
“fmicb-04-00021” — 2013/2/13 — 19:01 — page 1 — #1

MINI REVIEW ARTICLE
published: 14 February 2013

doi: 10.3389/fmicb.2013.00021

Extracellular DNA-induced antimicrobial peptide resistance
mechanisms in Pseudomonas aeruginosa
Shawn Lewenza1,2*

1 Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
2 Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada

Edited by:

Fiona Walsh, Agroscope
Changins-Wädenswil, Switzerland

Reviewed by:

Elaine Allan, University College
London, UK
Charles W. Knapp, University of
Strathclyde, UK

*Correspondence:

Shawn Lewenza, Department of
Microbiology, Immunology and
Infectious Diseases, University of
Calgary, 3330 Hospital Drive, Health
Research Innovation Centre, Room
2C66, Calgary, AB, Canada T2N 4N1.
e-mail: slewenza@ucalgary.ca

Extracellular DNA (eDNA) is in the environment, bodily fluids, in the matrix of biofilms, and
accumulates at infection sites. eDNA can function as a nutrient source, a universal biofilm
matrix component, and an innate immune effector in eDNA traps. In biofilms, eDNA is
required for attachment, aggregation, and stabilization of microcolonies. We have recently
shown that eDNA can sequester divalent metal cations, which has interesting implications
on antibiotic resistance. eDNA binds metal cations and thus activates the Mg2+-responsive
PhoPQ and PmrAB two-component systems. In Pseudomonas aeruginosa and many other
Gram-negative bacteria, the PhoPQ/PmrAB systems control various genes required for
virulence and resisting killing by antimicrobial peptides (APs), including the pmr genes
(PA3552–PA3559) that are responsible for the addition of aminoarabinose to lipid A.
The PA4773–PA4775 genes are a second DNA-induced cluster and are required for the
production of spermidine on the outer surface, which protects the outer membrane from
AP treatment. Both modifications mask the negative surface charges and limit membrane
damage by APs. DNA-enriched biofilms or planktonic cultures have increased antibiotic
resistance phenotypes to APs and aminoglycosides. These dual antibiotic resistance and
immune evasion strategies may be expressed in DNA-rich environments and contribute to
long-term survival.
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SOURCE AND FUNCTIONS OF EXTRACELLULAR DNA
Extracellular DNA (eDNA) is released from dead plant or microor-
ganisms and accumulates in soil, aquatic, and sediment envi-
ronments (Dell’Anno and Danovaro, 2005; Vlassov et al., 2007;
Pietramellar et al., 2009). Bacteria actively release or secrete DNA,
or it is released during bacterial lysis and outer membrane vesicle
formation (Chiang and Tolker-Nielsen, 2010). eDNA is known to
accumulate in many Gram-negative and Gram-positive bacterial
biofilms (Tetz et al., 2009; Chiang and Tolker-Nielsen, 2010).

Extracellular DNA is present in healthy body sites and fluids,
such as the gastrointestinal tract, blood, milk, secretions, and likely
on mucosal surfaces (Vlassov et al., 2007). During infection, eDNA
can accumulate due to the heavy recruitment of host immune cells
and the production of neutrophil extracellular traps (NETs), as dis-
cussed later. Chronic lung infections in persons challenged with
cystic fibrosis (CF) are caused by polymicrobial biofilms that are
adapted for long-term survival. The sputum from CF patients has
very high concentrations of eDNA and is the reason for the use
of human recombinant deoxyribonuclease (DNase) as a mucolytic
treatment (Shak et al., 1990; Ranasinha et al., 1993). Inhaled DNase
(Pulmozyme) has been shown to reduce sputum viscosity, inflam-
mation, and exacerbations, as well as improve lung function and
survival (Jones and Wallis, 2010; Konstan and Ratjen, 2012).

