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Nitrogenase enzymes have evolved complex iron—sulfur (Fe-S) containing cofactors that
most commonly contain molybdenum (MoFe, Nif) as a heterometal but also exist as
vanadium (VFe, Vnf) and heterometal-independent (Fe-only, Anf) forms. All three varieties
are capable of the reduction of dinitrogen (Ny) to ammonia (NH3) but exhibit differences
in catalytic rates and substrate specificity unique to metal type. Recently, N, reduction
activity was observed in archaeal methanotrophs and methanogens that encode for
nitrogenase homologs which do not cluster phylogenetically with previously characterized
nitrogenases. To gain insight into the metal cofactors of these uncharacterized nitrogenase
homologs, predicted three-dimensional structures of the nitrogenase active site metal-
cofactor binding subunits NifD, VnfD, and AnfD were generated and compared.
Dendrograms based on structural similarity indicate nitrogenase homologs cluster based
on heterometal content and that uncharacterized nitrogenase D homologs cluster with
NifD, providing evidence that the structure of the enzyme has evolved in response to
metal utilization. Characterization of the structural environment of the nitrogenase active
site revealed amino acid variations that are unique to each class of nitrogenase as defined
by heterometal cofactor content; uncharacterized nitrogenases contain amino acids near
the active site most similar to NifD. Together, these results suggest that uncharacterized
nitrogenase homologs present in numerous anaerobic methanogens, archaeal methan-
otrophs, and firmicutes bind FeMo-co in their active site, and add to growing evidence that
diversification of metal utilization likely occurred in an anoxic habitat.
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INTRODUCTION

The majority of N in the biosphere is in the kinetically stable
form of dinitrogen (N;). The only known biological means of
accessing this vast reservoir of N is via the activity of nitroge-
nase, a complex metalloenzyme that catalyzes the reduction of
N, to ammonia (NH3). Nitrogenase comprises a two component
enzyme whereby in an ATP-dependent process, electrons are shut-
tled by the nitrogenase iron protein (NifH) to the dinitrogenase
reductase (NifDK) which harbors the active site (Bulen and
LeComte, 1966).

The nitrogenase active site consists of a biologically unique iron
(Fe)—sulfur (S) cluster [X—7Fe—C-9S] where “X” is either molyb-
denum (Mo), vanadium (V), or iron (Fe) (Figure 1) (Einsle etal.,
2002; Lancaster etal., 2011; Spatzal et al., 2011). These clusters are
referred to by their metal type as FeMo-co, FeV-co, and FeFe-co,
respectively. The cluster is ligated by non-protein homocitrate as
well as cysteine and histidine side chains (Shah and Brill, 1977;
Einsle etal., 2002). Biochemical studies have been conducted on
representatives of Mo-dependent nitrogenase (Nif), V-dependent
nitrogenase (Vnf), and Fe-dependent nitrogenase (Anf) (Robson
etal., 1986; Eady etal., 1987; Chisnell etal., 1988; Eady, 1996).
These different classes of nitrogenase have in common the ability
to catalyze the reduction of N to produce NHj3 with concomitant

reduction of protons to molecular hydrogen (H,). However,
they differ in their catalytic rates and efficiencies including the
stoichiometry of NH3; and H, produced per mol N, reduced
(Eady, 1996).

Phylogenetic analyses of nitrogenase amino acid sequences
derived from available genome databases indicate that nitroge-
nase homologs cluster into five major lineages (Raymond etal.,
2004; Glazer and Kechris, 2009; Boyd etal., 2011a,b; Figure 2).
These lineages comprise two Nif nitrogenase groups, as well as the
Vnf and Anf groups. Between the Nif and Anf lineages is a separate
lineage comprised of biochemically uncharacterized nitrogenases
present in the genomes of representatives of the hydrogenotrophic
methanogens, methanotrophic archaea, and firmicutes. Members
of this lineage appear to be functionally competent as organisms
which encode homologs are capable of N, fixation (Mehta and
Baross, 2006; Dekas etal., 2009). Previously, these homologs have
been referred to as “uncharacterized nitrogenase” and were shown
to form a lineage that branches later than Nif, Vnf, and possi-
bly Anf, indicating that they evolved after metal differentiation in
the active site cluster occurred (Boyd etal., 2011b). This obser-
vation has prompted questions regarding the metal composition
and reactivity of the active site cluster present in these nitrogenase
homologs (Boyd etal., 2011b).
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FIGURE 1 | The active site of nitrogenase from A. vinelandii (Einsle
etal., 2002; Lancaster etal., 2011; Spatzal etal., 2011). The metal
cofactor-homocitrate complex is shown as balls and sticks and the
residues found to be within 5 A of the cofactor are shown as lines (thin).
Colors: light blue, carbon; blue, nitrogen; red, oxygen; yellow, sulfur; rust,
iron; cyan, molybdenum.

