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Planctomycetes have been known since the description of Planctomyces bekefii by Gimesi
at the beginning of the twentieth century (1924), although the first axenic cultures were
only obtained in the 1970s. Since then, 11 genera with 14 species have been validly named
and five candidatus genera belonging to the anaerobic ammonium oxidation, anammox bac-
teria have also been discovered. However, Planctomycetes diversity is much broader than
these numbers indicate, as shown by environmental molecular studies. In recent years,
the authors have attempted to isolate and cultivate additional strains of Planctomycetes.
This paper provides a summary of the isolation work that was carried out to obtain in pure
culture Planctomycetes from several environmental sources. The following strains of planc-
tomycetes have been successfully isolated: two freshwater strains from the sediments of
an aquarium, which were described as a new genus and species, Aquisphaera giovannonir,
several Rhodopirellula strains from the sediments of a water treatment recycling tank of
a marine fish farm; and more than 140 planctomycetes from the biofilm community of
macroalgae. This collection comprises several novel taxa that are being characterized and
described. Improvements in the isolation methodology were made in order to optimize
and enlarge the number of Planctomycetes isolated from the macroalgae. The existence
of an intimate and an important relationship between planctomycetes and macroal-
gae reported before by molecular studies is therefore supported by culture-dependent

methods.
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THE PLANCTOMYCETES

Planctomycetes are a fascinating group of Bacteria, due to their
unique and peculiar characteristics. Their distinct cell wall with-
out the characteristic peptidoglycan, their nucleoid, their cell
structure with compartmentalization, their reproduction, and
their metabolism and ecological ubiquity make them an exciting
group of organisms to study. The first planctomycete observed
was morphologically similar to a planktonic fungus, Plancto-
myces bekefii (Gimesi, 1924), giving the name to this phylum.
Curiously, it was never isolated in pure culture. The first report
of the isolation of a planctomycete in axenic cultures is due to
the work of James T. Staley (Staley, 1973). This organism was
renamed taxonomically several times and was finally designated
Pirellula staleyi (Schlesner and Hirsch, 1987). In 1986, a new order,
Planctomycetales, and family, Planctomycetaceae, was proposed to
accommodate the several members of this group that had been
described, based on 16S rRNA gene sequence analysis and distinc-
tive morphological characteristics (Schlesner and Stackebrandt,
1986). The phylum Planctomycetes was only proposed in 2001
(Garrity and Holt, 2001) and in 2006, a superphylum was des-
ignated to incorporate the phyla Planctomycetes, Verrucomicrobia,
and Chlamydiae (superphylum PVC; Wagner and Horn, 2006). At
present, the Planctomycetes, comprise 3 orders (Planctomycetales,
Phycisphaerales, and “ Candidatus Brocadiales”), 11 described gen-
era and 14 species, and 5 candidatus genera with 14 candidatus
species (Fukunaga et al., 2009; Jetten et al., 2010; Ward, 2010; Bon-
doso etal., 2011; Kulichevskaya etal., 2012). Although still small,

these numbers are increasing. In the last 4 years, one new order,
five new genera, and six species have been described. The cultured
strains (see Schlesner, 1994; Wang etal., 2002; Pimentel-Elardo
etal., 2003; Gade etal., 2004; Elshahed etal., 2007) are not at all
representative of the great diversity and ubiquity that has been
revealed by molecular microbial ecology techniques (Kirkpatrick
etal., 2006; Penton etal., 2006; Schmid et al., 2007; Woebken et al.,
2007; Lachnit etal., 2011; Pizzetti etal., 2011a; Pollet etal., 2011;
Fuchsman etal., 2012; Ivanova and Dedysh, 2012). In fact, of the
11045 clone sequences belonging to Planctomycetes in Ribosomal
Database Project (RDP; Cole et al., 2009) only 291 (2%) have been
isolated in pure culture.