DNA IS A NUTRIENT SOURCE
Given the abundance of eDNA in the environment, it is not
surprising that DNA has a significant influence on bacterial

physiology and serves many functions for bacteria. eDNA has
been shown to serve as a sole nutrient source of phosphate, nitro-
gen, and carbon for Pseudomonas aeruginosa, Escherichia coli, and
Shewanella spp. (Finkel and Kolter, 2001; Palchevskiy and Finkel,
2006; Pinchuk et al., 2008). We identified a secreted DNase (EddB)
that is produced in the presence of low DNA concentrations and
under limiting phosphate conditions (Mulcahy et al., 2010). The
EddB DNase is required for degradation of eDNA and utiliza-
tion of DNA fragments or nucleotides as a sole source of carbon,
nitrogen, and phosphate (Mulcahy et al., 2010). There is an alka-
line phosphatase expressed upstream of the DNase, EddA, which
may also be required for phosphorus acquisition from DNA. In
Shewanella oneidensis, a secreted DNase (ExeM) with significant
homology to EddB (34% identity) is also required for utilization of
DNA as a nutrient source (Godeke et al., 2011). A number of intra-
cellular ssDNA exonucleases have also been shown to be required
for growth using DNA as a sole carbon course (Palchevskiy and
Finkel, 2006). DNA uptake also facilitates lateral gene transfer
(LGT) and integration of foreign DNA sequences into the genome.
Palchevskiy and Finkel (2006) proposed that dsDNA was taken
into the cell, similar to the process of DNA uptake for LGT, con-
verted to ssDNA and then degraded by intracellular exonucleases
upon entry into the cytoplasm.

DNA IS A BIOFILM MATRIX POLYMER
Extracellular DNA is required and primarily acts to facilitate
attachment, aggregation, stabilization, and maturation of biofilm
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formation (Chiang and Tolker-Nielsen, 2010). DNase treatment
of young P. aeruginosa biofilms results in biofilm dissolution,
but mature biofilms resist DNase treatment, indicating a role in
early biofilm formation (Whitchurch et al., 2002). Accumulation
of exopolysaccharide (EPS) in mature biofilms probably accounts
for the inability to degrade mature biofilms with exogenous DNase.
Mutant strains that accumulated less eDNA during biofilm for-
mation were more destabilized by treatment with sodium dodecyl
sulfate (SDS; Allesen-Holm et al., 2006), providing further evi-
dence for a role in biofilm stabilization. Treatment of young
biofilms with DNase impaired the development of the cap struc-
tures of mushroom-shaped biofilms (Barken et al., 2008). DNase
treatment of biofilms formed by Gram-negative or Gram-positive
bacteria reduces the biomass, which suggests that eDNA is a ubiq-
uitous DNA polymer (Tetz et al., 2009). The exception to the rule
is in Caulobacter crescentus where eDNA blocks biofilm forma-
tion by binding to the polar holdfast structure, which is required
for irreversible attachment (Berne et al., 2010). eDNA has been
shown to localize to specific regions of mushroom-shaped micro-
colonies formed by P. aeruginosa in flow-chamber biofilms. In
mature microcolonies, eDNA localizes primarily to the stalk struc-
ture, at the boundary of the stalk and cap (Allesen-Holm et al.,
2006). In unstructured peg-adhered biofilms, eDNA can be visu-
alized throughout thin biofilms with no particular organization
(Mulcahy et al., 2008). eDNA has also been shown to be present
as a matrix component in biofilms formed in vivo during infec-
tion with P. aeruginosa (Mulcahy et al., 2011; van Gennip et al.,
2012), Haemophilus influenzae (Jurcisek and Bakaletz, 2007), and
Bordetella (Conover et al., 2011).

