, qNor is mainly encoded
by pathogenic bacteria that use it for NO detoxification and the
survival of anoxic periods when expressed in concert with Nir, as
shown for Neisseria spp. (Anjum et al., 2002; Rock et al., 2007).
The final step in denitrification is mediated by nitrous oxide
reductase (Nos), a multi-copper enzyme that reduces N2O to
dinitrogen (N2) (Zumft and Kroneck, 2007).

N2O reduction by Nos is the only known N2O consum-
ing process that can counteract release of N2O from ecosystems
(Richardson et al., 2009). Accumulation of N2O is often observed
in pure cultures (Baumann et al., 1996; Otte et al., 1996; Kester
et al., 1997; Bergaust et al., 2010) and mixed microbial commu-
nities (Firestone and Tiedje, 1979; Firestone et al., 1980; Morley
et al., 2008; Kampschreur et al., 2008b; Schreiber et al., 2009;
Elberling et al., 2010; Pellicer-Nàcher et al., 2010; Liengaard
et al., 2011) during transitions from anoxic to oxic conditions
or vice versa (Table 1). Even in pure cultures the physiological
basis for this is not well understood because it probably has mul-
tiple, strain-specific reasons. It has been hypothesized that Nos
is—unlike Nir and Nor—inhibited by O2 (Morley et al., 2008),
but in pure cultures evidence for O2-insensitive (Berks et al.,
1993) and O2-sensitive (Otte et al., 1996) Nos have been reported.
Likewise, it has been argued that expression of Nos is slower than
that of the preceding denitrification enzymes (Firestone et al.,
1980; Stief et al., 2009), but in Paracoccus denitrificans Nos syn-
thesis is faster (Baumann et al., 1996; Bergaust et al., 2010) and in
Pseudomonas stutzeri Nos is even constitutively expressed at low
levels (Körner and Zumft, 1989). More studies on Nos expression
in relation to N2O production pathways and on Nos inhibition by
O2 are needed with environmentally relevant isolates and mixed
microbial communities. Additional factors that lead N2O accu-
mulation are the slower turnover of Nos at low pH as compared
to nitrate reductase (Nar), Nir, and Nor (Richardson et al., 2009;
Bergaust et al., 2010), low pH during Nos assembly (Bergaust
et al., 2010), inhibition of Nos by nitrous acid formed from NO−

2

at low pH (Zhou et al., 2008), inhibition of Nos by exogenously
produced NO (Frunzke and Zumft, 1986; Schreiber et al., unpub-
lished results) or hydrogen sulfide (H2S) (Sørensen et al., 1980)
and copper limitation (Granger and Ward, 2012).

AMMONIA OXIDIZING BACTERIA (AOB)
High levels of NO and N2O can be produced by pure cultures
of aerobic AOB (Lipschultz et al., 1981; Kester et al., 1997; Shaw
et al., 2006), but the mechanism is not completely understood.
Generally, two different pathways are inferred. First, the activity
of nitrifier-encoded NirK and cNor reduces NO−

2 to NO and N2O
in a pathway termed nitrifier denitrification (Poth and Focht,
1985; Wrage et al., 2001; Schmidt et al., 2004b). A few reports
exist on N2 formation by AOB during nitrifier denitrification,
but a nosZ gene or functional Nos in AOB was not demon-
strated (Poth, 1986; Schmidt et al., 2004b; Schmidt, 2009). The
term nitrifier denitrification is somewhat misleading as it has
until now not been shown that it is a true dissimilatory process
for energy conservation and growth, but rather may be a detox-
ification mechanism to counteract the accumulation of NO−

2 to
toxic concentrations (Beaumont et al., 2002, 2004a,b).

In the second pathway, N2O is formed by hydroxylamine
(NH2OH) oxidation. The current model is that hydroxylamine
oxidoreductase (HAO) oxidizes NH2OH to NO (Hooper, 1968;
Hooper and Terry, 1979). NO is then reduced to N2O by a
yet unidentified Nor; a potential candidate is cytochrome c554

(Upadhyay et al., 2006). However, the catalytic cycle of HAO,
including its intermediates and its catalytic potential are a sub-
ject of ongoing debate (Hendrich et al., 2002; Cabail and Pacheco,
2003; Cabail et al., 2005; Fernández et al., 2008; Kostera et al.,
2008) and as of yet direct formation of N2O from HAO or other
reactions can not be excluded. Indeed, the difference in the SP of
N2O produced by NH2OH oxidation and nitrifier denitrification
indicates that N2O might be produced by HAO by a mecha-
nism that (1) either does not involve NO reduction by canonical
Nor used for nitrifier denitrification or (2) does proceed via a
completely different mechanism without free NO as intermediate
(discussed in section “site preference” and “HNO as intermediate
of enzymatic hydroxylamine oxidation”). Both nitrifier denitri-
fication and NH2OH oxidation require O2 to activate ammonia
(NH3) with ammonia monooxygenase (AMO) to NH2OH, which
serves as a substrate for HAO or as electron donor to nitrifier
denitrification. A pathway in which AOB perform denitrifica-
tion with organic substrates instead of NH3 as electron donor
(Schmidt, 2009) should be considered heterotrophic denitrifica-
tion performed by AOB. AOA have also been demonstrated to
produce N2O probably by pathways akin to AOB (Santoro et al.,
2011).

The relative importance of NH2OH oxidation and nitrifier
denitrification for NO and N2O production is still debated. Based
on pure culture investigations Yu et al. (2010) hypothesized that a
high NH3 oxidation activity favors N2O production via NH2OH
oxidation. Similarly, Wunderlin et al. (2012) found that NH2OH
oxidation is favored by high NH3 and low NO−

2 concentrations,
and a high nitrification rate in a mixed culture for treating munic-
ipal wastewater. Moreover, stable nitrogen isotopes work with
AOB pure cultures showed that NH2OH oxidation contributes
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to N2O production mainly at high O2 whereas nitrifier denitri-
fication is more active at low O2 concentrations (Sutka et al.,
2006).

NITRITE OXIDIZING BACTERIA (NOB)
NOB form NO and N2O during denitrification of nitrate (NO−

3 )
or NO−

2 with pyruvate or glycerol as electron donor under anoxic
conditions (Freitag et al., 1987; Ahlers et al., 1990), but a known
NO reductase could not be identified in the genomes of dif-
ferent Nitrobacter species and “Candidatus Nitrospira defluvii”
(Starkenburg et al., 2006, 2008b; Lücker et al., 2010). Under
anoxic conditions nitrite oxidoreductase (NXR) mediates NO−

3
reduction to NO−

2 , while it mediates the reverse reaction under
oxic conditions (Freitag et al., 1987). NOB actively express NirK,
which co-purifies with NXR, in the presence of NO−

2 and if O2

concentrations are low (Ahlers et al., 1990; Starkenburg et al.,
2008a). NO generated by NOB-NirK is thought to direct cellu-
lar electron flux either toward O2 respiration at high O2 con-
centrations or toward NADH synthesis by reversibly inhibiting
cytochrome oxidase at low O2 concentrations. An interesting
question to explore in natural communities would be whether
NO produced by AOB or denitrifying bacteria can influence the
activity of NOB.

DISSIMILATORY NITRATE REDUCTION TO AMMONIA (DNRA)
NO and N2O turnover by bacteria that perform DNRA has
been mainly investigated in Escherichia coli and Salmonella
typhimurium. In E. coli, NO formation is mediated by cytochrome
c nitrite reductase (Nrf) under anoxic conditions in the pres-
ence of NO−

3 and NO−
2 (Corker and Poole, 2003). NO detox-

ifying enzymes, such as flavorubredoxin, may further reduce
NO to N2O. On the other hand, E. coli Nrf reduces NO to
N2O or NH3 if electrons are donated to the enzyme at high
or low potential, respectively (Costa et al., 1990), contributing
to detoxification of exogenously generated NO (van Wonderen
et al., 2008). Aerobic and anaerobic NO formation from NO−

2 in
S. typhimurium is mediated by membrane-bound nitrate reduc-
tase (Nar). Under aerobic conditions, activity of NO detoxifying
Hmp (see below) oxidizes NO to NO−

3 resulting in non-detectable
NO concentrations in culture suspensions (Gilberthorpe and
Poole, 2008).

ANAEROBIC METHANE AND AMMONIA OXIDIZING BACTERIA
Bacteria that mediate the oxygenic nitrite-dependent oxidation
of methane (N-AOM) and anaerobic ammonia oxidation (anam-
mox) have been shown to use NO as an intracellular intermediate
produced by NO−

2 reduction via NirS while they consume exoge-
nous NO without concurrent N2O formation (Ettwig et al., 2010;
Kartal et al., 2010, 2011). Rather, N-AOM dismutates NO to form
N2 and O2, while anammox couples the reduction of NO to a con-
densation with NH3 to produce hydrazine (N2H4). Both have the
genetic potential to reduce NO to N2O; anammox bacteria encode
for flavorubredoxin (Strous et al., 2006) and N-AOM encodes
for qNor (Ettwig et al., 2010). However, physiological data for
both indicates that they withstand rather high NO levels (N-
AOM 20 μmol L−1, anammox 7 μmol L−1) without activating
anaerobic NO detoxification mechanisms.

NO−
2

−→ NO −→ N2O: CENTRAL STEPS IN THE N-CYCLE
Generally, the reduction of NO−

2 to NO is a central step in the
catabolic branch of the N-cycle, because it can be carried out by
all involved organisms (Figure 1). The reduction of NO−

2 to NO is
central for energy conservation in denitrification, anammox and
N-AOM. In contrast, during NO−

2 oxidation and nitrifier deni-
trification the reduction of NO−

2 to NO is involved in regulating
metabolic homeostasis or the removal of toxic NO−

2 (Beaumont
et al., 2002, 2004a; Starkenburg et al., 2008a).

The reduction of NO to N2O is, besides a potential direct
formation of N2O from NH2OH in AOB, the only known bio-
chemical reaction that produces N2O. NO reduction to N2O is
central for energy conservation only in denitrification (Zumft,
1997). The function of cNor in AOB is unclear. cNor is expressed
and metabolically active during aerobic growth (Beaumont et al.,
2004b). Knock-out mutants of cNor have lower growth rate and
yield in chemostats (Schmidt et al., 2004b), but not in batch cul-
ture (Beaumont et al., 2004b). In chemostats, cNor regulates the
free NO concentration to an optimal, non-toxic level and con-
tributes to recovery of AOB from anaerobic conditions (Schmidt
et al., 2004b). On the other hand, stripping NO from AOB cul-
tures leads to the inhibition of growth, arguing for NO being an
obligate intermediate of AOB (Zart et al., 2000).

NO DETOXIFICATION AND NO SYNTHESIS
Most bacteria encode for enzymes involved in NO detoxification.
This is true for bacteria inside and outside the catabolic N-cycle.
Flavohemoglobins (Hmp) mediate the O2-dependent detoxifica-
tion of NO to NO−

3 with NO dioxygenase activity (Gardner et al.,
1998). In contrast, the anaerobic detoxification of NO is medi-
ated by Flavodiiron NO reductase (flavorubredoxin [NorVW])
and Hmp by reducing NO to N2O (Kim et al., 1999; Gardner
et al., 2002; Gomes et al., 2002).

