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Over 40% of the human genome is recognizable as having been derived from ancient
retroelements, transported by an intracellular copy-and-paste process involving an RNA
intermediate, with an additional few percent classified as DNA transposable elements.
Endogenous retroviruses are long terminal repeat (LTR)-type retroelements that account
for ∼8% of human genomic DNA. Non-LTR members are present at extremely high
copy numbers, with ∼17% of the human genome consisting of long interspersed
nuclear elements (LINEs). These LINEs modify vertebrate genomes not only through
insertions, but also by the indirect replication of non-autonomous retrotransposons, such
as short interspersed nuclear elements. As expected, vertebrate intrinsic immunity has
evolved to support a balance between retroelement insertions that confer beneficial
genetic diversity and those that cause deleterious gene disruptions. The mammalian
cytidine deaminases encoded by the APOBEC3 genes can restrict a broad number of
exogenous pathogens, such as exogenous retroviruses, and the mobility of endogenous
retroelements. Furthermore, APOBEC1 from a variety of mammalian species, which
mediates the cytidine (C) to uridine (U) deamination of apolipoprotein B (apoB) mRNA,
a protein involved in lipid transport, also plays a role in controlling mobile elements. These
mammalian apoB mRNA-editing, catalytic polypeptide (APOBEC) cytidine deaminases,
which can bind to single-stranded DNA (ssDNA) as well as RNA, are able to insert mutations
into ssDNA and/or RNA as a result of their ability to deaminate C to U. While these
APOBEC cytidine deaminases with DNA mutagenic activity can be deleterious to cells, their
biological modifications, such as protein–protein interactions and subcellular localization,
in addition to their ability to bind to RNA, appear to have conferred a role for APOBECs as a
cellular defense system against retroviruses and retroelements. In support of this notion,
the expansion of the single APOBEC3 gene in mice to the seven APOBEC3 genes found
in primates apparently correlates with the significant enhancement of the restriction of
endogenous retroelements seen in primates, including humans.This review discusses the
current understanding of the mechanism of action of APOBEC cytidine deaminases and
attempts to summarize their roles in controlling retrotransposons.
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INTRODUCTION
The ability of members of the apolipoprotein B (apoB) mRNA-
editing, catalytic polypeptide (APOBEC) family to confer intrinsic
immunity against mobile elements was initially recognized for
human APOBEC3G, which can block the replication of a human
immunodeficiency virus type 1 (HIV-1) mutant lacking the virus
infectivity factor (vif) gene (Sheehy et al., 2002). APOBEC3 cyti-
dine deaminases form one element of the cellular machinery that
plays a role in the intrinsic restriction of two distinct classes of
endogenous retroelements: non-long terminal repeat (non-LTR)
retroelements, such as long interspersed nuclear elements (LINEs)
and LTR retrotransposons (for reviews, see Holmes et al., 2007;
Chiu and Greene, 2008; Koito and Ikeda, 2011, 2012). There is
increasing evidence supporting the notion that the primary func-
tion of APOBEC3 cytidine deaminases could be to prevent the
propagation of these intracellular mobile elements. Furthermore,

APOBEC1 from non-human mammals, such as rodents and
rabbits, has prominent intrinsic immune functions, regulating
retroelements including HIV-1 in addition to its integral roles
in editing its primary substrate, apoB mRNA (Bishop et al., 2004;
Ikeda et al., 2008, 2011; Petit et al., 2009).

Increasingly detailed sequence analyses have revealed that a
large portion of the mammalian genome is composed of non-LTR
retrotransposons, with LINE-1 (L1), the most common LINEs,
contributing to >35% of the mass of the mammalian genomes
(Lander et al., 2001; Waterston et al., 2002; Gibbs et al., 2004).
Non-LTR retrotransposons, also called target-primed (TP) retro-
transposons (Beauregard et al., 2008), predominantly undergo
reverse transcription in the nucleus. These autonomous TP
retrotransposons have modified host genomes not only by cre-
ating insertions, but also by their ability in trans to mediate
the retrotransposition of cellular mRNAs to generate processed
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pseudogenes (copies of genes that are no longer functional) and
short interspersed nuclear elements (SINEs). These SINE retro-
transposons further constitute one of the main components of the
genomic repetitive fractions.

On the other hand, the replication cycle of LTR retrotrans-
posons, also called extrachromosomally-primed (EP) retrotrans-
posons (Beauregard et al., 2008), is different, in which reverse
transcription with the formation of virus-like particles (VLPs)
occurs exclusively in the cytoplasm of infected cells. LTR retro-
transposons, also called endogenous retroviruses (ERVs), which
are structurally similar to HIV-1 and other infectious retroviruses,
entered the germ line as infectious retroviruses at several time
points during the evolution of many organisms. These mobile
elements have been inherited through successive generations in
the classical Mendelian manner and have been accumulated by
reinfection and/or retrotransposition throughout evolution in the
host genomes. This review summarizes and discusses the advances
in the general knowledge of the APOBEC family proteins as a
cellular defense mechanism against endogenous invaders of the
genome.