EXTRACELLULAR DNA TRAPS
Neutrophil extracellular traps were first described in neutrophils,
but have since been identified in other immune cell types includ-
ing eosinophils and mast cells (Brinkmann and Zychlinsky, 2012).
NETs can kill Gram-positive and Gram-negative bacteria, fungi,
parasites, and viruses (Brinkmann et al., 2004; Urban et al., 2006,
2009; Guimaraes-Costa et al., 2009; Saitoh et al., 2012). Although
there are numerous antimicrobial neutrophil components embed-
ded in NETs (Urban et al., 2009), bacterial killing is largely
attributed to the antimicrobial activity of histones (Brinkmann
et al., 2004). NET killing can be blocked by either dissolving the
NET structure with DNase, or by the addition of neutralizing anti-
histone antibodies, which block histone antimicrobial activity. The
process of NETosis is a novel mechanism of trapping and killing
bacteria, as well as limiting bacterial dissemination (Brinkmann
and Zychlinsky, 2012; McDonald et al., 2012; Yipp et al., 2012),
For the purpose of this review, it is important to note that NET
formation during infection is likely a major contribution of DNA
accumulation at the site of infection. NET formation has been
observed in CF sputum and likely contributes to the accumula-
tion of eDNA during chronic CF lung infections (Marcos et al.,
2010; Manzenreiter et al., 2012). Neutrophils are among the first
immune cells recruited to the infection site and most of the DNA
in the CF lung is derived from neutrophils (Lethem et al., 1990).
In plant roots, an eDNA barrier is produced that protects the root
from infection and is analogous to eDNA traps of human immune
cells (Hawes et al., 2011).

CATION CHELATION AND ANTIMICROBIAL ACTIVITIES OF DNA
The focus of our initial work was to test the hypothesis that
the matrix polymers influence bacterial gene expression. While
biofilm polymers are known to have several protective immune
evasion functions, we wondered if the matrix polymers also drive
unique gene expression profiles that contribute to the phenotypes
of cells in biofilms. Our initial observation upon addition of puri-
fied DNA exogenously to planktonic cultures was that bacterial
growth was inhibited at DNA concentrations greater than 5 mg/ml
(Mulcahy et al., 2008). Due to the highly anionic character of
DNA, we hypothesized that DNA was a cation chelator and indeed
demonstrated that DNA efficiently binds divalent metal cations
that including Mg2+, Ca2+, Mn2+, and Zn2+ (Mulcahy et al.,
2008). In addition, DNA has a rapid antimicrobial killing activity
that can be neutralized by pre-incubating DNA with excess cations
before exposure to bacteria (Mulcahy et al., 2008). As bacterial
surfaces are highly negatively charged and consequently have high
levels of Mg2+ and Ca2+ bound to the surface (Nicas and Hancock,
1980), we suspected that DNA chelated cations from surfaces and
disrupted membrane integrity. Using fluorescence microscopy to
monitor membrane integrity, we demonstrated that DNA causes
major perturbations to the outer and inner bacterial membranes,
leading to rapid cell lysis and death. In addition, cells treated with
antimicrobial concentrations of DNA released small outer mem-
brane vesicles. This result indicated that DNA can strip sections
of outer membrane from the envelope, disrupting outer and inner
membrane integrity, resulting in cell lysis. The membrane destabi-
lizing effects of DNA are similar to that of known cation chelator
ethylenediaminetetraacetic acid (EDTA). DNA appears to have a
broad-spectrum antimicrobial activity against Gram-positive and
Gram-negative bacteria (Mulcahy et al., 2008).

ANTIMICROBIAL PEPTIDE KILLING AND RESISTANCE MECHANISMS
Cationic antimicrobial peptides (APs) are short, amphipathic pep-
tides with broad-spectrum antimicrobial activity produced by
the immune systems of most forms of life (Hancock and Sahl,
2006). The mechanism of killing is primarily through membrane
binding and disruption, although they also disrupt cytoplasmic
processes (Hancock and Sahl, 2006; Kraus and Peschel, 2006).
Host defense peptides are another class of short peptides that may
not have direct antimicrobial activities, but are protective due to
their ability to modulate the innate immune response (Hancock
and Sahl, 2006). APs are positively charged and therefore inter-
act with the negatively charged lipopolysaccharide (LPS) in the
Gram-negative outer membrane surface. The hydrophobic char-
acter permits membrane integration, disruption, and ultimately
cell lysis and death. Gram-negative and Gram-positive bacteria
alter their membrane charge to resist peptide killing by producing
modified phospholipids, LPS, or teichoic acid structures, whose
negative charges are masked (Kraus and Peschel, 2006; Anaya-
Lopez et al., 2012). Surface modifications that contribute to AP
resistance include alanine-modified teichoic acids, highly acylated
lipid A, as well as phosphoethanolamine and aminoarabinose-
modified lipid A species (Kraus and Peschel, 2006; Moskowitz and
Ernst, 2010; Anaya-Lopez et al., 2012). Collectively, these modifi-
cations prevent or limit peptide binding or entry and disruption
of bacterial membranes. CF isolates of P. aeruginosa are known to
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produce highly acylated lipid A species and aminoarabinose mod-
ifications on the 1- and 4′-phosphates of lipid A (Moskowitz and
Ernst, 2010).