An alternative, less explored route to N2O formation is via the
synthesis of NO from arginine by NO synthases (NOS) and sub-
sequent reduction of NO to N2O by cNor, qNor, Hmp or NorVW.
Because NOS was discovered in the medical field it shares a sim-
ilar abbreviation with N2O reductases (Nos). Until now, NOS
has only been detected in a few bacterial –mostly gram-positive –
species (Sudhamsu and Crane, 2009) and synthesized NO seems
to remain intracellular (Shatalin et al., 2008; Schreiber et al.,
2011). However, NOS activity has also been reported in bloom-
ing, pelagic diatoms (Vardi et al., 2006). More research is needed
to elucidate if NOS-derived NO is a significant source for N2O
emitted from phytoplankton blooms in oceans and freshwater.

CHEMICAL REACTIONS IN NO AND N2O TURNOVER
Chemical production of NO and N2O from inorganic nitrogen
compounds at ambient temperatures are well known phenomena
in soil science (van Cleemput and Samater, 1996) and atmo-
spheric chemistry (Lammel and Cape, 1996). In soil science, the
chemical processes leading to NO and N2O are often summa-
rized as chemo-denitrification (Chalk and Smith, 1983). NH2OH
and NO−

2 (or its acid HNO2) are the main precursors for chem-
ical production of NO and N2O in wastewater or natural waters.
In the following, we discuss chemical reactions involving HNO,
NH2OH, and NO−

2 that can be responsible for the release of
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NO and N2O. We will also discuss the possible significance of
chemical N2O production during biological NH2OH oxidation.

SIGNIFICANCE OF HNO
In many studies on chemical N2O production, HNO is postu-
lated as the direct precursor of N2O (see below): HNO dimerizes
via hyponitrous acid (H2N2O2), to N2O and H2O (Bonner and
Hughes, 1988).

2 HNO → H2N2O2 → N2O + H2O (1)

It can be assumed that formation of HNO in natural and
wastewater follows the same mechanisms that are used to syn-
thesize HNO (DuMond and King, 2011) in the laboratory: (1)
disproportionation of NH2OH derivatives containing good leav-
ing groups attached to the nitrogen atom, and (2) decomposition
of nitroso compounds (X–N=O, where X represents a good leav-
ing group). Chemical HNO production are likely to occur during
wastewater treatment, since nitrification can produce consider-
able amounts of both, HNO2, which is a precursor for nitrosation
agents (e.g., dinitrogen trioxide N2O3, Bonner and Stedman,
1996), and NH2OH.

Recently, medical researchers have started to reevaluate the
relevance of HNO for physiologically and biologically systems
(Fehling and Friedrichs, 2011). The increased interest in HNO is
due to the fact that HNO lifetime in aqueous solutions is much
longer than previously assumed: the HNO dimerization rate con-
stant has been reassessed to be on the order of 8 × 105 M−1 · s−1

instead of the previously reported value of 2 × 109 M−1 · s−1,
and the pKa value of HNO has been redetermined to be 11.4
instead of the old value of 4.2 (Shafirovich and Lymar, 2002). It is
likely that the importance of HNO has also been underestimated
in the research on N2O emissions. Analytical determination of
HNO is very challenging (Miranda, 2005), because HNO is short-
lived. However, computer simulations could be a helpful tool to
assess the importance of HNO in N2O formation (Law et al.,
2012).

HNO2 DISPROPORTIONATION
A well understood process for NO production is the dispropor-
tionation of HNO2 (Udert et al., 2005). Since the pKa value of
the NO−

2 /HNO2 couple (pKa = 3.29; Schwartz and White, 1981)
is far below 7, this process releases relevant amounts of NO only
under acidic conditions. The disproportionation of HNO2 can be
described with Equation 2. The products—NO and NO2—are
in equilibrium with N2O3 (Equation 5) which is an impor-
tant agent for nitrosation (Bonner and Stedman, 1996). Under
aerobic conditions, NO will be further oxidized to NO2. Since
NO2 reacts with H2O to form HNO2 and NO−

3 , the reaction
scheme (Equations 2–4) is ultimately a chemical pathway for the
oxidation of NO−

2 to NO−
3 .

2 HNO2 ↔ NO + NO2 + H2O (2)

NO + 0.5 O2 → NO2 (3)

2 NO2 + H2O ↔ HNO2 + NO−
3 + H+ (4)

NO + NO2 ↔ N2O3 (5)

Since the kinetic and equilibrium constants for Equations 2–5 are
known, the production of NO can be calculated (Udert et al.,
2005). Depending on the aeration intensity, substantial losses of
nitrogen oxides can occur during chemical HNO2 oxidation. The
stripped nitrogen oxides are mainly HNO2, but also NO is lost.

IRON-MEDIATED REDUCTION OF NO−
2

Ferrous iron [Fe(II)] can reduce NO−
2 to NO and, in the second

reaction step, NO to N2O (Kampschreur et al., 2011).

NO2
− + Fe2+ + 2H+ → Fe3+ + NO + H2O

�G0 = 35.8 kJ reaction−1 (6)

NO + Fe2+ + H+ → Fe3+ + 0.5 N2O + 0.5 H2O

�G0 = −38.9 kJ reaction−1 (7)

The first reaction is thermodynamically not possible under
standard conditions, but in natural waters ferric iron [Fe(III)]
will precipitate and thereby draw the Gibbs free energy to neg-
ative values. Iron-mediated reduction of NO−

2 was described
as one of the sources of N2O in soils (van Cleemput, 1998).
Recently, Kampschreur et al. (2011) postulated that this process
can contribute significantly to N2O production in wastewater
treatment, if NO−

2 and Fe(II) are present concomitantly. One
example for such a system is nitrogen removal from anaer-
obic digester effluents via nitritation/denitrification or nitrita-
tion/anammox. Digester supernatants can contain high amounts
of Fe(II), because iron salts are used to precipitate phosphate and
Fe(II) will be released in the anaerobic digester due to the reduc-
ing conditions. Hu et al. (2001) reported an additional reaction
of NO−

2 with iron: under acidic conditions NO−
2 is reduced in the

presence of metallic iron to N2 and NH3. They propose a mecha-
nism, in which metallic iron is oxidized at low pH releasing Fe2+
ions and molecular hydrogen (H2). NO−

2 is then reduced by H2

to N2 and NH3.

OXIDATION OF NH2OH BY FE(III)
Iron not only mediates NO and N2O production from NO−

2 .
As Fe(III), it also oxidizes NH2OH to N2O. This process can
be used for the analytical determination of trace amounts of
NH2OH (Butler and Gordon, 1986a). The general equation for
the reaction is

4 Fe(III) + 2 NH2OH → 4 Fe(II) + N2O + H2O + 4 H+ (8)

In this reaction, N2O formation strongly depends on the pH
value. In experiments with distilled water and natural seawater,
Butler and Gordon (1986b) found that at pH 3, N2O recovery
was 80%, while at a pH value of 9.5, N2O production was neg-
ligibly low. The authors hypothesized that at high pH values,
HNO, reacts with O2 to produce NO−

2 and H2O. However, it is
also known that HNO can react with NH2OH to N2 (Bonner
et al., 1978, Equation 10). Chemical production of N2O via
NH2OH oxidation by Fe(III) is a likely process during nitrifica-
tion, because Fe(III) compounds are ubiquitous in natural waters
and wastewater treatment systems.
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REACTION OF NH2OH WITH HNO2 AND HNO
Döring and Gehlen (1961) investigated the reaction of NH2OH
and HNO2. They described the process as nitrosation of NH2OH.
The overall reaction can be written as

NH2OH + HNO2 → N2O + 2 H2O (9)

In their reaction scheme, Döring and Gehlen (1961) included
H2N2O2 (the dimer of HNO) as a direct precursor for N2O. At
neutral pH values, N2O3 is the relevant nitrosation agent. There
are several reaction pathways for N2O3 formation from HNO2.
Formation of N2O3 from HNO2 is given by Equations 2 and 5.
A kinetic constant for nitrosation of NH2OH is given by Döring
and Gehlen (1961) and together with the kinetic constants for
Equations 1 and 4 (Udert et al., 2005) the N2O production from
NH2OH and HNO2 can be estimated. Some of the NH2OH can
also react with the intermediate HNO to form N2 (Bonner et al.,
1978)

HNO + NH2OH → N2 + 2 H2O (10)

DISPROPORTIONATION OF NH2OH
The disproportionation of NH2OH can be described with the
following equation (Bonner et al., 1978):

4 NH2OH → 2 NH3 + N2O + H2O (11)

In pure water, this process is very slow with slightly higher
degradation rates at elevated pH values. At pH 3 and 25 ± 3◦C,
Bonner et al. (1978) observed no NH2OH disproportionation
over 2 months, while 12–18% of the NH2OH was degraded over 2
months at pH 13.5. Complexes of transition metals can accelerate
NH2OH disproportionation considerably (Alluisetti et al., 2004).
Jenni et al. (2012) also observed N2O formation within minutes,
although the experiment was conducted in a phosphate buffer
solution without transition metals. The disproportionation might
have been catalyzed by the steel surface of an electrode immersed
in the reactor, but this hypothesis still has to be proven.

AUTOXIDATION OF NH2OH
Oxidation of NH2OH with O2 (autoxidation, Equation 12) is a
slow process, although faster than NH2OH disproportionation.

2 NH2OH + O2 → N2O + 3 H2O (12)

Again, trace concentrations of metals can strongly accelerate
the process. Anderson (1964) reported that in an aerated solu-
tion with 1 mmol·L−1 NH2OH and 1 μmol·L−1 cupric sulfate
30% of the NH2OH was oxidized within 1 h, while only 2.5%
were degraded without cupric sulfate addition (pH between 7.8
and 7.9, 30◦C). Cu is by far the most potent catalyzer for the
autooxidation of NH2OH followed by Co(II), Fe(II), Mn(II), and
Zn(II) (Moews and Audrieth, 1959). Since most wastewaters and
natural waters contain some traces of metals, autoxidation of
hydroxylamine cannot a priori be excluded as a source of N2O.

HNO AS INTERMEDIATE OF ENZYMATIC NH2OH OXIDATION
Several authors postulated that HNO was a likely intermediate
of HAO due to the observed N2O production (Anderson, 1964;

Ritchie and Nicholas, 1972). Igarashi et al. (1997) could show
that the crystal structure of HAO in Nitrosomonas europaea is in
agreement with the following two step reaction

NH2OH → (HNO) + 2 H+ + 2 e− (13)

(HNO) + H2O → HNO2 + 2 H+ + 2 e− (14)

Based on this scheme, an imbalance of the two reaction steps
could lead to an accumulation of HNO and subsequently to
chemical N2O production (Equation 1). Law et al. (2012) devel-
oped four different metabolic computer models to elucidate the
mechanisms of aerobic N2O production in a nitritation reactor.
The best fit of the measurement data was achieved with a model
based on chemical HNO production. The other models, which
represented three different metabolic pathways for the enzymatic
reduction of nitrite and NO to N2O, could not reproduce the
measurement data satisfactorily. Indeed, we think that the positive
SP of N2O produced during NH2OH oxidation can be explained
by a kinetic isotope effect acting during the chemical cleavage of a
symmetric intermediate such as H2N2O2 formed by dimerization
of two HNO molecules (Equation 1; Toyoda et al., 2005). In addi-
tion, the studies of Law et al. (2012) and of Udert et al. (2005)
exemplify that computer models are powerful tools to elucidate
the mechanisms of N2O and NO production, especially when the
processes contain microbial as well as chemical reaction steps.