NifD-B Uncharacterized

1.0

FIGURE 2 | Maximum likelihood unrooted phylogram of nitrogenase
sequences. FeMo-co NifD-A and NifD-B sequences in black and orange,
respectively, uncharacterized nitrogenases in purple, AnfD in red, and VnfD
in green.

In addition to the influence that active site metal composition
has on reactivity, studies have shown that the peptide environment
surrounding the active site cofactor also influences the enzyme
activity of nitrogenase. For example, substitutions of amino acid
residues in close proximity to the FeMo-cofactor (FeMo-co) N,
binding site of nitrogenase resulted in a Nif~ phenotype in A.
vinelandii and altered the electronic and substrate reduction prop-
erties of the protein (Scott etal.,, 1990). Other residues which
surround the active site have also been shown to dramatically

alter substrate range of the enzyme (Mayer etal., 2002; Ben-
ton etal., 2003; Seefeldt etal., 2009). These experimental results
have been instrumental in implicating individual roles for vari-
ous amino acid residues surrounding the nitrogenase active site in
proton transfer, local movement of nearby side chains, substrate
binding, reaction intermediate stabilization, and/or modulat-
ing the electronic state of the cluster. Thus, both the metal
composition of the active site cofactor and the composition of
residues lining the active site cavity influence the reactivity of
nitrogenase.

In this study, phylogenetic reconstruction and structural mod-
eling were used to compare nitrogenase homologs, specifically
to gain insight into the composition of the cluster at the active
site of the biochemically uncharacterized nitrogenases. Active site
volumes, inferred from predicted structures, and the amino acid
environment that surrounds the metallocofactor were compared
among nitrogenase homologs. In addition, models and known
crystal structures of nitrogenase were compared by structural
relatedness. These data provide new insights into the metal cofac-
tor binding proclivity of nitrogenase enzymes and extend our
understanding of the primary sequence and structural variation
of nitrogenase. Additionally, this work adds further support to the
concept that the first nitrogenase was likely to contain a Mo-based
active site cofactor (Boyd etal., 2011a,b).

MATERIALS AND METHODS

SEQUENCE AND PHYLOGENETIC ANALYSIS

NifD homologs were obtained from the NCBI non-redundant
database through BLASTp searches using NifD, VnfD, and
AnfD proteins from A. vinelandii as queries (YP_002797379,
YP_002797497, and YP_002801974, respectively). In the case of
NifD searches, sequences were compiled using Pattern Hit Initi-
ated BLAST (PHI-BLAST) specifying the NifD conserved “CXRS”
amino acid pattern, where X is variable. In addition, a length
criterion of 300-700 amino acids was imposed by the [slen]
command.

Sequences were aligned using the EMBL ClustalW?2 server with
default parameters (Gonnet weight matrix) and manipulated with
Jalview (Clamp etal., 2004; Waterhouse et al., 2009) and ClustalX
(Larkin etal., 2007). Sequences were examined for known cat-
alytic residues as reported in Boyd et al. (2011a). Phylogenies were
generated using the PhyML webserver (Guindon et al., 2005) and
calculated using the maximum likelihood method (Guindon and
Gascuel, 2003; Guindon et al., 2010) using Shimodaira—Hasegawa-
like aLRT supports and the LG substitution matrix (Anisimova
and Gascuel, 2006). The resulting phylogram was projected using
Fig Tree version 1.3.1!, and naming accomplished using the
REFGEN/TREENAMER online web server (Leonard etal., 2009).
Sequence alignments for each of the protein classes used in this
study are available upon request from the authors. Analysis of
amino acid conservation was judged by the presence of a * (con-
served) or a colon above the alignment in ClustalW corresponding
to amino groups of strongly similar properties (scoring >0.5 in
the Gonnet PAM 250 matrix).