DNA-INDUCED EXPRESSION OF THE pmr OPERON
The pmr genes are required for the covalent addition of aminoara-
binose to the 1- and 4′-phosphates of lipid A (Moskowitz and
Ernst, 2010), which protects the outer membrane from AP treat-
ment (Johnson et al., 2012), and is required for peptide resistance
(Moskowitz et al., 2004; Lewenza et al., 2005). The pmr genes are
regulated by the PhoPQ and PmrAB systems in P. aeruginosa, and
in many other Gram-negative organisms including Salmonella
enterica, Klebsiella pneumoniae, and Yersinia pestis (Macfarlane
et al., 1999; Groisman, 2001; McPhee et al., 2006; Cheng et al.,
2010; O’Loughlin et al., 2010). The P. aeruginosa PhoQ sensor
responds to Mg2+ levels and is activated under Mg2+ limiting
conditions, leading to increased expression of the pmr operon. In
Mg2+-rich conditions, the presence of sub-lethal exposure to APs
also induces expression of the pmr operon (McPhee et al., 2003),
although this adaptive resistance is controlled by the CprRS and
ParRS two-component systems (Fernandez et al., 2012).

Although DNA prevented growth at higher concentrations, we
examined the influence of sub-lethal concentrations of DNA on
pmr gene expression. In planktonic cultures grown in Mg2+ rich
media supplemented with DNA, we showed that DNA caused a
concentration-dependent induction of the pmr operon (PA3552–
PA3559) in P. aeruginosa (Mulcahy et al., 2008). DNA induction of
this operon can be explained by cation sequestration by DNA, and
subsequent activation of the PhoPQ/PmrAB systems. Increased
amounts of DNA resulted in more Mg2+ sequestered and therefore
increasingly higher levels of pmr gene expression. Figure 1 depicts
the cation chelating effects of DNA on the structure of LPS in
P. aeruginosa. Gene induction by DNA can be prevented by the
addition of excess cations in combination with DNA, confirming
that the cation chelating activity of DNA can be neutralized. We
have recently shown that eDNA can also induce expression of the
Salmonella enterica serovar Typhimurium pmr operon and causes
increased AP resistance (Submitted), indicating that eDNA may
play a general role in activating the PhoPQ system in DNA-rich
environments.

DNA-INDUCED EXPRESSION OF SPERMIDINE SYNTHESIS GENES
A large number of P. aeruginosa genes are regulated under Mg2+
limiting conditions; some exclusively by PhoPQ and others are
controlled by a second Mg2+ sensing two-component system
PmrAB (McPhee et al., 2006). While the pmr operon is directly
controlled by both PmrA and PhoP (McPhee et al., 2003, 2006),
we identified a three-gene cluster upstream of PmrAB with homol-
ogy to spermidine synthesis genes PA4773 (speD) and PA4774
(speE) that is controlled exclusively by PmrAB (McPhee et al.,
2003). The addition of DNA to planktonic cultures also induced
the expression of PA4773–PA4775 in a concentration-dependent
manner (Johnson et al., 2012). Mutants in the PA4773–PA4775
genes were sensitive to APs, indicating a potential role in resistance
to APs (Lewenza et al., 2005). We confirmed that PA4773–PA4774
were required for spermidine synthesis, which is localized on the
bacterial surface (Johnson et al., 2012). Surface and exogenous

spermidine protects the outer membrane from APs polymyxin B
and CP10A, but also from treatment with other cationic antibiotics
including the aminoglycoside gentamicin (Johnson et al., 2012).
Polyamines are typically found in the cytoplasm but here we have
identified a novel role for polyamines on the bacterial surface. In
the presence of eDNA, we proposed that P. aeruginosa produces
spermidine as an organic polycation replacement for the divalent
metal cation Mg2+ that functions to mask the negative surface
charge and block AP binding (Figure 1). Magnesium ions are
essential to cross-bridge the core phosphates of lipid A, so it is not
surprising that P. aeruginosa produces a replacement polycation in
the presence of DNA or under Mg2+ limiting conditions. Surface
polyamines also act as antioxidants and quench reactive oxygen
species, thereby protecting the outer membrane from oxidative
stress damage to lipids (Johnson et al., 2012).