RELEVANT ENVIRONMENTS FOR CHEMICAL REACTIONS
In the last years, nitrogen treatment of high-strength wastewa-
ters such as digester supernatant, manure and urine have received
considerable attention. Based on our literature review, these sys-
tems are particularly prone to chemical production of NO and
N2O because of high NH3 oxidation rates and high concentra-
tions of the intermediate NH2OH. Furthermore, some treatment
schemes include NO−

2 accumulation as a process step, for example
SHARON®. Ubiquitous iron compounds, e.g., from phosphate
precipitation or as sensors and reactor walls, are another factor
that can support the production of NO and N2O. At the cur-
rent stage of knowledge, it is hard to estimate the contribution
of chemical processes to the overall NO and N2O production.
Many chemical processes have been described, but with the excep-
tion of HNO2 disproportionation and the reaction of HNO2 with
NH2OH, the kinetic data are insufficient for a reliable prediction
of the production rates. Chemical production of NO and N2O
can also occur in natural environments, where high ammonia
inputs meet low pH values such as strongly fertilized soils (van
Cleemput and Samater, 1996) or poorly buffered lakes (Schuurkes
and Mosello, 1988). Furthermore, chemical oxidation of NO and
N2O is an important process in the atmosphere (Lammel and
Cape, 1996).

NO AND N2O FORMATION IN NATURAL ENVIRONMENTS
NITRIC OXIDE
NO production and consumption has been studied in soils. The
studies used inhibition of nitrification with low concentrations
of acetylene (∼10 Pa) to distinguish between NO turnover by
nitrification and denitrification, assuming that acetylene does not
inhibit N2O reductase at these concentrations. O2 availability, as
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regulated by soil moisture content, is the main factor controlling
the mechanisms of NO release (Bollmann and Conrad, 1998).
While denitrification is the only process that releases NO under
anoxic conditions, nitrification dominates NO release under oxic
conditions with highest rates at low O2 concentrations. In addi-
tion, soil pH, NH+

4 , NO−
3 , NO−

2 , and respiration are important
soil variables that affect NO turnover (Gödde and Conrad, 2000).

Measurements of NO in seawater are rare, because concentra-
tions are low and turnover is fast due to its reactivity. However,
Zafiriou et al. (1980) found that surface water of the central equa-
torial Pacific is a NO source to the atmosphere. Here, NO is
formed by photolysis of NO−

2 during daytime and reaches con-
centrations in the picomolar range (Zafiriou and True, 1979).
Moreover, NO is formed by microbial processes in the O2 min-
imum zone of the eastern tropical North Pacific (Ward and
Zafiriou, 1988). Here, maximum NO turnover and concentra-
tion coincide with low O2 concentrations (10–100 μmol L−1) and
some nitrification activity overlying the O2 minimum zone. In
contrast, NO turnover and concentrations are low in the core of
the O2 minimum zone. The exact source of NO remained uniden-
tified, but it was hypothesized that nitrifiers produce NO under
reduced O2 concentrations and that denitrifiers establish rather
low NO concentrations in the core of the O2 minimum zone.
NO formation has been measured in marine sediments (Schreiber
et al., 2008) and a more detailed study of NO turnover has been
performed in freshwater sediments (Schreiber et al., unpublished
results). Both studies will be discussed in the section focusing on
microelectrodes.

NITROUS OXIDE
Generally, N2O formation has been investigated to greater detail
and in a wider variety of habitats as compared to NO, because
it is an environmental impact is considered to be stronger than
that of NO and its turnover is easier to measure due to its chem-
ical stability. At present, anthropogenic N2O emissions account
for ∼40% of the global N2O emissions (Montzka et al., 2011).
Current estimates state that ∼50% of the anthropogenic N2O is
emitted from soils (Stein and Yung, 2003), 10% from estuaries
and freshwater habitats (Beaulieu et al., 2011) and 3.2% are emit-
ted from wastewater treatment plants (WWTP) (Kampschreur
et al., 2009). We caution that future adjustments to these estimates
are likely, and that these averages do not capture the high vari-
ability in emissions from selected environments. Recent work has
suggested that emissions from WWTPs in particular are highly
variable and may in some cases be up to an order of magnitude
greater than previous estimates (Ahn et al., 2010; Lotito et al.,
2012). Soils and aquatic habitats exposed to intense agricultural
activities are the largest sources due to high N-input through
fertilization. Since mixed microbial communities in soils are the
largest anthropogenic source for N2O, its formation has been
intensively studied and was recently reviewed (Baggs, 2011). N2O
formation in WWTP has been reviewed by Kampschreur et al.
(2009).

The ocean is an important source of N2O accounting for
∼30% of the natural N2O emission (Stein and Yung, 2003). Large
areas of the ocean are thought to be in equilibrium with the atmo-
sphere, but regions of O2 depletion are significant sources of N2O

(Elkins et al., 1978). In O2 minimum zones, N2O is generally pro-
duced to concentrations in the nanomolar range as O2 reaches
low concentrations (Yoshida et al., 1989; Naqvi et al., 2000; Farias
et al., 2007; Nicholls et al., 2007). High N2O accumulation was
observed in surface water of the Arabian Sea and explained with
frequent, turbulence-induced aeration of suboxic surface water
(Naqvi et al., 2000). Likewise, O2 fluctuations, induced by the
El Nino-Southern oscillation, have been proposed to affect N2O
emission from the O2 minimum zone of the eastern South Pacific
(Farias et al., 2007). Furthermore, marine and freshwater sedi-
ments emit N2O (Meyer et al., 2008; Nielsen et al., 2009). NO and
N2O formation in sediments will be discussed in more detail in
the section focusing on microelectrodes.

The occurrence of animals such as earthworms (Horn et al.,
2003) in soils and macrofauna in fresh -or seawater habitats (Stief
et al., 2009; Heisterkamp et al., 2010) enhances the emission of
N2O in response to anthropogenic N-input. These animals ingest
denitrifying bacteria and stimulate their activity probably with
delayed expression of N2O reduction leading to enhanced N2O
emissions.

EXPERIMENTAL APPROACHES
In most investigated habitats NO and N2O formation has been
attributed to the NH2OH pathway by AOB, nitrifier denitrifica-
tion and heterotrophic denitrification. There are three approaches
to determine the contribution of the different pathways:

(1) Indirect inference of pathways by excluding the activity of
all other possible pathways, which can be achieved by using
inhibitors or by removing the substrate (Kampschreur et al.,
2008b; Schreiber et al., 2009; Stief et al., 2009; Wunderlin
et al., 2012).

(2) Measuring the isotopic signature of N2O (15N natural abun-
dance or SP) and comparing the data to values of pure
cultures (Yoshida, 1988; Yoshida et al., 1989; Sutka et al.,
2006; Well et al., 2006; Charpentier et al., 2007; Wunderlin
et al., unpublished results).

(3) Application of 15N isotopically-enriched substrates and mass
spectrometric measurements of N2O (Bateman and Baggs,
2005; Baggs, 2008).

In complex systems all of these approaches suffer from the
coupled nature of nitrification and denitrification. This especially
applies to studies where bulk measurements have been done even
though micro-environmental heterogeneities are expected; e.g., in
aggregates in wastewater treatment systems or in soil particles.
In addition, it has become clear that NO and N2O are dynami-
cally produced in response to changing environmental conditions
(Kampschreur et al., 2008b; Schreiber et al., 2009). Transient NO
and N2O concentrations can be orders of magnitude higher than
under steady state. Conventional mass spectrometric measure-
ments do not allow measurements with high temporal and spatial
resolution, making approach 2 and 3 inaccessible to microscale
and dynamic analysis of NO and N2O.

NOVEL ANALYTICAL METHODS
In the following sections, we will discuss different analytical
methods (microelectrodes, mass spectrometry, and QCLAS) that
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can be used to allocate NO and N2O production to certain
pathways by using one of the three approaches outlined above.
Combining these methods and thus the different approaches will
lead to a more firm pathway allocation. Microelectrodes can
measure with high temporal and spatial resolution and in combi-
nation with other microelectrodes (NH+

4 , NO−
3 , NO−

2 , and O2)
approach 1 can be used to allocate source pathways. Further,
QCLAS can measure the SP in N2O dynamically and can be
used to allocate N2O production pathways with approach 2. In
addition, we will discuss the potential for other techniques that
measure the isotopic composition of N2O and molecular methods
to aid the understanding of NO and N2O formation in complex
environments.

MICROELECTRODES TO CAPTURE MICRO-ENVIRONMENTAL
DISTRIBUTION AND TEMPORAL DYNAMICS OF NO
AND N2O
NO AND N2O MICROELECTRODES
Microelectrodes belong to the tool box of microbial ecologists
since Revsbech et al. introduced an O2 microelectrode in the
early 1980s (Revsbech et al., 1980). The first N2O microelec-
trode for microbial ecology (Revsbech et al., 1988) was a com-
bined O2/N2O sensor where an O2-reducing gold cathode was
placed in front of an N2O-reducing silver cathode (both polar-
ized at −800 mV) to avoid the interference of O2 with N2O
detection. These sensors where difficult to manufacture and had
a short life-time. Thus, Andersen et al. (2001) introduced an
improved O2-insensitive N2O microelectrode. Insensitivity to O2

is achieved by placing a reservoir filled with alkaline ascorbate

solution for the chemical reduction of O2 in front of the N2O-
reducing cathode, which is separated from the ascorbate reservoir
with a gas permeable silicone membrane. These N2O microelec-
trodes have a sensitivity of ∼0.5 μmol L−1 and a spatial resolution
of ∼60 μm.