Uhttp://tree.-bio.ed.ac.uk/
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STRUCTURE PREDICTION

Models of NifD and NifD homologs were generated through
sequence submission to the iterative threading assembly refine-
ment (I-TASSER) server (Zhang, 2008, 2009; Roy et al., 2010). The
top model based on C-score (Wu etal., 2007) was selected for
further analysis. The C-scores are derived from calculating con-
vergence of intermediate structures that are produced during the
I-TASSER run and range from —5 to 2 with high scores signifying
models with high confidence (Zhang, 2008). Structures were visu-
alized using PyMol?. Models were selected in an effort to obtain a
representative diversity from each nitrogenase lineage. In the case
of uncharacterized nitrogenases, these included nitrogenase asso-
ciated with the archaeal methanogen Methanocaldococcus infernus
ME (YP_003615674.1), an uncultured archaeal methanotroph
believed to belong to the ANME-2¢ clade (ADF27322.1; Pern-
thaler etal., 2008), and the firmicutes Candidatus Desulforudis
audaxviator MP104C (YP_001716346.1) and Syntrophothermus
lipocalidus DSM 12680 (YP_003703435.1). A NifD homolog from
a ANME-1 phylotype (Meyerdierks etal., 2010) was not included
in this analysis as the sequence lacks ligand binding residues and
is likely a “Nif-like” protein which are conserved in methanogenic
archaea (Staples et al., 2007).

STRUCTURAL COMPARISONS

Inferred structures were compared using an “all against all”
comparison performed by the ProCKSI server. The relatedness
of structures was calculated with standardized distance matrix
derived from the Vorolign V-score (Birzele et al., 2007) and hierar-
chical clustering accomplished using the Complete Link (furthest
neighbor) method (Defays, 1977) with the Clustering Calculator
server.

Active site volumetric calculations were performed on the
CASTYp server with a probe radius of 1.4 A (Dundas et al., 2006).
Cavities were manually inspected in each case to ensure corre-
spondence with the nitrogenase metal cofactor-binding pocket.
In order to identify putative conserved active site second shell
residues, representative nitrogenase structures from the Protein
Data Bank (PDB; Berman etal., 2003) and those created through
homology modeling were structurally aligned with the Pymol
program. The amino acids within 5 A of the metal cofactor in
the A. vinelandii IM1N structure (Einsle etal., 2002), including
homocitrate, were selected for analysis.

RESULTS

NITROGENASE HOMOLOG PHYLOGENY

Phylogenetic reconstruction of representative AnfD, VnfD, NifD,
and uncharacterized D homologs revealed patterns of clustering
that correspond to metal utilization (Figure 2), a finding that is
consistent with phylograms reported previously (Raymond etal.,
2004; Boyd etal., 2011a,b; Dos Santos etal., 2012). Two lineages
comprising Nif were identified, denoted here as NifD-A and NifD-
B. The uncharacterized homologs, in relation to Nif, do not
resolve into a monophyletic lineage indicating that their phylo-
genetic placement based solely on D protein divergence should be

Zhttp://www.pymol.org
Shttp://www.biology.ualberta.ca/jbrzusto/cluster.php

interpreted with caution. However, the overall branching order
of Nif and uncharacterized nitrogenase, whereby VnfD branch
basal to AnfD, is consistent with the branching order observed
for concatenations of HDK homologs reported previously (Boyd
etal., 2011b).

GLOBAL STRUCTURAL COMPARISON

Inferred nitrogenase homolog structures displayed modeling
scores of high confidence (C-score, Table 1). These scores range
from [—5,2] and models with C-score >—1.5 generally have a
correct fold (Roy etal., 2010). In addition, root mean square
deviation (RMSD) values obtained through comparison using the
program DALI-LITE (Holm and Park, 2000) indicated that the
models match very closely to the alpha chain of the high resolution
NifD structure IMIN (Einsle etal., 2002). Similarity can be visu-
ally depicted by an overlay of all A. vinelandii inferred structures
(Figure 3).

Among the obtained models, the AnfD structures display the
lowest I-TASSER (least confident) modeling scores (Table 1). The
AnfD models were examined by superimposing structures and
manually inspecting them for structural differences. This led to
the identification of a short C-terminal stretch of amino acids
universally present in AnfD homologs, which is absent from other
nitrogenase homologs. AnfD sequences in which this segment had
been removed in silico prior to submission for homology model
construction displayed markedly improved scores (C-score of 1.46
and 1.40 for A. vinelandii and C. kluyveri sequences, respectively),
indicating that this section of the protein is responsible for lower
model fit statistics (Table 1).