APOBEC FAMILY MEMBERS AS RESTRICTION FACTORS FOR
NON-LTR RETROTRANSPOSONS
LINE-1 element is an autonomous retroelement, and comprises
large fractions of the mammalian genomes (Figure 1). L1 is tran-
scribed by RNA polymerase II to give a ∼6-kb mRNA that encodes
two open reading frames (ORF1p and ORF2p; Moran et al., 1996;
Figure 2). ORF1p binds its own RNA to form a ribonucleoprotein
(RNP) complex. In addition, ORF1p has a nucleic acid chaperon
activity (Kolosha and Martin, 2003), which is also required for L1
retrotransposition (Martin et al., 2005). ORF2p has an endonu-
clease (EN) and reverse transcriptase (RT) domain, and forms a
large RNP complex with the L1 RNA and ORF1p (Mathias et al.,
1991; Feng et al., 1996; Kulpa and Moran, 2006). These structural
alignments are well conserved in LINE-like elements from fish to
mammals, although only mammals appear to limit L1 evolution
to a single lineage (Furano et al., 2004). A comprehensive phylo-
genetic analysis based on the RT domain indicated that the LINEs
can be divided into 11 distinct clades, and that the entire group
was likely present at the beginning of the evolution of eukary-
otes (Malik et al., 1999). An L1 homolog from lower eukaryotes
was demonstrated to be functional, indicating that L1s originated
in the lower eukaryotes and expanded in many vertebrate species
(Dong et al., 2009). These L1 retrotranspositions in various organ-
isms have played, and continue to play, a significant role in shaping
the host genomes through insertional mutagenesis, non-allelic
recombination, and by mobilization in trans of non-L1 RNAs,
such as SINEs (Bannert and Kurth, 2004; Kazazian, 2004; Cordaux
and Batzer, 2009).

A family of host proteins that has been demonstrated to play a
key role in the innate restriction of non-LTR retrotransposons is
APOBEC. All members of human APOBEC3 family, APOBEC3A–
APOBEC3H inhibit L1 to varying degrees (Kinomoto et al., 2007;
Niewiadomska et al., 2007), with APOBEC3A and APOBEC3B
being the most potent. Interestingly, the mechanisms under-
lying antiretroviral and anti-retrotransposon inhibition by the
APOBEC family proteins appeared to differ, with the latter

being independent of enzymatic activity. Similar DNA editing-
independent anti-L1 activity had been reported for activation
induced deaminase (AID) and APOBEC1 proteins in multiple
mammalian species (MacDuff et al., 2009; Ikeda et al., 2011). The
replication cycle of non-LTR retrotransposon L1 differs from that
of LTR retroelements, with reverse transcription occurring within
the cytoplasm that results in the formation of identifiable VLPs
(Figure 2). To date, the exact step of the L1 replication cycle tar-
geted by the APOBEC and other DNA editing-independent L1
restriction machineries has yet to be determined.

It has been documented that human APOBEC3G interacts
with cellular RNAs; mRNAs, tRNAs, and rRNAs, and almost 100
different cellular RNA binding proteins to assemble into high-
molecular-mass (HMM) RNP complexes that are converted to
a low-molecular-mass (LMM) form by RNase treatment (for a
review, see Chiu and Greene, 2008), although intracellular HMM
complex formation does not appear to be a common feature
among APOBEC family proteins. APOBEC3A was reported to
localize in both the nucleus and the cytoplasm and to become asso-
ciated with HMM complexes in the presence of L1 (Niewiadomska
et al., 2007). APOBEC1 proteins were also found to exist in an
HMM form in both the presence and absence of L1 (Ikeda
et al., 2011). Notably, and in sharp contrast to APOBEC3G,
the distribution of APOBEC1s was not affected by RNase treat-
ment, suggesting that this single-domain cytidine deaminase may
interact differently and/or more strongly with cellular RNAs.