Electrochemical NO sensors for the detection of NO in bio-
logical systems are available since the early 1990s (Shibuki, 1990).
Amperometric sensing of NO is commonly achieved by the oxi-
dation of NO at a working electrode polarized with 0.7–0.9 V vs. a
reference electrode (Ag/AgCl or Calomel) leading to the following
anodic reaction:

NO + 2 H2O − 3 e− → NO−
3 + 4 H+ (15)

The resulting current is proportional to the NO concentra-
tion and can be detected as the analytical signal. Electrodes are
reported as single anode-type electrodes or as combined sensors
(Figure 2). In combined sensors, the reference electrode and
the sensing electrode are placed together in an internal elec-
trolyte compartment that is separated from the sample by a gas
permeable, non-conductive membrane (Clark-type, Figure 2B),
whereas single anode-type electrodes use the aqueous sample as
an electrolyte and complete the measuring circuit by submerg-
ing an external reference electrode into it (Figure 2A). Charged
interferences like NO−

2 and ascorbate are typically repelled by
constructing combined sensors with hydrophobic membranes
like chloroprene (Shibuki, 1990), PTFE (Teflon™) (Lee et al.,
2004), sol-gels (Shin et al., 2005), polystyrene (Kitamura et al.,

A B

FIGURE 2 | NO microelectrodes. (A) Depicts a typical single-anode type NO
sensor with a long sensing anode, which is coated with Nafion to confer
selectivity against charged interferences. The anode and reference cathode
are directly emerged into the sample medium. Some sensor designs
integrate the cathode into the electrode shaft. (B) Depicts the NO

microelectrode for measurements in biofilms and sediments as reported by
Schreiber et al. (2008). This sensor is also an example for a combined NO
sensor (Clark-type) where sensing anode and reference cathode are
separated from the sample medium by a gas permeable membrane. Drawing
is not to scale.
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2000) or silicone (Schreiber et al., 2008), or by depositing conduc-
tive Nafion™ on single anode-type electrodes (Malinski and Taha,
1992; Friedemann et al., 1996; Bedioui and Villeneuve, 2003).

Most of the previously described NO electrodes have been
optimized to detect NO at low nanomolar or even picomolar
concentration. This has been achieved by increasing the sensing
surface with a subsequent loss of spatial resolution. Single-anode-
type sensors commonly rely on carbon-fibers that have a length
of up to several millimeters and combined sensors have open-
ings in the high micrometer to millimeter range. Microelectrodes
with long, exposed sensing surfaces are not applicable for profil-
ing in stratified microbial systems because the concentration of
the analyte might change along the sensing surface. The obtained
signal is then an integrated measure of the concentrations along
the electrode. Similarly, combined electrodes with wide openings
are also problematic for profiling applications, since the step size
of different measurement points in a depth profile should not
be smaller than two times the outer diameter of the electrode
(Gieseke and de Beer, 2004). In addition, single-anode sensors
are not robust enough to be inserted in a sturdy sediment or
soil sample since the particles will damage the Nafion™ mem-
brane that confers selectivity against NO−

2 . Consequently, appli-
cations of NO electrodes—commercially supplied, e.g., by World
Precision Instruments (Sarasota, Florida, USA)—in microbiology
were restricted to detection of NO in pure culture suspensions
(e.g., Corker and Poole, 2003).

Recently, an NO microelectrode was introduced that is appli-
cable to study complex, stratified microbial communities in
sediments and biofilms (Schreiber et al., 2008). The NO micro-
electrode is a combined (Clark-type) sensor with a carbon-fiber
anode (+750 mV) placed behind a gas permeable silicon mem-
brane (Figure 2B). The sensor has a detection limit of 0.030 μmol
L−1 and a spatial resolution of ∼60 μm. Thus, the sensor is
optimized to provide sufficient sensitivity for NO concentra-
tions produced in complex, N-cycling microbial communities
and sufficient spatial resolution to measure in microbial biofilms,
sediments and soils. The robust Clark-type design allows mea-
surements in sturdy soil and sediment samples. It has been made
commercially available through Unisense A/S (Arhus, Denmark),
who also supplies N2O microelectrodes.

INTERFERENCES
H2S interferes with NO measurement as it passes the silicone
membrane and is readily oxidized at the sensing anode. A sensitive
H2S microsensor (Jeroschewski et al., 1996) should thus be used
to rule out any interference of H2S in the measurements or –if
possible- experiments must be designed to avoid active sulfate
reduction in the sample by excluding sulfate from the medium.
Jenni et al. (2012) investigated the interferences of CO2, O2,
and various nitrogen compounds commonly found in wastew-
ater treatment on NO and N2O sensors. They found that NO
interfered with the N2O measurement, while the NO sensors
were sensitive on NH3, NH2OH, HNO2, and N2H4. If high
concentrations of these compounds are expected, it is recom-
mended to check the concentrations of interfering compounds.
No significant interferences were found by CO2 and O2. The
cross-sensitivities can be corrected with calibration curves that

are determined before the experiments. Jenni et al. (2012) also
reported a significant temperature dependency. The NO signal
increased by about 3.5% per 1◦C and the N2O signal by 3.9%
per 1◦C. The temperature dependencies can be corrected with
exponential functions.

APPLICATION OF NO MICROELECTRODES
The novel NO microelectrode has been applied to study NO for-
mation in permeable marine (Schreiber et al., 2008) and river
(Schreiber et al., unpublished results) sediments. The results
showed that in steady-state NO is produced in oxic/micro-oxic
sediment strata reaching concentrations of 0.13 μmol L−1 in river
and 0.5 μmol L−1 in marine sediments. In both sediments, NO
produced in the oxic zone was consumed in the anoxic zone.
It was hypothesized that NO was produced by AOB in the oxic
zone. Labeling experiments with a 15N-labeled NO donor in the
river sediment suggested that denitrification actively consumes
exogenously produced NO.

Furthermore, the NO microelectrodes have been applied
together with N2O microelectrodes in two N-cycling microbial
biofilms; namely a complex NH+

4 -fed biofilm with nitrifying and
denitrifying activity (Schreiber et al., 2009) and human dental
plaque that was naturally exposed to high NO−

3 and NO−
2 in

saliva (Schreiber et al., 2010). The study in dental plaque showed
that plaque denitrified under aerobic conditions, that NO and
N2O was produced by denitrification and that NO and N2O con-
centrations increased with decreasing pH. Aerobic denitrification
has also been reported from permeable marine sediments (Gao
et al., 2010) and from isolated (Patureau et al., 2000) or extracted
soil bacteria (Morley et al., 2008). Until now, it is not known in
which environments aerobic denitrification plays an important
role, and if it is an environmentally significant NO and N2O emis-
sion pathway. NO, N2O, NO−

2 , NO−
3 , and O2 microelectrodes

will be crucial to determine the importance of aerobic denitri-
fication for NO and N2O release for complex ecosystems, because
these sensors allow the simultaneous detection of NO, N2O, NO−

2 ,
NO−

3 , and O2 concentrations at high spatial resolution and their
relation to denitrification activity.

Studying a complex N-cycling biofilm revealed the dynamics
of NO and N2O formation upon perturbations in a system where
nitrification and denitrification co-exist (Schreiber et al., 2009).
The concomitant use of an O2 microelectrode and a set of con-
trol experiments enabled assignment of NO and N2O formation
under oxic conditions to AOB and under anoxic conditions to
denitrifiers. It also showed that AOB produce NO and N2O under
fully oxic conditions if NO−

2 concentrations are high. This is in
agreement with other observations (Beaumont et al., 2004a,b;
Shaw et al., 2006) and contradicts the assumption that that AOB
require low O2 to release NO and N2O (Lipschultz et al., 1981;
Poth and Focht, 1985; Kester et al., 1997; Beaumont et al., 2004a;
Kampschreur et al., 2008b). The high temporal resolution of
the microelectrodes allow to detect transient bursts (seconds to
minutes) of NO and N2O. The bursts occurred by AOB upon
O2 removal and upon NO−

2 addition by both AOB and denitri-
fiers. The bursts only occurred if the perturbations were exerted
upon metabolically active AOB and denitrifiers. In both scenarios
NO and N2O are formed in parallel confirming that NO is the
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preceding intermediate of N2O in the N2O production pathways
in this biofilm. An important contribution by Yu et al. (2010)
showed that an AOB pure culture accumulated only NO, not
N2O, upon transition from oxic to anoxic conditions. In mixed
microbial communities were AOB and heterotrophic denitrifiers
co-exist this could lead to NO release by AOB and immedi-
ate reduction to N2O by heterotrophic denitrifiers or anaerobic
detoxification via NorVW and Hmp. This mixed source of N2O
during transient oxic to anoxic conditions has to be taken into
account when determining the pathways with isotopic techniques.
It has been argued that N2O transiently accumulates during tran-
sition from anoxic to oxic conditions because O2 inhibits Nos
while denitrification still proceeds, but direct evidence for this
hypothesis is weak. Using both NO and N2O microelectrodes
would allow to test this because N2O accumulation should not be
accompanied by NO accumulation if the denitrification sequence
is inhibited at the level of Nos.

APPLICATION OF N2O MICROELECTRODES
In many habitats steady-state N2O concentrations are below or
at the detection limit of the N2O microelectrode. Thus, the N2O
microelectrode has commonly been used to estimate the den-
itrification potentials in stratified microbial communities such
as sediments, biofilms, and aggregates in combination with the
acetylene inhibition technique (Revsbech et al., 1988). Acetylene
(∼10 kPa) inhibits N2O reductase and leads to the accumulation
of high amounts of N2O.

More recently, N2O microelectrodes have been used to study
N2O production without acetylene inhibition in natural sam-
ples. These studies revealed that N2O concentrations in the
micromolar range are expected when the system is exposed to
a perturbation (Table 1). Transient accumulation of high N2O
concentrations were achieved by any perturbation that affects
the ambient O2 concentration: flooding of soils with water
(Liengaard et al., 2011; Markfoged et al., 2011), creating an
organic hotspot around a soil aggregate (Hojberg et al., 1994),
thawing of permafrost soils (Elberling et al., 2010), and decreas-
ing the O2 supply to wastewater-grown biofilms (Kampschreur
et al., 2008a,b; Schreiber et al., 2009; Pellicer-Nàcher et al.,
2010). In addition, increased input of NO−

3 , NO−
2 or NH+

4
to sediments, soils and biofilms (Hojberg et al., 1994; Meyer
et al., 2008; Nielsen et al., 2009; Schreiber et al., 2009), organic
inputs, salinity fluctuations in sediments (Nielsen et al., 2009)
and changes of pH due to microbial activity in a denitrify-
ing, dental biofilm (Schreiber et al., 2010) lead to increased
micro-environmental N2O levels. Importantly, in many of these
studies N2O accumulated in a transient manner making time-
course measurements necessary to capture the N2O peak and
the accumulation time span. The high spatial resolution of the
N2O microelectrode allowed allocating processes that mitigate
the emission of N2O to the atmosphere in soils, sediments and
wastewater treatment biofilms. N2O that is produced by deni-
trification in deeper layers and is consumed during its diffusion
toward the sediment-water interface in nutrient-enriched man-
grove sediments (Meyer et al., 2008), toward the soil-atmosphere
interface in a thawed permafrost soil (Elberling et al., 2010)
or in a soil aggregate exposed to an organic hotspot (Hojberg

et al., 1994). Likewise, N2O release from a membrane-aerated
biofilm reactor was minimized by N2O-reducing microbes
placed above AOB that produced N2O due to perturbations
induced by an intermittent aeration regime (Pellicer-Nàcher et al.,
2010).