Together with NifD structures obtained from the PDB [IM1N
(Einsle etal., 2002), IMIO (Kim etal., 1993), and 1QH1 (Mayer
etal., 1999)], the inferred structures of AnfD, VnfD, NifD, and
uncharacterized nitrogenase homologs were compared to exam-
ine whether D homologs can be resolved from other homologs at
the structural level. The Vorolign V-score, which bases similarity
on the conservation and evolutionary relationship of amino acid
contact sets (i.e., Voronoi contacts) between proteins, resolved
the various nitrogenase types into clusters by metal type without
exception (Figure 4). AnfD and VnfD were resolved from NifD and
uncharacterized D proteins. Uncharacterized D proteins cluster
between two clades of NifD, a finding that is consistent with pre-
vious phylogenetic analyses of these proteins (Boyd etal., 2011b).
This observation supports the hypothesis that the uncharacter-
ized D protein homologs are structurally most similar to that
of NifD and may harbor a similar cofactor to that present in
the NifD active site (i.e., FeMo-co). In addition, these observa-
tions indicate that NifD, VnfD, and AnfD can be separated on the
basis of inferred structure alone in a way that is largely consistent
with the branching order based on phylogenetic reconstruction.
The placement of the uncharacterized D homologs between the
two NifD clades is different, however, between the sequence
and structural clustering methods (purple groups, Figures 2 and
4). The discrepancy between structural and phylogenetic clus-
tering is possibly the result of the unique structural features of
the NifD-B group, which harbor an internal amino acid exten-
sion that all other types lack making them structurally distinct
(Kim etal., 1993).
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Table 1 | Protein structure modeling statistics.

Organism Accession Metal center Type C-score® TM-score® RMSD*
Geobacter metallireducens GS-15 YP_383630.1 FeMo-co NifD-A 1.63 0.93 +£0.06 0.7
Desulfitobacterium hafniense Y51 YP_520503.1 FeMo-co NifD-A 1.00 0.85 +0.08 0.7
Uncultured archaeon (ANME-2) ADF27322.1 FeMo-co* Unc. 1.91 0.99 £+ 0.04 0.7
Ca. Desulforudis audaxviator MP104C YP_001716346.1 FeMo-co* Unc. 1.20 0.88 +£0.07 0.9
Syntrophothermus lipocalidus DSM 12680 YP_003703435.1 FeMo-co* Unc. 1.26 0.89 + 0.07 0.6
Methanocaldococcus infernus ME YP_003615674.1 FeMo-co® Unc. 0.72 0.81 £0.09 0.9
Clostridium kluyveri DSM 555 YP_001396457.1 FeMo-co NifD-B 1.59 0.94 +0.05 1.6
Methanosarcina acetivorans C2A NP_618769.1 FeMo-co NifD-B 1.54 0.93 £ 0.06 1.4
Methanosarcina mazei Go1 NP_632746.1 FeMo-co NifD-B 1.69 0.95 + 0.05 1.4
Azotobacter vinelandii DJ P16266.3 FeFe-co AnfD -0.37 0.67 £0.13 0.8
Clostridium kluyveri DSM 555 YP_001393772.1 FeFe-co AnfD —0.04 0.71 £0.12 0.9
Methanosarcina acetivorans C2A NP_616149.1 FeFe-co AnfD —0.40 0.66 £ 0.13 0.9
Rhodobacter capsulatus Q07933.1 FeFe-co AnfD —0.69 0.64 £0.13 0.9
Azotobacter vinelandii DJ YP_002797497.1 VFe-co VnfD 1.66 0.95 4+ 0.05 0.8
Clostridium kluyveri DSM 555 YP_001395137.1 VFe-co VnfD 1.76 0.96 + 0.05 0.8
Methanosarcina acetivorans C2A NP_616155.1 VFe-co VnfD 0.67 0.80 4+ 0.09 0.9
Rhodopseudomonas palustris CGA009 NP_946728.1 VFe-co VnfD 1.64 0.94 £ 0.05 0.8

C score and TM-scores are internal I-TASSER generated scores for estimating the quality of predicted models. C-scores exist in a range of [-5,2], where a C-score
of higher value signifies a model with a high confidence (\Wu etal., 2007; Roy etal., 2010). TM-score indicates topological similarity of protein structure pairs and
estimated accuracy with a range of [0, 1]. A score of 1 indicates perfect structural similarity (Sali and Blundell, 1993). RMSD values in the table were calculated using
DaliLite (Holm and Park, 2000) against the NifD subunit of the high resolution Nif TM1N structure (Einsle etal., 2002). Uncharacterized nitrogenases are abbreviated

as “Unc.”
8 Internal I-TASSER generated score.