Additionally, a homogenous cytoplasmic distribution of
APOBEC3 proteins, along with discrete cytoplasmic foci referred
to as mRNA-processing bodies (P-bodies), which involved in host
mRNA degradation, translational repression, and microRNA-
mediated RNA-silencing machinery has been demonstrated
(Kozak et al., 2006; Wichroski et al., 2006; Gallois-Montbrun et al.,
2007). The accumulation of APOBEC3 proteins in P-bodies can
be explained by several possible mechanisms. The simplest pos-
sibility is that the concentration of APOBEC3 proteins reflects
their binding to a subset of endogenous RNAs, which are trans-
lationally repressed and accumulate in P-bodies. For example,
APOBEC3 proteins might interact with transcripts from endoge-
nous retroelements, and the transcripts might be expected to
be translationally repressed by miRNAs, thereby accumulating
in P-bodies (Klattenhoff and Theurkauf, 2008). However, it
appears that the inhibitory activity of APOBEC3 proteins against
L1 retrotransposition does not correlate with the intracellular
HMM formation or P-body association (Niewiadomska et al.,
2007). Interactions between APOBEC3s and Ago1 and Ago2,
proteins associated with the RNA interference pathway, were
demonstrated (Gallois-Montbrun et al., 2007). Further, APOBEC3
proteins appeared to play a role in preventing the decay of miRNA-
targeted mRNA from P-bodies, thus allowing for translation of
these mRNA (Huang et al., 2007). These observations suggest
that the recruitment of APOBEC family proteins into cellular
sites of RNA metabolism and RNA-silencing pathways may rep-
resent one mechanism for regulating its activity as an inhibitor of
retroelement mobility, and as a possible regulator of cellular RNA
function. P-body associated host factor Moloney leukemia virus 10
(MOV10), an RNA helicase that belongs to the DExD box super-
family, is demonstrated to regulate L1 mobilization (Arjan-Odedra

Frontiers in Microbiology | Virology February 2013 | Volume 4 | Article 28 | 2

http://www.frontiersin.org/Virology/
http://www.frontiersin.org/Virology/archive


“fmicb-04-00028” — 2013/2/18 — 18:59 — page 3 — #3

Koito and Ikeda Restriction of retroviruses and retroelements by APOBECs

FIGURE 1 |The transposable element. (A) The transposable element
content of the human genome. Approximately 45% of the human genome is
currently recognized as being derived from transposable elements.
Transposable elements can be separated into two major classes:
retrotransposons and DNA transposons (adapted with permission from
Cordaux and Batzer, 2009). (B) Retrotransposons, which are found in both
eukaryotes and prokaryotes, move into genomes via RNA intermediates with
reverse transcriptase (RT). The majority of retrotransposons are non-LTR
retrotransposons, such as short interspersed nuclear element (SINE), e.g., B1
and Alu elements, and long interspersed nuclear element (LINE), e.g., LINE-1
(L1). LTR retrotransposons, also called endogenous retroviruses (ERVs) are
multicopy retroelements accounting for around 10% of the mammalian
genome. Examples of LTR retrotransposons are human ERV (HERV), murine
IAP, MusD, various Ty elements of Saccharomyces cerevisiae and copia of
Drosophila. LTR retrotransposons usually lack a functional env gene, and are
structurally similar to mammalian infectious retroviruses, such as MLV and
HIV, which encode an envelope protein (Env) that facilitates their transmission

from one cell to another. In contrast, ERVs either lack this gene or contain a
remnant of an env gene, and can integrate into the genome at a new site
within their cell of origin. (C) The structure of retroelements and their
estimated occurrence in the murine and human genomes. ERVs contain
slightly overlapping open reading frames (ORFs) for their group-specific
antigen (Gag), protease (Prt), polymerase (Pol), and terminal LTRs. The pol
genes encode a RT, ribonuclease H, and integrase to generate proviral cDNA
from viral genomic RNA and to insert it into the host genome. L1 elements
possess two ORFs. A ∼6 kb functional L1 element contains an internal RNA
polymerase II promoter in its 5′ untranslated region (UTR), followed by two
ORFs. ORF1 encodes an RNA-binding protein (ORF1p) that is required for
ribonucleoprotein particle (RNP) formation in the cytoplasm. ORF2 encodes a
protein with endonuclease (EN) and RT activity (ORF2p). A short 3′-UTR is
followed by a poly(A) tail, and the entire element is flanked by target site
duplications (TSDs) indicated by red triangles. An Alu element is an example
of a non-autonomous retrotransposon (adapted with permission from Esnault
et al., 2005).

et al., 2012). In order to clarify the molecular mechanism through
which L1 retrotransposition is inhibited, mainly in a deamination-
independent manner, it is necessary to identify the exact step of
L1 replication that is affected by these APOBEC proteins. Elu-
cidation of this deamination-independent repressive activity of
APOBECs on L1 retrotransposition may provide new insights into
the consequences of deamination-independent HIV-1 inhibition
by APOBEC3 proteins.