OUTLOOK
From the investigations of transient NO and N2O accumulation it
emerges that two scenarios with distinct dynamics are important.
First, N2O accumulates over hours to days, because it mirrors
the onset of denitrification activity. Depending on the system it
decreases because N2O reduction pathways are turned on with
a delay or denitrification activity decreases due to substrate lim-
itation. Ahn et al. (2011) even observed that peak NO and N2O
emissions after a shift to O2-limitation in a nitrifying reactor were
lasting for several month before adaptation on the metabolic or
community level decreased the emissions. Second, perturbation
of active AOB or denitrifiers leads to burst-like (within seconds to
minutes) release of NO and N2O. The exact biochemical mech-
anisms for this require further research directly on the involved
enzymes. Moreover, future research must show the contributions
of the two types of transitions to the N2O budget and could use
this as a framework to mitigate peak N2O releases to the atmo-
sphere. Mitigation strategies could aid at avoiding perturbations
or confining the N2O-releasing processes into a diffusion-limited
environment that is overlaid with N2O-consuming microbial
communities.

N2O SOURCE PARTITIONING BASED ON THE NITROGEN
AND OXYGEN ISOTOPIC SIGNATURE
In recent years, the isotopic signature of N2O has been used as a
powerful tool to assign N2O production pathways to AOB and
heterotrophic denitrifiers in different ecosystems such as soils,
rivers, sea, wastewater treatment (Yoshida et al., 1989; Yamagishi
et al., 2007; Baggs, 2008; Koba et al., 2009; Baulch et al., 2011;
Park et al., 2011; Toyoda et al., 2011). N2O is a linear molecule
(Nβ-Nα-O) with one nitrogen atom at the center position (Nα)
bound to oxygen, and one at the end position (Nβ) bound
to Nα. The three most abundant N2O isotopic species in the
atmosphere are 14N15N16O (0.37%), 15N14N16O (0.37%) and
14N14N16O (>99%). Isotope abundances are usually reported in
the δ-notation (in per-mil; �), δ15N = [(Rsample/Rreference)−1] ×
1000, where R is the ratio of 15N/14N of a sample (Rsample) with
respect to atmospheric N2 as the reference (Rreference) (Mariotti
et al., 1981).

The intramolecular distribution of the nitrogen isotopes
(14N15NO vs. 15N14NO) is termed SP and is expressed as the
relative difference in δ15N between α and β position (SP = δ15Nα–
δ15Nβ) (Toyoda and Yoshida, 1999). In analogy to the δ-notation,
the isotopomer analysis denotes the relative difference of the
15N/14N isotope ratio for a given position (δ15Nα, δ15Nβ) with
respect to the standard {e.g., δ15Nα = [(15Rα/15Rα

reference)-1] ×
1000, whereas 15Rα = (14N15N16O)/(14N14N16O) and 15Rα

reference
is the isotope ratio of the standard material (N2O) (see below)}
(Toyoda and Yoshida, 1999). The SP has the advantage of being
independent of the isotopic signature of the respective substrates
(e.g., NH+

4 or NO−
3 ) but of being specific for pathways (enzymes)
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involved in N2O formation (Toyoda et al., 2005; Sutka et al.,
2006).

Microbial (enzymatic) processes usually lead to an isotopic
fractionation due to different transformation rates of 14N and
15N, resulting in isotopically lighter end-products than molecules
in prior steps (Stein and Yung, 2003). Thus, the average 15N/14N
ratio of N2O, termed as δ15Nbulk

N2O, can be used to distinguish
different production pathways in complex samples if the iso-
topic signature of the pure bacterial culture is known. However,
the meaning of δ15Nbulk

N2O can be limited since it is strongly-
dependent on the isotopic signature of the substrate, which usu-
ally is unknown, as well as on the physiological activity (Mariotti
et al., 1981). Additionally, the isotopic composition of an interme-
diate (e.g., N2O during heterotrophic denitrification) is affected
by production (NO−

3 reduction) as well as consumption (N2O
reduction) processes.

In addition to nitrogen isotopes, oxygen isotope ratios are
also increasingly used in order to better distinguish between the
N2O formation pathways (Yoshinari and Wahlen, 1985; Kool
et al., 2007; Baggs, 2008; Frame and Casciotti, 2010). In this case
δ18O denotes the relative difference in the 18O/16O ratio of N2O
(Rsample) with respect to the reference (Rreference), in per-mil (�),
usually being the Vienna Standard Mean Ocean Water (VSMOW)
{δ18O = [(Rsample/Rreference)−1] × 1000} (Wahlen and Yoshinari,
1985).

ANALYSIS OF THE ISOTOPIC SIGNATURE OF N2O
There are basically two different analytical techniques available to
analyze N2O nitrogen isotopic signatures at natural abundance
levels (Table 2): (1) the isotope-ratio mass spectrometry (IRMS)
(Brenninkmeijer and Röckmann, 1999; Toyoda and Yoshida,
1999), and (2) the recently developed QCLAS (Waechter et al.,
2008).

IRMS
IRMS-based method is widely applied with an excellent precision
and accuracy (Mohn et al., 2010). Nevertheless, the calibration
procedure of the intramolecular nitrogen isotope distribution in
N2O is still under debate. Originally, two alternative approaches
have been proposed, one by Toyoda and Yoshida (1999) and
one by Brenninkmeijer and Röckmann (1999), which resulted

in a difference in SP of about 30� for tropospheric N2O. The
analysis of the SP by IRMS techniques relies on the N2O+ and
NO+ fragment ions at the mass-to-charge ratio (m/z) 44, 45, 46
(for N2O) and m/z 30, 31 (for NO). However, both calibration
approaches do not take into account the isotope effects associ-
ated with the formation of NO+ in the ion source of the mass
spectrometer. Recently, Westley et al. (2007) investigated these
discrepancies in more detail and found that these isotope effects
have much smaller impact on the calibration procedure proposed
by Toyoda and Yoshida (1999) (see below), and supported there-
fore this procedure as the most accurate basis for a community
standard.

Furthermore, IRMS is a lab-based technique. Thus, the
time resolution of N2O isotopic analysis during field measure-
ment campaigns is therefore limited (Waechter et al., 2008).
Nevertheless, in addition to nitrogen isotopes, the oxygen isotopic
signature can also be analyzed routinely by IRMS.

QCLAS
QCLAS is a novel approach for site-specific analysis of nitrogen
isotopes, with the advantage of a high sensitivity, time resolution,
and portability, the latter of which enables field measurement
campaigns (Waechter et al., 2008). This was demonstrated by
Mohn et al. (2012), who recently presented first data of a high
precision real-time analysis of site-specific isotopic signatures of
atmospheric N2O above a grassland plot. The measurement cam-
paign was run over 3 weeks with almost 550 analyzed gas samples.
It was demonstrated that a continuous measurement of the N2O
isotopic signature allowed improved detection of the dynam-
ics of N2O production (before and after fertilizer application to
the grassland plot), and thus opens a completely new field of
applications. In another study, isotopic signature of N2O, pro-
duced during batch-scale experiments with activated sludge, were
analyzed in real time, which permitted to trace short-term fluctu-
ations in SP and δ15Nbulk

N2O, allowing to identify N2O production
pathways in biological wastewater treatment (Wunderlin et al.,
unpublished results).

The QCLAS is based on direct absorption laser spectroscopy
in the mid-infrared range for simultaneous measurement of
the most abundant N2O isotopic species, such as 14N15N16O,
15N14N16O, and 14N14N16O (Waechter et al., 2008; Mohn

Table 2 | Advantages and disadvantages of isotope-ratio mass spectrometry (IRMS), quantum cascade laser absorption spectroscopy (QCLAS)

and membrane-inlet mass spectrometry (MIMS) adapted from Baggs (2008).

Advantages Disadvantages

IRMS • Well known, widely applied method • Lab-based method

• Measurement of δ15Nα, δ15Nβ and δ18O • Low temporal resolution (flask-sampling)

• Requirement of standard gases (not commercially available)

QCLAS • Portable, enabling field measurement campaigns • Requirement of standard gases (not commercially available)

• Continuous measurement (high temporal resolution) of δ15Nα and δ15Nβ

MIMS • High sample throughput • Application limited to isotope labeling/tracer experiments

• Low sample volume required

• Long-term measurement possible

• Online measurements with high temporal resolution possible
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et al., 2010). In order to enable high precision analysis (e.g.,
a precision of <0.1� for δ15Nα and δ15Nβ) (Waechter et al.,
2008) a combination with a pre-concentration unit is essen-
tial at ambient or sub-ambient mixing ratios (Mohn et al.,
2010, 2012). For example, with the liquid nitrogen-free, fully-
automated pre-concentration unit built by Mohn et al. (2010),
N2O can be concentrated by a factor of 200 (e.g., from ambi-
ent concentrations to around 60 ppm) from 10 L gas samples
within 20 min.

CALIBRATION
For both techniques, IRMS as well as QCLAS, an adequate
calibration procedure needs to be applied, since instrumen-
tal nonlinearity and drifts impact the accuracy of the isotope
ratio measurement (e.g., δ15Nbulk

N2O values depend on the N2O
gas concentration) (Waechter et al., 2008). However, interna-
tional standards are not commercially available so far. Therefore,
they need to be prepared and analyzed from other laborato-
ries (intercalibration) for δ15Nbulk

N2O, δ15Nα, and δ15Nβ, to ensure
that measurements are performed on a common scale and
that results are comparable between laboratories (Westley et al.,
2007). So far, the calibration procedure proposed by Toyoda and
Yoshida (1999), as mentioned above, is accepted as the provi-
sional basis for a community standard: N2O is synthesized via
thermal decomposition of isotopically characterized NH4NO3,
since it is known that the nitrogen atom at the center (α) posi-
tion of N2O originates from NO−

3 , while the end (β) nitrogen
comes from NH+

4 . Using this calibration procedure a SP of
tropospheric N2O of 18.7 ± 2.2� is measured (Westley et al.,
2007).

MEMBRANE-INLET MASS SPECTROMETRY (MIMS)
Membrane-inlet mass spectrometry (MIMS) was proposed as
another promising tool to study the dynamics of N2O production
in 15N labeling experiments. MIMS has a high sample throughput
(within minutes), allows direct analysis of liquid or gas samples
and requires only low sample amounts (Bauer, 1995; Baggs, 2008)
(Table 2). Recently, it was coupled with an automated sampling
and calibration unit (ASCU), and was tested in a long-term 15N-
NO−

3 tracer experiment over 7 days. It was confirmed that 15N
measurements of N2 and N2O, detected as N2 at m/z 28, 29, and
30 (N2O was reduced to N2 in an elemental copper furnace prior
to analysis), are in good agreement with IRMS-based analysis
(Eschenbach and Well, 2011).

The membrane-inlet part can also be combined with a
quadrupole mass spectrometer for simultaneous online measure-
ment of different m/z ratios (e.g., 15,15N2O at m/z = 46, 14,15N2O
at m/z = 45, 15,15N2 at m/z = 30, 14,15N2 at m/z = 29) with a
time resolution of 1–2 min (Ettwig et al., 2010; Gao et al., 2010).
Nevertheless, the interpretation of spectra corresponding to a
certain gas mixture might be difficult since one peak can corre-
spond to different atomic compositions (e.g., 14,14N+

2 and CO+ at
m/z = 28). This problem is reduced by applying 15N labeled sub-
strates, where the only important remaining correction needed is
for m/z = 30, which consist of the signal from the 15,15N+

2 frag-
ment of 15,15N2O, the 14NO+ fragment of 14,14N2O and 15,15N2)
(Thomsen et al., 1994).