®DaliLite calculated RMSD of model against PDB structure TM1N.

# Cofactor content inferred in this work.

PyMol is shown in (D).

FIGURE 3 | Cartoon diagram of the A. vinelandii nitrogenase D subunits. The NifD structure, drawn from TM1N is in black (A), and predicted structures for
the A. vinelandii vanadium (VnfD) and Fe-only (AnfD) homologs are in green (B) and red (C), respectively. A structural superposition of the three as performed in
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FIGURE 4 | Structural relationships among nitrogenase D subunits as calculated by Voronoi contacts and the complete linkage clustering method.
NifD-A are denoted in black, NifD-B in orange, uncharacterized nitrogenases in purple, AnfD in red, and VnfD in green.

-- NifD-A
.- Unknown
-- NifD-B
.— AnfD
.'- VnfD

ACTIVE SITE STRUCTURAL RELATIONSHIPS

A comparison of amino acids within 5 A of the active site FeMo-co
in inferred structures indicated that they comprise nine separate
sequence areas or motifs (Figure 1; Table 2). For simplicity, the
numbering scheme from that of A. vinelandii NifD was adopted
when discussing these motifs. Two of these areas correspond to the
two active site cofactor ligands Cys®’> and His**? and have been
discussed elsewhere (Glazer and Kechris, 2009). The remaining
sequence areas analyzed here do not share bonds to the active site
and can be considered to be a part of the second shell of amino
acids which surround the cofactor. The amino acid distribution at
these positions between the nitrogenase classes are listed in Table 2.
A number of amino acids in these regions were conserved across all
nitrogenase proteins (Table 2, bold-faced entries). Unique to each
class however, the different nitrogenase types exhibit distinct pat-
terns of conservation. For example, the conserved His?®3 residue
is flanked by either a Glu or Gln residue at position 380 in NifD,
whereas this position is occupied by the positively charged Lys>®0
in the VnfD and AnfD. Uncharacterized nitrogenase homologs
display Thr, Leu, or Met, but never a positively charged residue in
this position. Another notable substitution occurs near conserved
Gly*?*, where Lys or Arg is present at position 428 in NifD and
uncharacterized nitrogenases but is present as Gly in the V- and
Fe-dependent nitrogenase.

Other differences in sequence conservation in D homologs
include Gly*® and Val’®. In biochemical assays, Gly®® substitution
hasbeen shown to result in resistance to acetylene inhibition, while
Val”® substitutions confer the A. vinelandii Mo-dependent nitro-
genase the ability to reduce short chain alkynes thereby increasing
the substrate size range of the enzyme (Christiansen etal., 20005
Mayer etal., 2002; Benton etal., 2003; Seefeldt etal., 2009). Both

Gly®® and Val”® are conserved in the Mo-dependent nitrogenase.
However, His or Leu is observed at position 69 in AnfD and
VnfD, respectively. Importantly, Gly®® is conserved in the unchar-
acterized nitrogenase homologs, adding further support to the
hypothesis that uncharacterized nitrogenases bind FeMo-co.

To further compare the relatedness of nitrogenase homologs
and investigate the potential for uncharacterized nitrogenases to
bind FeMo-co, active site volume calculations were performed
(Dundas etal., 2006). These calculations were motivated by the
untested hypothesis that some of the observed catalytic differences
between the nitrogenase types could be related to the nature of the
FeMo-co binding cavity. Calculations were performed on three
members of each respective lineage, in the absence of the active
site cluster. Representatives included homology models generated
during this study as well as structures obtained from the PDB
(IMIN and 1MIO). The results indicate that calculated active site
volumes varied markedly depending on active site cluster composi-
tion, with NifD having active site cavities of approximately double
the size of those associated with VnfD and AnfD (Table 3). Like-
wise, the uncharacterized nitrogenase D homologs were shown to
have an active site volume that was similar to NifD. These trends
were observed both when the inferred structures were compared
to each other and when inferred structures were compared with
those obtained through x-ray crystallography (e.g., NifD; Kim
etal., 1995; Mayer etal., 1999; Einsle et al., 2002). The similarity in
uncharacterized nitrogenase active site volume to that of NifD, and
the large differences in active site volume between uncharacterized
nitrogenase D homologs and AnfD/VnfD support the hypothe-
sis that uncharacterized nitrogenases most likely harbor an active
site cofactor that is most similar to that present in Mo-dependent
nitrogenase (i.e., FeMo-co).
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Table 2 | Sequence conservation near the nitrogenase active site.