The remarkable characteristics of this group, together with
the need to isolate new strains in pure cultures to extend our
knowledge of their physiological role in microbial communities,
prompted the authors to investigate Planctomycetes. During iso-
lation experiments, methodological improvements were achieved
and different environmental sources were attempted. In initial
work, isolation of a single strain of Planctomycetes was achieved
from the sediments of an ornamental freshwater aquarium. The
bacteria obtained represent a novel genus within the Planctomyc-
etales and was taxonomically described as Aquisphaera giovannonii
(Bondoso etal., 2011). Subsequent work was focused on the
marine environment and isolates were successfully obtained from
the epiphytic community of macroalgae and from the sediment
of a treatment water recycling tank of a marine fish farm. This
work allowed the isolation of a collection of more than 150
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Planctomycetes that represents new taxa that are being, or have
already been, characterized.

IMPROVEMENTS IN ISOLATION METHODOLOGIES
Knowledge of bacterial diversity and physiology was long based
only on cultured organisms. With the golden era of the molecular
revolution, the abundance, diversity, and ecology of microorgan-
isms gained another dimension. This was especially relevant in
marine aquatic environments, as was the case for the discovery
of the oligotrophic ubiquitous bacterioplankton SAR11 cluster
(Giovannoni etal., 1990). However, knowledge on certain aspects
of the biology of microorganisms cannot be reached unless the
organisms are available in culture. As an example, the cultivation
of Pelagibacter ubique, a member of the SAR11 clade, by Rappé
etal. (2002) enabled many unanswered questions to be addressed
(Joint, 2008), such as the need of exogenous reduced sulfur com-
pounds for a strain without the genes for assimilatory sulfate
reduction.

For a longtime, only a few cultivable Planctomycetes were
available and knowledge of this group was scarce. But several
cultivation methods and media formulations for the isolation of
planctomycetes were achieved in the last few decades (Schlesner,
1994; Zengler et al., 2002; Winkelmann and Harder, 2009). These
advances were especially due to Dr. Heinz Schlesner’s work
(Schlesner, 1994), leading to the isolation of a great number of
isolates. More recently, several attempts have been made to bring
“Candidatus Brocadiales” into culture. However, their isolation
in pure culture has not succeeded. One main difficulty relies on
their slow growth rate, with a doubling time of 10 days. After
great technological accomplishments, they are, presently grown in
membrane bioreactors with a purity of enrichment of 97.6% (van
der Star etal., 2008; Kartal etal., 2010).

Planctomycetes are comparatively slow growing organisms with
low demand for carbon and nitrogen sources. This makes them dif-
ficult to isolate in common media because they are easily outgrown
by bacteria with faster growth rates. The utilization of media that
have a relatively low content in yeast extract and peptone (usu-
ally less than 0.5%) and with the addition of glucose as a carbon
source is useful for the isolation of these organisms. The addition
of vitamin B12 to the isolation media, required by some members
of the Planctomycetes, and micro- and macronutrients, also pro-
duced favorable results. The selective isolation of Planctomycetes
is very much based on the capacity of these bacteria to grow in the
presence of B-lactam antibiotics that affect peptidoglycan biosyn-
thesis in dividing cells of the majority of bacteria (Schlesner, 1994).
Some Planctomycetes are also resistant to the antibiotic strepto-
mycin. The inhibition of bacterial growth by the action of these
two antibiotics gives the relatively slow growing Planctomycetes
the possibility to form colonies on the isolation plates. Another
isolation strategy is to provide N-acetylglucosamine (NAG) as the
only carbon and nitrogen source (Schlesner, 1994). Chitin com-
posed of NAG monomers is the second most abundant organic
compound in nature, and is present in fungi and several animals,
namely copepods, that produce billions of tons of this compound
annually (Yu etal., 1991). Ultimately, NAG ends up covering the
ocean floor, where it is metabolized by bacteria. Planctomycetes are
commonly present in marine sediments (Rusch etal., 2003; Musat

etal., 2006; Chipman et al., 2010; Hu et al., 2010) where the avail-
ability of NAG favors the selection of the metabolic pathways for
its degradation.