ISOTOPIC SIGNATURE OF N2O: SITE PREFERENCE, δ15N
AND δ18O
SITE PREFERENCE
The SP is a promising tool for N2O source partitioning since it
is specific to pathways involved and independent of the respec-
tive substrates (Sutka et al., 2006) (Table 3). For N2O production
via NH2OH oxidation by typical AOB pure cultures values in
the range of 30.8 ± 5.9� to 35.6 ± 1.4� were measured (Sutka
et al., 2003, 2004, 2006) which is in agreement with recently
reported SP values of marine AOA (30.8 ± 4.4�) (Santoro et al.,
2011). In contrast, Frame and Casciotti (2010) estimated 36.3 ±
2.4� for a marine AOB. For nitrifier denitrification by AOB,
the following SP values were reported: 0.1 ± 1.7� (Sutka et al.,
2006), −0.8 ± 5.8� (Sutka et al., 2003, 2004) and −10.7 ±
2.9� (Frame and Casciotti, 2010). For N2O production via het-
erotrophic denitrification SP values in the range of −5.1� to 0�
were reported (Toyoda et al., 2005; Sutka et al., 2006). Nitric oxide
reductases (Nor) likely determine the SP of N2O during nitri-
fier denitrification as well as heterotrophic denitrification. The
SP for both pathways is in the same range indicating that the
involved Nor in AOB (cNor) and heterotrophic denitrifiers (cNor
or qNor) (Stein and Yung, 2003; Stein, 2011) share a similar enzy-
matic mechanism. In case free NO is formed during NH2OH
oxidation, any NO molecule that is funneled into nitrifier or het-
erotrophic denitrification (either directly or via initial oxidation
to NO−

2 ) would result in N2O with an SP of ∼0� masking its
initial NH2OH source.

The most probable explanation for a positive SP during
NH2OH oxidation is a preferable 14N-16O bond cleavage of a
symmetric intermediate such as hyponitrite (−16O14N15N16O−),
leading to an enrichment of 14N-15N-16O (Schmidt et al., 2004a;
Toyoda et al., 2005). In the current model of N2O formation
from NH2OH oxidation, NH2OH is reduced to NO, which is
further reduced to N2O by an unidentified Nor. However, the
positive SP of N2O formed from NH2OH oxidation can only
be explained, (1) if the involved Nor has a different mecha-
nism than Nor’s mediating nitrifier and heterotrophic denitri-
fication or (2) if N2O is formed by a different mechanism,
which does not involve free NO. We suggest mechanisms involv-
ing HNO: either by formation of free H2N2O2 with further
chemical decomposition to N2O (discussed in section “HNO as
intermediate of enzymatic NH2OH oxidation”) or a site specific
enzymatic cleavage of −ONNO− as discussed above (Schmidt
et al., 2004a; Toyoda et al., 2005). Further insights in the enzy-
matic mechanism of HAO and potentially HAO-associated Nor
with careful chemical control experiments are needed to elucidate
the biochemical mechanism of N2O formation during NH2OH
oxidation.

Furthermore, a positive SP is, in addition to NH2OH oxida-
tion, also an indicator for increasing importance of N2O reduc-
tase activity relative to N2O production (substantially greater
activity than 10% compared to production) (Yamagishi et al.,
2007; Jinuntuya-Nortman et al., 2008; Koba et al., 2009). As
a consequence, N2O reduction to N2 might lead to an over-
estimation of N2O production by NH2OH oxidation, or vice
versa. Nevertheless, further investigations are necessary in order
to determine the individual signatures under conditions more
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Table 3 | Advantages and disadvantages of SP, δ15Nbulk, and δ18O, on a natural abundance or labeled level [adapted from Baggs (2008)].

Advantages Disadvantages

Site preference (SP) • Independent of isotopic signature of substrates • Unknown pathways might affect SP

• Noninvasive method • SP from pure culture bacteria have to be known

• Specific for pathways involved

δ15Nbulk • Characteristic fractionation of different pathways
(depending on the rate limiting step)

• Depending on the isotopic signature of the substrate, as well as
the physiological activity

• Noninvasive method • Multiple reaction steps (branching effects) cause uncertainty

δ18O • Noninvasive method • Oxygen exchange between N species and O2 or H2O difficult to
quantify

• Additional information to nitrogen isotopic signature

Isotope labeling of N
and O

• Isotopically enriched substrates are not significantly
impacted by kinetic isotope fractionation

• The use of 18O labeled H2O is not suitable under field conditions

• Quantification of individual pathways • Isotopically labeled substances might impact microbial activity

representative for ecosystems with mixed culture populations
(Wunderlin et al., unpublished results).

Under nitrifying conditions, N2O can theoretically be pro-
duced simultaneously via NH2OH oxidation as well as nitrifier
denitrification. Thus, based on SP literature data, the individual
contribution (FNN: NH2OH oxidation; FND: nitrifier denitrifica-
tion) can be calculated from the following isotopomer mixing
model:

FND = (1 − FNN) = (SPtot − SPNN)

(SPND − SPNN)
(16)

where SPND and SPNN are the end-member SP signatures of the
NH2OH oxidation and nitrifier denitrification pathway, respec-
tively, as reviewed above, and SPtot the measured signature of the
individual produced N2O (Frame and Casciotti, 2010).

δ15N
Wide ranges for δ15Nbulk

N2O were reported so far, mainly due to lim-
ited information about the isotopic signature of the substrates
or to both a huge complexity determined by multiple transfor-
mation processes involving different enzymes, as well as variable
reaction rates or mechanisms affecting isotopic fractionation
(Perez et al., 2006) (Table 3). For example, it was shown that iso-
topic fractionation during NH3 oxidation is variable, depending
mainly on the amino acid sequences for the α-subunit of AMO
of the different investigated pure culture AOB (Casciotti et al.,
2003). However, N2O produced by AOB during nitrifier denitrifi-
cation or NH2OH oxidation is basically more strongly depleted in
15N (�δ15N = δ15Nsubstrate − δ15Nbulk

N2O; in the range of between
40� and 68�) compared to heterotrophic denitrification, where
N2O is an obligate intermediate and the fractionation there-
fore depends on both production and consumption processes
(�δ15N of 0–39�) (Yoshida, 1988; Yoshida et al., 1989; Stein
and Yung, 2003; Perez et al., 2006; Koba et al., 2009; Park et al.,
2011).

δ18O
The oxygen isotopic signature of N2O (δ18O) is also used as a tool
for N2O source partitioning, even though this approach faces a
couple of difficulties: for example, N2O production via NH2OH

oxidation as well heterotrophic N2O reduction result in a pos-
itive correlation between the δ18O in N2O and SP (Frame and
Casciotti, 2010) (Table 3). Furthermore, δ18O enrichment fac-
tors are scarce and highly variable (Park et al., 2011), and are
reported to be strongly influenced by oxygen exchange or incor-
poration, such as (1) oxygen incorporation (from dissolved O2)
into NH2OH during the oxidation of NH+

4 to NH2OH, (2) oxy-
gen incorporation (from H2O) into NO−

2 during the oxidation of
NH2OH to NO−

2 , and (3) oxygen exchange between NO−
2 /NO−

3
and H2O (Kool et al., 2007). For example, it was shown that
64–94% of the oxygen atoms in the precursors of N2O were
exchanged with oxygen atoms in H2O (Snider et al., 2009; Park
et al., 2011), which underscores the fact that the understand-
ing and quantification of the effect of oxygen exchange between
H2O and dissolved nitrogen species is and will remain challeng-
ing. Isotopic labeling is a promising approach to overcome such
difficulties (see below), but up to now the natural abundance oxy-
gen isotopic signature should be used with caution in N2O source
partitioning studies (Kool et al., 2007, 2010).

N AND O LABELING
Beside natural abundances, nitrogen and oxygen isotope labeling
techniques have been applied to study and quantify N2O pro-
duction pathways (Table 3). For example, Poth and Focht (1985)
investigated the relative importance of the NH2OH oxidation and
nitrifier denitrification pathway in Nitrosomonas europaea pure
culture by applying 14N-NH+

4 in combination with 15N-NO−
2 .

Based on the large amounts of double-labeled 15,15N2O (m/z =
46), it was concluded that nitrifier denitrification is the dom-
inant pathway. Baggs and Blum (2004) determined the relative
contribution of nitrification and denitrification to 15N-N2O pro-
duction by the application of 14NH4

15NO3 and 15NH4
15NO3.

However, such conventional 15N labeling techniques do not allow
to distinguish between NH2OH oxidation and nitrifier denitri-
fication in mixed population systems (Kool et al., 2010). As a
consequence, a dual isotope approach was applied, based on 18O-
labeling of H2O as well as 15N-labeling of NH+

4 or NO−
3 (Wrage

et al., 2005). The basic concept behind is, that AOB use oxy-
gen from O2 for the oxidation of NH+

4 to NH2OH, but oxygen
from H2O for the oxidation of NH2OH to NO−

2 (see above). As
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such, the 18O signature of N2O produced via nitrifier denitrifi-
cation reflect to 50% the signature of O2 and to the other 50%
the signature of H2O, which is in this study artificially enriched
in 18O (Kool et al., 2007), under the assumption that no fur-
ther oxygen is exchanged between NO−

2 and H2O. In contrast, the
18O signature of N2O derived from NH2OH oxidation reflects to
100% the signature of O2 (Wrage et al., 2005; Kool et al., 2010).
Nevertheless, the effect of oxygen exchange has to be taken into
account.

NATURAL SAMPLES
The analysis of the natural abundance isotopic signature of
N2O emitted from ecosystems such as soils, rivers or biologi-
cal wastewater treatment indicate that N2O from terrestrial and
aquatic sources is depleted in 15N compared to tropospheric
N2O (δ15N = 7� and δ18O = 20.7�) (Stein and Yung, 2003),
but also show a huge variability and complexity, making pro-
cess identification ambiguous at large scale. For example, in
biological wastewater treatment an average δ15Nbulk

N2O of −9.6�,
SP of 16� and δ18O of 22–44.3� were estimated (Yoshinari
and Wahlen, 1985; Toyoda et al., 2011), indicating that nitrifi-
cation as well as denitrification contributed to N2O production.
N2O emitted from agricultural soils is reported to be strongly
depleted in δ15Nbulk

N2O (e.g., −34�) (Park et al., 2011), referring
to nitrification dominated N2O production. Isotopic signatures
of N2O emitted from rivers and streams are in the range of
−18� to 2.4� (δ15Nbulk), −6� to 31� (SP) and 17� to
53� (δ18O) being in line with values reported above, which
indicates to be highly influenced by sources such as agricul-
ture or municipal wastewater treatment (Toyoda et al., 2009;
Baulch et al., 2011). This is underscored by a recent study
that investigates the oxygen and intramolecular nitrogen iso-
topic composition of N2O, confirming that nitrogen-based fer-
tilizer application was largely responsible for the rise in N2O
atmospheric concentration during the last 65 years (Park et al.,
2012).