Type Sequence feature
G66 R Q191 N230 G356 H383 G4
NifD-A CxyAGskGVVwWG" SxxxXRRN* GvxQSLGHHia dyNIGGA¥ VGGLRxRH® GYEFxH® SGiKEKf
Unc. CtyAGxxGvaG# R GxsQSxGHh 1GAYNixxD 1 xxGXPrxWH% FxHT 1xGXKEkf1l
NifD-B CxyAGXkGVvV SWxxRRn GVtQSxGHHiA 1GEYNIGGD GGSRxHxY GyeFxHR tGikxky
AnfD CAYyCGAKHVIGY TWQTKRY T GPSQSGGHHKI VGeYNIQGD® 1WxGGSKLWHW vYtKFGHQ ifTGxRPGE
VnfD CafCGaKLVIGG TWHTKRYP GVSQSKGHHx 1 IGDfNIQGD IWTGGPRLWHW MSSKFGHQ ifTGPRVGXL
62 92 188 226 353 377 421

Sequence features are identified by a residue with a raised numeral indicating the A. vinelandii sequence number of the residue directly below it. Underlined residues
are those within 5A of the A. vinelandii active site cofactor. Residues in bold are conserved among all nitrogenases. Residue positions of lower case exhibit conservation
of strongly similar amino acids. Areas with no conservation are indicated by an "x" or a blank space, and raised symbols note positions where an exception exists in the
presence of an otherwise conserved residue. Sequence areas within three residues of the underlined positions are shown where conservation exists. Uncharacterized

nitrogenases are abbreviated as “Unc.”
NC is G in Cylindrospermum stagnale AAN63669. 1.
*Sis R and second R replaced with C in Paenibacillus fujiensis BAH24166.1.

&Sequence conservation limited to “NIG” when including Delftia tsuruhatensis AAS55952.1.

8 First G position is replaced by A in Frankia sp. AAB36877.1.

€ Lyngbya majuscula CCAP 1446 AAY78884.1 contains the insertion “FA” after x.
#C is undetermined in Candidatus Desulforudis audaxviator YP_001716346.1.
%G replaced with S in unnamed Archaea BAF96801.1.

H is R in BAF96801.1.

$First G is V in Clostridium hungatei AAB02935.1.

%GxxxxxG if including Clostridium hungatei AAB02935.1.

Table 3 | Average active site cofactor volume (n = 3 in each case) for
nitrogenases computed by the CASTp server in the absence of the
active site cofactor.

Nitrogenase type Active site volume (A3) Average deviation

only found in genomes that have a full complement of Nif genes
(i.e., Anf and Vnf encoding genomes appear to always encode
Nif; Boyd etal., 2011a). In contrast uncharacterized nitrogenase
genes occur as the only nitrogenase homolog in their respective
genomes. Furthermore these genomes lack genes which encode
a third structural subunit (anfG, vnfG) found to be associated

NifD-A 1701 178 with known alternative nitrogenases (Chatterjee etal., 1997; Lee
Uncharacterized 1842 316 etal., 2009), making it unlikely that they bind either FeV-co or
NifD-B 1931 13 FeFe-co. ) ) )
Mutagenesis studies have shown that the substrate reduction
AnfD 1198 351 . . . . . .
properties of nitrogenase are modified by amino acid substitu-
VnfD 1018 168 tions near the active site (for examples, see Scott etal., 1990; Fay
etal., 2007; Seefeldt etal., 2009; Peters etal., 2011). In addition,
there are significant differences in the specific activities and sub-
DISCUSSION strate reduction properties observed for different metal types of

The diversity of reactions catalyzed by metalloenzymes is a con-
sequence of cofactor composition and the protein environment
in which these cofactors are bound. This study applies computa-
tional tools to examine the relationship between active site cofactor
composition, primary sequence variation, and three-dimensional
structure in nitrogenase homologs. The results of the analyses of
nitrogenase homologs collectively suggest that the uncharacter-
ized nitrogenases are most similar to Mo-nitrogenase and bind
an active site metal center similar to FeMo-co. This conclusion is
supported by (i) global structure similarity, (ii) comparison of cal-
culated active site volume, and (iii) active site neighboring amino
acid composition.