DNA-INDUCED ANTIBIOTIC RESISTANCE IN BIOFILMS
To test for a role of DNA-induced expression of the pmr genes
in biofilm-specific antibiotic resistance, we determined the min-
imum biofilm eradication concentration (MBEC) in wild type
biofilms and in biofilms formed the presence or absence of exoge-
nous DNA (Mulcahy et al., 2008). DNA-enriched biofilms were
shown to be eightfold more tolerant to the APs polymyxin B
and colistin, and 64- to 128-fold more tolerant to the amino-
glycosides gentamicin and tobramycin. Interestingly, planktonic
cultures containing exogenous DNA also demonstrated DNA-
induced resistance to aminoglycosides and APs (Mulcahy et al.,
2008). Exogenous DNA did not have an effect on β-lactam or
fluoroquinolones resistance. A mutant in the pmr cluster did
not exhibit any DNA-induced resistance to APs, indicating that
these genes were expressed and required for resistance in DNA-
enriched biofilms (Mulcahy et al., 2008). The pmr mutant showed
an intermediate aminoglycoside resistance phenotype, indicating
that the pmr aminoarabinose modification also contributed par-
tially to DNA-induced aminoglycoside resistance. It is possible
that the anionic eDNA bound positively charged aminoglycosides
and provided some protection as a matrix barrier, thus explain-
ing the residual level of resistance in the presence of eDNA. It is
known that DNA is capable of binding to aminoglycosides (Ram-
phal et al., 1988; Purdy Drew et al., 2009) and APs (Bucki et al.,
2007). Therefore it is possible that DNA can induce specific resis-
tance mechanisms and also act as a protective matrix absorbing
and limiting antimicrobial exposure.

CONCENTRATION OF eDNA IN BIOFILMS AND INFECTION SITES
An important question that has not been fully answered is to
determine if sufficient DNA accumulates in biofilms or dur-
ing infections, to induce the expression of these protective,
AP resistance phenotypes. In microarray studies comparing the
gene expression profiles of biofilm to planktonic cultures, the
PhoPQ/PmrAB-controlled genes are not among the biofilm-
induced genes (Whiteley et al., 2001; Waite et al., 2005). This may
be due to an insufficient accumulation of DNA in these particular
biofilm model systems, and/or the presence of high Mg2+ levels
in the growth media used, which can neutralize eDNA and pre-
vent activation of the Mg2+ sensing PhoPQ and PmrAB systems.
However, a recent paper described a novel regulator of biofilm
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FIGURE 1 | Lipopolysaccharide (LPS) modifications in the presence of

extracellular DNA that contribute to antimicrobial peptide resistance.

(A) Divalent metal cations including Mg2+ (orange) bind to the negatively
charged phosphates of the lipid A moiety of LPS and act to stabilize LPS.
Antimicrobial peptides (green) can displace cations and disrupt membrane
integrity, leading to cell lysis and death. (B) Extracellular DNA binds and
sequesters cations from the environment and the membrane. (C) In response

to limiting Mg2+ or cation chelation, the PhoPQ/PmrAB systems are
activated leading to the production of covalently attached aminoarabinose to
the phosphates of lipid A (red) and the production of polycation spermidine
(charge, +3) on the surface, which may bind electrostatically to negative
charges in the core oligosaccharide (dark blue) of the O antigen. Both
modifications mask the negative charges and protect the outer membrane
from peptide damage.

formation, BfmR, which is required for P. aeruginosa to transition
to the maturation-1 biofilm developmental stage (Petrova et al.,
2011). Biofilms formed by this mutant accumulated more eDNA,
which was due to increased bacteriophage-mediated lysis in the
bfmR mutant. Microarrays were performed on bfmR biofilms and
both the pmr and PA4774–PA4775 genes were induced in bfmR
biofilms relative to wild type PAO1 (Petrova et al., 2011). This is
likely due to the increased eDNA accumulation, but it may be
possible that these genes are also controlled by BfmR.