OUTLOOK
In this section, the isotopic signature of N2O, especially the SP,
is discussed to be a powerful tool to distinguish N2O production
pathways. Recent technological advances, e.g., the development
and application of the QCLAS, now allow a high temporal resolu-
tion in the analysis of the isotopic changes of N2O. Nevertheless,
an adequate calibration procedure still needs to be applied, since
instrumental nonlinearity and drifts impact the accuracy of the
isotope ratio measurement, and calibration standards are not
commercially available so far. It is a pressing issue to further
investigate the characteristic isotopic signatures of the individ-
ual N2O production pathways in mixed microbial communities
under controlled conditions, in order to more accurately inter-
pret isotopic signatures from complex environmental systems.
Further, it is important to study N2O isotopic signatures with
respect to involved microbial communities, enzymatic reaction
mechanisms and enzymatic transformation rates. The use of the
oxygen isotopic signature of N2O as a reliable tool for pathway
identification requires the elucidation of mechanisms and rates of
oxygen exchange in the future.

MOLECULAR APPROACHES TO UNDERSTANDING
MICROBIAL NO AND N2O FORMATION
While abiotic variables such as dissolved O2, pH, NO−

2 , and
other nitrogen compounds have long been recognized to exert a
strong influence on rates of microbial NO and N2O emissions, the
importance of microbial community composition and dynam-
ics to such emissions is still little understood (Wallenstein et al.,
2006). As such, researchers have recently begun supplementing
process-level NO and N2O emission measurements in a variety of
environments with molecular techniques aimed at characterizing
abundance, diversity, community structure, and activity of micro-
bial guilds involved in nitrogen cycling. Here, we briefly introduce
emerging molecular approaches to the delineation of key path-
ways, communities, and controls of NO and N2O production,
and we summarize recent applications of these tools.

QUANTIFYING THE GENETIC POTENTIAL FOR N2O CONSUMPTION
An appealing focus for application of molecular tools in envi-
ronmental samples is direct quantification via the quantitative
polymerase chain reaction (qPCR) of relevant functional genes
(Smith and Osborn, 2008). Such an approach most commonly
targets DNA, not RNA, and is thus a measure of genetic potential
in the environment and not the activity.

Owing to the relative independence of each catabolic step, den-
itrification has been described as having a modular organization
(Zumft, 1997). Indeed, Jones et al. (2008) concluded based on
an analysis of 68 sequenced genomes of heterotrophic denitri-
fiers that approximately 1/3 lacked the nosZ gene encoding for
N2O reductase and thus lack the genetic capacity for N2O reduc-
tion. Based on this assessment, researchers have hypothesized that
the ratio of nosZ to the sum of nirK and nirS encoding for cop-
per and cytochrome cd1-type nitrite reductases, respectively, is
representative of the fraction of denitrifiers in a given environ-
ment that generate N2O as a catabolic end product. Environments
with high nosZ/(nirK + nirS) ratios are likely associated with
a high capacity for N2O consumption, and thus for low N2O
emissions. Commonly used primers and qPCR conditions for
genes relevant for NO and N2O turnover during N-cycling are
available in the literature and are listed in Table 4, and thus the
measurement of such ratios are feasible with little method devel-
opment. Application of such tools has commonly shown a lower
abundance of nosZ compared to other denitrifying reductases,
particularly in soil environments (Henry et al., 2006; Hallin et al.,
2009; Bru et al., 2011).

First assessments of this hypothesis are somewhat conflicting.
In favor for the hypothesis, Philippot et al. (2009) demonstrated a
negative correlation between nosZ proportional abundance and
N2O/(N2 + N2O) ratio in grassland pasture soil. In a follow-
up study, Philippot et al. (2011) dosed three soils with several
dilutions of a denitrifying bacterial isolate known to lack the
nosZ gene, and measured the response at the DNA level of
nirK, nirS, and nosZ genes via qPCR. N2O emissions increased
in all soils upon dosing of the nosZ-deficient isolate. However,
in two of the three soils, the increase in denitrification poten-
tial (relative to non-inoculated controls) was higher than the
measured increase in N2O emissions, suggesting that the orig-
inal denitrifier community was capable of acting as a sink for
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Table 4 | Reported primers and literature references relevant for NO and N2O turnover during N-cycling.

Target genea Primer name Nucleotide sequence (5′–3′) References

b-AOB (amoA) amoA-1F GGG GTT TCT ACT GGT GGT Rotthauwe et al., 1997

amoA-2R CCC CTC KGS AAA GCC TTC TTC

AOA (amoA) Arch-amoAF STA ATG GTC TGG CTT AGA CG Francis et al., 2005

Arch-amoAR GCG GCC ATC CAT CTG TAT GT

narG narG-F TCG CCS ATY CCG GCS ATG TC Bru et al., 2007

narG-R GAG TTG TAC CAG TCR GCS GAY TCS G

napA V17m TGG ACV ATG GGY TTY AAY C Bru et al., 2007

napA4r ACY TCR CGH GCV GTR CCR CA

nirK nirK1F GGM ATG GTK CCS TGG CA Braker et al., 1998, 2012

nirK5R GCC TCG ATC AGR TTR TGG

nirK876 ATY GGC GGV AYG GCG A Henry et al., 2004

nirK1040 GCC TCG ATC AGR TTR TGG TT

nirS nirS1F CCT AYT GGC CGC CRC ART Braker et al., 1998, 2012

nirS6R CGT TGA ACT TRC CGG T

cd3aF GTS AAC GTS AAG GAR ACS GG Michotey et al., 2000; Throbäck et al., 2004

R3cd GAS TTC GGR TGS GTC TTG A

norB cnorB-2F GAC AAG NNN TAC TGG TGG T Braker and Tiedje, 2003; Geets et al., 2007

cnorB-6R GAA NCC CCA NAC NCC NGC

nosZ nosZ2F CGC RAC GGC AAS AAG GTS MSS GT Henry et al., 2006

nosZ2R CAK RTG CAK SGC RTG GCA GAA

nosZF CGC TGT TCI TCG ACA GYC AG Kloos et al., 2001; Rich et al., 2003

nosZR ATG TGC AKI GCR TGG CAG AA

aamoA – subunit A of ammonia monooxygenase, b-AOB - ammonia oxidizing bacteria, narG – subunit G of membrane bound nitrate reductase; napA – subunit A of

periplasmic nitrate reductase; nirK - copper-type nitrite reductase; nirS - cytochrome cd1 nitrite reductase; norB – subunit B of nitric oxide reductase; nosZ – subunit

Z of nitrous oxide reductase.

N2O production. Moreover, ratios of N2O emissions to total
denitrifying end products (N2O + N2) in non-inoculated soils
were not correlated to nosZ/(nirK + nirS). While the authors
acknowledge that abundance of nosZ deficient denitrifiers may
not be as important in soils with a high N2O uptake capacity,
their results clearly demonstrate that abundance of denitrifiers
incapable of N2O reduction can influence denitrification end
products in natural environments. Similarly, Morales et al. (2010)
document a strong positive correlation between the difference in
nirS and nosZ gene abundance (nirS-nosZ; nirK was not quan-
tified) and N2O emissions in 10 soils. Garcia-Lledo et al. (2011)
suggested that a significant decrease in nosZ gene abundance dur-
ing periods of high NO−

3 content in a constructed wetland might
be indicative of increased genetic capacity for (unmeasured)
N2O emissions.

In contrast, Čuhel et al. (2010) detail a significant but,
puzzlingly, positive correlation in grassland soil between
nosZ/(nirS + nirK) ratios and N2O/(N2+N2O), but caution that
the relative importance of denitrifier community composition
and enzyme regulation relative to proportion of nosZ deficient
community members remains uncertain. In line with this result,
Braker and Conrad (2011) found similar ratios of nosZ/(nirS +
nirK) via Most Probable Number (MPN-) PCR in three soils with
profoundly different N2O/(N2+N2O) ratios, and concluded that
the hypothesis that a higher abundance of denitrifiers lacking
nosZ is linked to increased N2O emissions may be an oversim-
plification.

The genetic potential for N2O production via nitrifier den-
itrification in AOB (and possibly AOA) could theoretically be
measured via qPCR of the nirK and norB genes. Design of such
analyses is hampered due to the fact that AOB nirK and norB
genes are not phylogenetically distinct from that of heterotrophic
denitrifying organisms (Cantera and Stein, 2007; Garbeva et al.,
2007). In addition, NorB is not the only NO reductase in AOB
(Stein, 2011).

COMMUNITY STRUCTURE AND DIVERSITY IMPACTS ON NO AND N2O
PRODUCTION
In addition to monitoring abundance of nosZ deficient denitri-
fiers, PCR-based tools are now being applied to the investigation
of links between community structure and N2O emissions for
both nitrifiers and denitrifiers. For this purpose, community
structure is commonly profiled via cultivation-independent
molecular fingerprinting methods, such as terminal restriction
fragment length polymorphism (T-RFLP) or denaturing gra-
dient gel electrophoresis (DGGE), targeting either 16S rRNA
fragments specific to the functional guild of interest or func-
tional genes (for example, nirK or amoA) directly. In addition,
traditional cloning and Sanger sequencing and, increasingly, bar-
coded amplicon-based pyrosequencing of functional genes are
often employed for robust phylogenetic comparisons. Readers
are referred to Prosser et al. (2010) for a detailed methodolog-
ical description of these and other nucleic-acid based methods.
Multivariate statistical analyses such as canonical correspondence
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analysis (CCA), redundancy analysis (RDA) (Ramette, 2007;
Wells et al., 2009), or path analysis (Avrahami and Bohannan,
2009) can then be used to explore the interplay between abi-
otic variables, community composition, and extant process
rates.

It should be emphasized that the molecular and statistical
tools highlighted above are most commonly used in microbial
ecology to explore correlations, rather than causal associations,
between community structure and function in complex micro-
bial communities. As discussed in detail by Reed and Martiny
(2007) directly testing causal relationships between microbial
community composition or diversity and ecosystem processes is
significantly more difficult, but experimental approaches often
drawn from classical ecology are now being adapted to this chal-
lenge. We anticipate that future studies testing the functional
significance of microbial community structure to NO or N2O
production will benefit greatly from these approaches.

Studies targeting the relationship between nitrifier commu-
nity composition and greenhouse gas production are sparse at
present, despite the fact that ample molecular tools are avail-
able for this purpose. Avrahami and Bohannan (2009) employed
a combination of qPCR and T-RFLP to explore the response of
N2O emission rates and betaproteobacterial AOB abundance and
composition in a California meadow to manipulations in temper-
ature, soil moisture, and fertilizer concentration. While a complex
interaction between factors was determined to directly and indi-
rectly contribute to N2O emission rates, path analysis suggested
that the major path by which NH+

4 influenced emission rates in
the high N fertilization treatment was indirectly via two specific
AOB clusters. This observation suggested a significant relation-
ship between AOB community structure and N2O emission rates.
It is important to note that this study did not attempt to discrim-
inate between the nitrifier denitrification and NH2OH oxidation
pathways for AOB-linked N2O production, nor was the relative
importance of heterotrophic denitrification vs. nitrification for
overall N2O emissions directly compared.