Besides the overgrowth of rapid growing bacteria, another
problem, commonly faced when isolating bacteria from envi-
ronmental samples, is the rapid and invasive growth of fungi.
To inhibit fungal growth, cycloheximide or amphotericin B, are
commonly added to the growth media (Schlesner, 1994; Wang
etal., 2002; Winkelmann and Harder, 2009). However, these anti-
fungal compounds have not always proven to be effective and
fungicides like pevaryl (econazole nitrate; 1%) and benlate (beno-
myl, or methyl I-(butylcarbamoyl)-2-benzimidazolecarbamate;
4 mg-mL~!) appear to be more adequate in inhibiting fungal
growth (Lage and Bondoso, 2011). Another improvement for
planctomycetes isolation from the surface of portions of macroal-
gae was to pre-wash them in a mixture of pevaryl and benlate
before their introduction in the culture medium. With this, fungal
overgrowth can be notably reduced. For the isolation of epiphytic
planctomycetes from macroalgae diverse inocula, as the macerated
macroalgae, the resuspended biofilm obtained from scrapping the
surface of the macroalgae and the direct use of portions of the
macroalgae on the isolation media were tested. This has enabled
the isolation of a larger number of strains. These improvements,
associated with the use of antibiotics (200 mg-mL~! ampicillin
and 1000 mg-mL~! streptomycin), allowed the authors to obtain
alarge collection of culturable Planctomycetes, essentially from the
surface of macroalgae (Lage and Bondoso, 2011).

DIVERSITY OF Rhodopirellula ISOLATED FROM MARINE
ENVIRONMENTS

The majority of Planctomycetes isolates recovered belong to
the genus Rhodopirellula. These organisms are widespread and
have been described in many marine environments, including
brackish and marine water from the Kiel Fjord on the Baltic
Sea (Schlesner etal., 2004), meso-eutrophic lakes (Pizzetti etal.,
2011b), other European seas (Winkelmann and Harder, 2009;
Pizzetti etal., 2011a), marine snow (DeLong etal., 1993; Vergin
etal.,, 1998), diatom blooms in Oregon coastal waters (Morris
etal., 2006), tissues of the Mediterranean sponge Aplysina aero-
phoba (Pimentel-Elardo etal., 2003; Gade etal., 2004), and the
giant tiger prawn, Penaeus monodon (Fuerst etal., 1991) as well
as the biofilm of Laminaria hyperborea (Bengtsson and Ovreas,
2010). However, the only taxonomically described organism is
Pirellula sp. strain 1 (presently Rhodopirellula baltica SH1"), iso-
lated from the water column of the Kiel Fjord as a free-living
bacterium (Schlesner, 1994; Schlesner et al., 2004). The great het-
erogeneity within the genus Pirellula led Schlesner etal. (2004) to
emend this genus and create two new genera, Rhodopirellula and
Blastopirellula. The 16S rRNA gene sequence analysis, DNA-DNA
hybridization and MLSA analysis (Schlesner etal., 2004; Winkel-
mann et al., 2010) revealed that R. balticais a cosmopolitan species
with a great genetic diversity.

The isolation experiments, both from the biofilm community
of macroalgae (Lage and Bondoso, 2011) and the marine fish
farm environments (Lage etal., 2012), revealed that the mono-
speciated Rhodopirellula genus was dominant among the isolates
and was clearly diverse (Figure 1). The biofilm community of
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Rhodopirellula baltica sp.Pd6 (HQB45499)

Rhodopirellula baltica sp.Sm3 (HQ845502)
Rhodopirellula baltica sp.u1 (HQ845504)
Rhodopirellula baltica sp.UC11 (HQ845511)
Rhodopirellula baltica sp.UC12 (HQ845512)
Rhodopirellula baltica sp.UC46 (HQ845528)
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Rhodopirellula sp. OJF1 (DQ851134)"
Rhodopirellula sp. OJF11 (EF421449)"
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FIGURE 1 | Phylogenetic 16S rRNA gene tree generated by a
maximum-likelihood analysis based on the Jukes-Cantor model,
indicating the relationship of the isolates reported in this article
(shown in bold) to members of the Planctomycetes. GenBank accession
numbers are shown in parentheses. The Anammox genera were used as
an outgroup. The numbers shown beside nodes are the percentages for
bootstrap analyses; only values above 50% are shown. *Strains isolated
from the fish farm sediments; ®Novel genera isolated from an ornamental
freshwater aquarium. Scale bar = 0.05 substitutions per 100 nucleotides.