Several papers have reported the pmr-gfp gene expression pat-
tern in P. aeruginosa flow-chamber biofilms (Haagensen et al.,
2007; Pamp et al., 2008). The pmr operon is required for col-
istin resistance in flow-chamber biofilms, but in many of these
studies, there was little or no expression of the pmr operon in
untreated biofilms. This result suggested that there is not sufficient
eDNA accumulation in flow-chamber biofilms cultivated under
these conditions to influence pmr expression. Shortly after col-
istin treatment, pmr-gfp expression was seen in a colistin resistant
subpopulation formed on the caps of mushroom-shaped micro-
colonies (Haagensen et al., 2007). It is known that the presence of
APs can induce the pmr genes, highlighting an adaptive resistance
mechanism whereby the resistance genes are induced by exposure
to sub-lethal concentrations of APs (McPhee et al., 2003). The
colistin resistant subpopulation is metabolically active, motile,
requires various multi-drug efflux pumps, and appears shortly
after the early stages of surface attachment (Haagensen et al., 2007;
Pamp et al., 2008). Colistin treatment was effective at killing the
cells within the inner stalk structures but not the resistant sub-
population on the surface, indicating that colistin penetration is
not limited in flow-chamber biofilms, despite the accumulation
of eDNA and EPS in these biofilms (Haagensen et al., 2007; Pamp
et al., 2008).

Although the total concentration of eDNA can be quantitated
in biofilms (Wu and Xi, 2009), the localized concentration may be
more important than the overall concentrations. The accumula-
tion of DNA at infection sites is not well documented but sputum
from the lungs of persons challenged with CF is known to accumu-
late DNA at concentrations ranging from <1 to 20 mg/ml (Shak
et al., 1990; Ranasinha et al., 1993). There are relatively low Mg2+
concentrations in the CF lung (0.08–2 mM; Palmer et al., 2005;
Sanders et al., 2006), not high enough to neutralize the cation
chelating potential of such high DNA concentrations. Based on
the known concentration of DNA and Mg2+ in CF lung, it is
probable that the PhoPQ/PmrAB-controlled genes are expressed
in the CF lung and may contribute to long-term survival in the CF
lung. Recently, colistin resistant mutants have been characterized
from CF patients and shown to contain gain-of-function PhoQ
and PmrB sensor mutations, leading to increased expression of
the pmr genes (Miller et al., 2011; Moskowitz et al., 2012). This
result underscores the importance of these genes in the CF lung,
particularly in those patients treated with colistin.

FUTURE WORK
To date, we have shown that eDNA influences the expression of
several genes including a secreted DNase, and at least two operons
controlled by the PhoPQ and PmrAB two-component systems.
We are currently exploring the global effect of eDNA on bacterial
gene expression using a genome-wide transcriptomic method and
screening a library of transcription lux fusions (Lewenza et al.,
2005) to identify novel DNA-induced or repressed genes. While
aminoarabinose-modified LPS and surface spermidine both pro-
tect the outer membrane and contribute to AP resistance in vitro,
they may also protect P. aeruginosa from APs produced by the
innate immune system. It will be important to examine the role
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of these surface modifications in protecting P. aeruginosa from
innate immune cells known to produce APs, such as macrophages
and neutrophils.

CONCLUSION
We identified a new property of eDNA as a divalent metal cation
chelator, which is required to induce the expression of multi-
ple operons that contribute to decreasing the permeability of
the outer membrane to APs and aminoglycosides. P. aeruginosa
EPS are also anionic polymers with calcium binding properties,
indicating that cation binding and sequestration may be a gen-
eral feature of the biofilm matrix. The anionic charge of DNA
may also contribute to antibiotic resistance by binding to cationic

antimicrobials and limiting their access to bacterial cells. Since
DNA accumulates in the environment, in infection sites and
in the biofilm matrix, the influence of DNA on gene expres-
sion may contribute to long-term survival in these DNA-rich
environments.
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