Assessment of the importance of DNRA as a process, and
diversity therein, to NO and N2O production is in its infancy. It
has been suggested that our understanding of this little under-
stood phenomena would benefit from the future investigations
employing molecular techniques to quantify abundance and
diversity of the nrf gene in conjunction with either modeling or
stable isotope-based methods (Baggs, 2011). To our knowledge,
such an assessment has yet to be conducted.

The relationship between denitrifier community composition
and N2O emissions, while still ambiguous, has been studied in
more detail. Palmer et al. (2010) investigated narG (encoding
for membrane-bound nitrate reductase, Nar) and nosZ phylo-
genetic diversity in a low-pH fen via gene clone libraries and
T-RFLP. They documented novel narG and nosZ genotypes and
a phylogenetically diverse low-pH adapted denitrifier commu-
nity, and suggested that the novel community structure may
be responsible for complete denitrification and low N2O emis-
sions under in situ conditions. In a more recent study, Palmer
et al. (2012) investigated denitrifier gene diversity in peat cir-
cles in the arctic tundra via barcoded amplicon pyrosequencing
of narG, nirK/nirS, and nosZ, and found evidence that high and

low N2O emission patterns were associated with contrasting den-
itrifier community composition. Braker et al. (2012) found that,
of three soils profiled, the soil with the most robust denitrifica-
tion (lowest N2O/N2 ratio) harbored the most diverse denitrifier
community, as measured via nosZ and nirK sequence diversity,
suggesting that differences in community composition (higher
diversity) are associated with ecosystem-level functional differ-
ences. In denitrifying bioreactors, population dynamics tracked
via 16S rRNA-based T-RFLP were strongly correlated to NO−

2
appearance and emissions of N2O (Gentile et al., 2007). In con-
trast, Rich and Myrold (2004) found little relationship between
nosZ phylogenetic diversity as measured via T-RFLP in wet soils
and creek sediments in an agrosystem, and suggested that activity
and community composition were uncoupled in this ecosystem.

Taken together, the body of literature reviewed here suggests
that, in at least some cases, community structure and diversity
can play a functionally significant role in microbial N2O emis-
sions. The importance of community composition relative to
environmental parameters and metabolic adaptation in response
to transient conditions (for example, shifts in patterns of gene
expression or regulation) in determining N2O production, how-
ever, remains poorly understood. A worthwhile, but challenging
future research direction would be to tease apart the influence of
whole community metabolic adaptation versus community shifts
on NO/N2O emissions in mixed microbial communities.

A ROLE FOR VARIATION IN REGULATORY RESPONSE
Differences in transcriptional and translational regulation as well
as enzyme activity have also been highlighted as potentially criti-
cal modulators of microbial NO or N2O production (Richardson
et al., 2009; Bergaust et al., 2011; Braker and Conrad, 2011). Such
differences likely contribute to observed associations between
community structure and greenhouse gas production discussed
above. Strong regulation at the transcriptional, translational, and
enzyme level is likely occurring in both nitrifier and denitri-
fier communities, and such regulation complicates attempts to
directly relate abundance or diversity of functional guilds to pro-
cess rates (Braker and Conrad, 2011). Similarly, transient near-
instantaneous NO and N2O accumulation in active nitrifying and
denitrifying biofilms in response to O2 or NO−

2 perturbations,
as measured with high temporal resolution via microelectrodes,
strongly suggests that dynamics are controlled in some cases at
the enzyme level (Schreiber et al., 2009). Indeed, culture-based
assays targeting denitrifier isolates from two soils demonstrated
substantial diversity in sensitivity of Nos enzymes to O2 and pro-
vided a physiological underpinning for a previously observed link
between denitrifier community composition and rate of N2O
production (Cavigelli and Robertson, 2000).

Gene expression can be readily quantified with reverse tran-
scriptase quantitative PCR (RT-qPCR), and researchers are now
beginning to explore the relationship between gene expression
patterns for critical functional genes (amoA, hao, nirK, nirS, norB,
and nosZ) and NO/N2O emissions. Yu et al. (2010) used such an
approach to quantify expression of amoA, hao, nirK, and norB
in chemostats of Nitrosomonas europaea during initiation and
recovery from transient anoxic conditions. Surprisingly, expres-
sion profiles of nirK and norB were not strongly linked; strong
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overexpression of nirK concomitant with NO accumulation was
observed upon initiation of anoxia, and at the same time norB,
amoA, and hao gene transcripts declined in abundance. N2O
emissions peaked during recovery to aerated conditions, but did
not correlate strongly to gene expression. The methods of Yu
et al. (2010) provide a robust road map for examining relation-
ships between nitrifier gene expression and NO/N2O emissions in
mixed communities in environmental settings, though it should
be noted that such an analysis is complicated by the polyphyletic
nature of the AOB nirK and norB genes.

RT-qPCR has also been used to assess the relationship between
gene expression and NO/N2O production in systems domi-
nated by denitrifiers. Liu et al. (2010) quantified the relationship
between nirS, nirK, and nosZ gene pools, their transcription prod-
ucts, and gas kinetics (NO, N2O, and N2) as a function of pH in
soils. Interestingly, neither gene pool abundance, nor transcrip-
tion rates could explain a profound increase in N2O emissions at
low pH. The authors attribute the observed N2O:N2 product ratio
to post-transcriptional phenomenon, although it is also plausible
that enhanced chemo-denitrification may play a role.

A worthy future contribution could be made via direct envi-
ronmental metatranscriptomic assessment of patterns in micro-
bial gene expression in environments with different or varying
rates of NO or N2O production. Metatranscriptomics is the direct
sequencing of cDNA generated via reverse transcription of envi-
ronmental RNA transcripts, and therefore provides a picture of
currently transcribed genes in a given environment (Morales and
Holben, 2011). In line with the results of Liu et al. (2010), it is
important to recognize that measurement of the size or diversity
of the gene transcript pool neglects post-transcriptional regula-
tion governing, for example, the assembly of N2O reductase and
enzyme activity (Braker and Conrad, 2011). As of yet, variations
in post-transcriptional regulation at the community level and its
effect on NO/N2O production has been little explored in nitri-
fying and denitrifying pure cultures and communities. Critical
insights in this regard may be possible in the future from an
approach coupling metatranscriptomics and metaproteomics—
that is, direct measurement of the composition of the proteome
in an environment.

A NEED FOR AN INTEGRATED APPROACH TO NO AND N2O
TURNOVER IN COMPLEX MICROBIAL COMMUNITIES
NO and N2O can be produced by many different biological and
chemical reactions. Considerable progress has been made to allo-
cate NO and N2O production to certain biological pathways, but
commonly some uncertainty remains, because many processes
share the same reaction sequence for N2O production via NO
and NO−

2 . We delineated basically three-independent approaches
to allocate pathways (indirect inference; isotopic signature of
N2O, and isotopic labeling). Parallel use of these approaches will
increase confidence in the interpretation. The possibility for vari-
ous chemical reaction that produce and consume NO and N2O
additionally complicate the picture. Chemical reactions can be
important in engineered systems that employ waters with concen-
trated N-contents and in natural systems, where low pH values
coincide with high ammonia inputs. However, in most natu-
ral systems and in municipal wastewater treatment, chemical

reactions will probably not be the main contributors of NO and
N2O emissions. Nevertheless, the possibility of chemical NO and
N2O production has to be considered when interpreting mea-
surements results. Experiments with inactivated biomass could
help to give a first estimation of the chemical production rates.
However, care has to be taken since the chemical conditions that
facilitate chemical NO and N2O production such as pH and trace
metal availability are in turn shaped by microbial activity.

Molecular methods have largely been applied independently
from the stable isotope and microelectrode approaches. Ample
opportunities exist for integration of these techniques. Indeed, it
is clear that such an integrated approach is critical to assessing the
importance of microscale heterogeneity in environmental param-
eters, microbial community structure and stability, and genetic
regulation to observed process-level N2O emission rates.

Joint use of stable isotope methods in conjunction with molec-
ular techniques appears particularly important, given reported
difference in isotope effects depending on the community struc-
ture of nitrifiers (Casciotti et al., 2003) or denitrifiers (Toyoda
et al., 2005) present. In addition, linking source-partitioned N2O
as measured via stable isotope techniques to the underlying
microbial communities via molecular approaches may allow a
more significant measure of the strength of coupling between
microbial diversity and measured emissions (Baggs, 2008, 2011).
One promising way forward is to assess environmental condi-
tions that favor a shift of dominant N2O production pathway
(for example, from denitrification to nitrification, or vice versa)
as measured via stable isotope methods, and to simultaneously
link such a shift to diversity and abundance of functional gene
pools and transcripts via PCR-based molecular approaches. Such
an approach has the potential to yield insights into the rel-
ative importance of dominant functional guilds, community
composition, and activity in determining microbial NO/N2O
production rates. A fruitful first application would be to com-
bine stable isotope-based methods with the molecular approach
pioneered by Yu et al. (2010) for delineating the relationship
between transcriptional response of the model AOB Nitrosomonas
europaea and NO/N2O production. This coupled approach would
allow conclusive verification of conditions proposed by Chandran
et al. (2011) to favor a switch between nitrifier denitrifica-
tion and NH2OH oxidation as dominant sources NO and N2O
production.

Similarly, it is clear that molecular tools and microelectrodes
are complementary to study NO and N2O turnover. An excel-
lent example of such integration is provided by Okabe et al.
(2011), who profiled microscale gradients in N2O emissions in
anammox granules and compared these profiles to spatial loca-
tion of AOB, as measured via fluorescence in situ hybridization
(FISH). Based on their results, the authors concluded that puta-
tive heterotrophic denitrifiers in the inner part of the granule,
not AOB, were likely responsible for the majority of the extant
N2O process emissions. A similar approach is likely applicable
in a wide variety of environments, including flocs, sediments,
soils, and microbial mats. In addition, use of either FISH probes
with higher phylogenetic resolution or depth stratified DNA/RNA
extraction coupled to PCR-based measurements may allow a
direct microscale assessment of links between microbial diversity
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and activity and NO/N2O production profiles. Such a
microscale assessment is important because stratified envi-
ronments likely contain both regions of N2O production and
consumption that are masked during bulk NO/N2O concen-
tration measurements or DNA/RNA extractions. In addition,
microelectrode measurements with high temporal resolution
should be combined with qPCR to better understand the
regulation of NO and N2O peak emissions from different
environments.

The conditions for NO and N2O formation in pure cul-
tures and by chemical reactions begin to be better understood.

Furthermore, several recent technological advancements allow
researcher to investigate the regulation of NO and N2O formation
in complex environments at high spatial and temporal resolution.
These advancements provide a cornerstone to understand and
mitigate the release of NO and N2O from natural and engineered
environments.
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