the macroalgae sampled provided a total of 138 Planctomycetes
isolates. The genus Rhodopirellula represented 92% of the total iso-
lates, of which 71% are strains (more than 99.5% 16S rRNA gene
similarity) within the species R. baltica (group A). The remaining
29% are subdivided in two groups (groups B and C), with about
97-98% of similarity in the 16S rRNA gene to the type species.
Rhodopirellula sp. was also present in the sediment of a water
treatment recycling tank of a marine fish farm, from which eleven
isolates were obtained representing two main phylogenetic clusters
as defined by the 16S rRNA gene sequence similarity. Six of the
isolates are intimately related to Rhodopirellula baltica (in group
A) with more than a 99% 16S rRNA gene sequence similarity and
the other five isolates, with a 97.7-97.9% 16S rRNA gene sequence
similarity to this species, belong to group B. In total, 149 isolates
within the genus Rhodopirellula from the two marine environ-
ments of the north Atlantic coast of Portugal were obtained in pure
culture. These results confirmed the presence of this genus in the
biofilm community of ten of the three major macroalgae groups
(Gelidium pulchellum, Chondrus crispus, Corallina sp., Gracilaria
bursa-pastoris, Grateloupia turuturu, Fucus spiralis, Mastocarpus
stellatus, Porphyra dioica, Sargassum muticum, and Ulva sp.) and
in marine fish farm environments. The Rhodopirellula sp. groups
B and C are less numerous than R. baltica. Group B was isolated
from the sediment of a treatment water recycling tank of a marine
fish farm, from five macroalgae (G. bursa-pastoris, F. spiralis, Lam-
inaria sp., M. stellatus, and Ulva sp.), from Sweden (from algae
surface), the Baltic Sea and sediments from Italy and Mallorca
(Winkelmann and Harder, 2009). Group C was mainly isolated
from macroalgae (C. crispus, Corallina sp., G. bursa-pastoris, F.
spiralis, M. stellatus, S. muticum, and Ulva sp.) sampled on the
Carrego rocky beach in the north cost of Portugal and two more
isolates from sediments in Brest, France (Winkelmann and Harder,
2009). So far, culture-independent methods did not detect the
presence of this group in other habitats or sources.

Presently, the RDP (Cole etal, 2009) accounts for 593
sequences classified in the genus Rhodopirellula, of which 416 are
from uncultured organisms. Even though only one species was
described in the genus Rhodopirellula, intrageneric diversity points
to the existence of new species in this genus. An ERIC-PCR finger-
printing study performed with the strains isolated from the fish
farm environment revealed a great intraspecies genetic variability.
It was possible to differentiate 9 genotypes within the 11 isolates
(Lage etal., 2012). This was also observed by Winkelmann etal.
(2010) by multi-locus typing and Box-PCR and by Schlesner et al.
(2004) by DNA—DNA hybridization.

PLANCTOMYCETES DIVERSITY HIDDEN IN MACROALGAE
BIOFILMS

Other taxa of Planctomycetes, in addition to Rhodopirellula, were
isolated from the biofilm community of macroalgae (Figure 1).
Three potential new genera (groups D, E and strain LF1) are phy-
logenetically more closely related to R. baltica (93-96% 16S rRNA
gene sequence similarity), forming three clear separate clusters
within the Planctomycetales. One isolate (strain FF15) is related
to Blastopirellula marina (95% 16S rRNA gene sequence similar-
ity) and isolate FC18 is phylogenetically more closely related to
Pirellula staleyi (85.4% similarity in the 16S rRNA gene sequence)
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and shares an 87% 16S rRNA gene sequence similarity to B.
marinaand R. baltica. Both represent potential new genera isolated
from Fucus spiralis. Strains Pd1 and UiF1 (isolated, respectively,
from Porphyra dioica and Ulva intestinalis) sharea 98% 16S rRNA
gene sequence similarity to P. maris. Curiously, one strain from
G. bursa-pastoris, Gr7, which has 100% similarity to Plancto-
myces brasiliensis DSM53057 from Lagoa Vermelha, a salt pit
environment from Brazil (Schlesner, 1989), was also isolated.
Besides the three OTUs related to Rhodopirellula, the diversity
of Planctomycetes associated with macroalgae represents more
seven different OTUs based on a 98% cut-off (Stackebrandt and
Ebers, 2006).