Further support for this conclusion can be derived from
genomic comparison. In the genomes of completely sequenced
organisms harboring uncharacterized NifD analyzed here
(n = 10), AnfD and VnfD homologs are not found, consistent
with a previous finding that alternative nitrogenases (Anf/Vnf) are

nitrogenase. For example, V- and Fe-only nitrogenases have lower
specificactivities and divert a higher proportion of reducing equiv-
alent to hydrogen production than Mo-nitrogenase (Bulen and
LeComte, 1966; Robson etal., 1986; Eady, 1996; Schneider etal.,
1997). These observations indicate that nitrogenase activity is sig-
nificantly impacted by both the local peptide environment and
metal composition.

Many of the amino acids surrounding the cofactor listed in
Table 2 are conserved between nitrogenase types, suggesting that
these have a fundamental role in nitrogenase and were fixed early
in the evolutionary history of nitrogenase. The majority of these
residues are involved in direct coordination of nitrogenase metal
clusters (P-cluster or FeMo-co in Mo-nitrogenase) or have been
implicated in having some functional role through amino acid
substitution studies (Scott et al., 1990; Benton etal., 2003; Barney
etal.,2004; Igarashi et al., 2004; Lee et al., 2004; Seefeldt et al., 2009;
Sarma etal.,, 2010; Yang etal., 2011). Other residues surrounding
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the cofactor that are conserved but only specifically within each
form of nitrogenase are particularly diagnostic in terms of catego-
rizing the uncharacterized nitrogenases. For example, the position
of Arg’® (amino acid sequence of A. vinelandii) is conserved in
NifD, whereas both the AnfD and VnfD have Lys in this position.
The presence of Arg at this position in unclassified nitrogenase
D homologs is suggestive of FeMo-co binding. The presence of a
negatively charged glutamate at position 380 in NifD and a posi-
tively charged lysine in VnfD/AnfD is intriguing, as this position
is located near the variable metal binding site of the nitrogenase
cofactor. While uncharacterized nitrogenase D homologs do not
exhibit conservation at this position, the amino acid observed
at this position is not positively charged as it is in VnfD/AnfD.
Other residues that may possibly delineate metal cofactor bind-
ing among nitrogenase homologs include position 65 in NifD.
Here, both Mo-type and uncharacterized nitrogenase have a con-
served Ala whereas both VnfD and AnfD have Cys. Near position
65, Gly®® of Nif and the uncharacterized lineage differs from the
conserved His or Leu in Anf and Vnf, respectively. These obser-
vations are in line with the observation that in the environment
of Cys?”>, which is a ligand of the nitrogenase cofactor, Mo-type
nitrogenase exhibit the amino acid pattern Cys-Tyr-Arg-Ser, Cys-
Gln-Arg-Ser, or Cys-His-Arg-Ser, whereas the V and Fe-only forms
contain the sequence Cys-Ala-Arg-Ser (Glazer and Kechris, 2009).
Together, these patterns suggest that the uncharacterized Nif bind
FeMo-co.

In summary, the results presented here suggest that uncharac-
terized nitrogenase homologs present in the genomes of anaerobic
methanogens, anaerobic methanotrophic archaea, and anaerobic
firmicutes are likely to harbor FeMo-co. Previous phylogenetic

studies indicate that the ancestral nitrogenase contained FeMo-co,
and that a FeMo-co containing ancestor then diversified to give
rise to alternative nitrogenase and uncharacterized nitrogenase
homologs. That the uncharacterized nitrogenase homologs, which
have yet to be identified in the genomes of aerobes or facultative
anaerobes, harbor FeMo-co supports the notion that diversifica-
tion of nitrogenase toward the use of alternative metals (e.g., V and
Fe) likely occurred in an anoxic environment (Boyd etal., 2011b).
Collectively, these observations contrast with hypotheses put forth
based on the bioavailability of metals in marine environments and
the evolution of nitrogenase, whereby Anf/Vnf were suggested
to predate Nif (Anbar and Knoll, 2002; Raymond etal., 2004).
Reconciling these observations, we suggest an important role for
microenvironments and transient fluctuations in metal availabil-
ity in driving the diversification of nitrogenase early during its
evolutionary history.
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