Macroalgae harbor a great diversity of Planctomycetes in their
biofilm community. The relationship between Planctomycetes
and macroalgae had been unveiled by Bengtsson and Ovreas
(2010) and Bengtsson et al. (2010), who found that Planctomycetes
account for 51-53% of the bacterial biofilm cells in July and
September and 24% in February in the kelp Laminaria hyper-
borean from southwestern Norway. Clone libraries of the kelp
revealed 23 OTUs at 98% sequence similarity, with the major-
ity being species of Rhodopirellula and Blastopirellula. Lachnit
etal. (2011) also found a temporal fluctuation of Planctomycetes
in association with Fucus vesiculosus, Gracilaria vermiculophylla,
and Ulva intestinalis. The denaturing gradient gel electrophore-
sis (DGGE) bands were related to Rhodopirellula, Planctomyces,
and Blastopirellula. Planctomycetes were also found in Ulva aus-
tralis and accounted for 3.4% of the total clones (Burke etal.,
2011). A new order of Planctomycetes, Phycisphaerales, was pro-
posed to accommodate a novel genus isolated from the surface
of Porphyra sp., Phycisphaera (Fukunaga etal.,, 2009). These
studies, together with our results (Lage and Bondoso, 2011),
show that macroalgae provide a suitable eutrophic environ-
ment that supports the growth of heterotrophic Planctomycetes.
Macroalgae produce organic sulfur compounds (Michel etal,
2006) and excrete photosynthetically derived dissolved exudates.
Planctomycetes colonies recovered from the surface of small por-
tions of macroalgae (Lage and Bondoso, 2011) proved that the
growth of Planctomycetes can be supported by macroalgae com-
pounds. Further support for the hypothesis of a nutritional role
of macroalgae for Planctomycetes comes from growth experi-
ments (Lage and Bondoso, 2011). Water-soluble extracts of Ulva
sp. and E spiralis enabled the growth of some Planctomycetes.
However, in an enrichment study that used kelp constituent car-
bon sources to support the cultivation of bacterial populations
associated with the kelp Laminaria hyperborean, Planctomycetes,
and Verrucomicrobia, the two most frequently detected bacterial

lineages, were not identified among the cultured bacteria (Bengts-
son etal., 2011). Nevertheless, Planctomycetes are able to grow
on several carbohydrates (mono and disaccharides and com-
plex ones) as a carbon source and on the chitin monomer NAG
(Schlesner, 1994; Rabus etal., 2002). R. baltica possesses sev-
eral genes encoding for 110 sulfatases (Glockner etal., 2003)
and presumably could be involved in the recycling of carbon
from complex sulfated heteropolysaccharides (Wecker et al., 2009).
Macroalgae may benefit by hosting Planctomycetes biofilm com-
munities through competitive exclusion of potentially undesirable
microbes, the production of secondary metabolites and a role in
avoiding desiccation, as Planctomycetes can possess extracellular
matrices.

CONCLUSION

Planctomycetes are far from being a well-known group of Bacte-
ria. Although their first observation goes back to the beginning
of the last century, it is only since the 1970-1980s that more reg-
ular publications began to appear. In this mini review, culture
aspects of this group have been highlighted, providing a sum-
mary of the work developed over recent years with the aim of
isolating in pure culture Planctomycetes from several environmen-
tal sources. Methodological improvements through the use of a
new combination of fungicides and antibiotics, the use of low
organic media and portions of macroalgae that were essential for
successful isolations have been pointed out. A large collection of
Planctomycetes was, thus, obtained from the biofilm community
of macroalgae, from the sediments of the water treatment tank of a
fish farm, as well as from the sediments of a freshwater aquarium.
As some of the isolates are novel taxa, their description is impera-
tive. With these characterizations, knowledge on the morphology,
metabolism, and ecology of this group will be enlarged. This phy-
logenetic diversity is the base for future ecological work namely on
the comprehension of the interaction macroalgae—Planctomycetes
and on the application of molecular approaches to the study of the
biogeographic distribution of Planctomycetes in coastal environ-
ments. With this work the frontiers of diversity are being pushed
forward, as indeed they should be.
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