Despite the impact of L1 insertion on mammalian genome
evolution, much of the L1 retrotransposition process, especially
in vivo, remains unexplored. The majority of L1s are inactive
due to the truncation, point mutations, and other rearrange-
ments; however, it is estimated that the mouse and human
genomes harbor 3,000 and ∼100 copies of retrotransposition-
competent L1 elements, respectively (Figure 1; Bannert and
Kurth, 2004; Kazazian, 2004; Cordaux and Batzer, 2009). L1

retrotransposition has been demonstrated to result in the gen-
eration of novel polymorphisms in mammalian genomes, as
well as a broad range of sporadic diseases in humans, including
hemophilia A, Duchene muscular dystrophy, β-thalassemia, and
colon cancer (Hancks and Kazazian, 2012). It was demonstrated
that L1 RNA assembled into its RNP complex might be stable
and could be carried over through fertilization using L1 trans-
genic rodent models, suggesting that the majority of de novo L1
retrotransposition usually occurs in early embryonic development
(Kano et al., 2009). This scenario indicates that germ cells should
have evolved several post-transcriptional defense mechanisms that
strictly prevent the integration of transcribed L1 RNA into the
genome. These defense mechanisms include post-transcriptional
silencing via RNA interference (Yang and Kazazian, 2006), and
APOBEC-mediated machinery may also contribute to the control
of L1 retrotransposition in both early embryos and germ cells.
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FIGURE 2 | Models for the retrotransposition cycle of retroelements.

(A) The retrotransposition pathway of L1 retroelements. A functional
full-length L1 element contains an internal promoter in the 5′ untranslated
region (5′ UTR) that initiates transcription. This is followed by two long open
reading frames, ORF1 and ORF2, required for retrotransposition in cis.
A short 3′ UTR is followed immediately by a poly(A) tail, and the entire
element is typically flanked by target site duplications. ORF1p and ORF2p
preferentially associate with their own encoding RNAs (“cis preference”) to
form a RNP complex in the cytoplasm as a retrotransposition intermediate,
and are critical for retrotransposition by a “copy and paste” mechanism. L1
DNA synthesis in the nucleus is based on “target-primed reverse
transcription (TPRT)” in which ORF2p nicks the target chromosomal DNA,
and then uses the resultant 3′-OH to prime the reverse transcription of L1
RNA as a template. Human APOBEC3 proteins have been documented to
associate with stress granules, Staufen granules, or P-bodies (gray
enclosure); however, it appears that the inhibitory activity of human

APOBEC3 proteins against L1 retrotransposition does not correlate with their
P-body association. L1 genomic RNA and reverse-transcribed DNA are
indicated by red and blue colors, respectively.
(B) The retrotransposition pathway of LTR-type retrotransposons (or
endogenous retroviruses, ERVs), e.g., murine IAP, MusD, and yeast Ty1. The
life cycle of these ERVs includes the formation of virus-like particles (VLPs)
that remain intracellular. Reverse transcription of ERVs genomic RNA
occurring in the cytoplasm is called “extrachromosomally-primed reverse
transcription (EPRT)”, and is a complicated, multistep process.
Reverse-transcribed single-stranded DNA is thought to be sensitive to
APOBEC-mediated deamination activity. The proviral copies that have
escaped degradation can integrate, but exhibit G-to-A mutations that render
them defective for subsequent rounds of retrotransposition. P-bodies can
influence the life cycle of ERVs and HIV-1 in either a positive or negative
manner. ERVs genomic RNA and reverse-transcribed DNA are indicated by
red and blue colors, respectively.

In accord with this scenario, APOBEC3s mRNA is expressed in
germ cells (Jarmuz et al., 2002; Mikl et al., 2005; Koning et al.,
2009). Furthermore, APOBEC1 mRNA is expressed in germ cells
in multiple mammalian species (Greeve et al., 1993; Ikeda et al.,
2011), placing both APOBEC3 and APOBEC1 in a compartment

where endogenous retroelements may have the greatest impact
in vivo.

Short interspersed nuclear elements were also demonstrated to
be sensitive to the restriction activity by human APOBEC3 family
members (Bogerd et al., 2006a; Hulme et al., 2007; Tan et al., 2009).
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SINEs are transcribed by RNA polymerase III to give a ∼300-nt
non-coding RNA (Batzer and Deininger, 2002). Retrotransposi-
tion of non-autonomous retrotransposon SINEs depends on the
L1 ORF2p with EN and RT activities (Dewannieux et al., 2003).
It was reported that APOBEC3s do not require direct interactions
with ORF1p with no known specific role in the L1 replication
mechanism to inhibit the L1 retrotransposition (Lovsin and Peter-
lin, 2009). On the other hand, the interactions of ORF2p with
APOBEC family proteins have not been addressed, thus far, since
ORF2p within the cells is difficult to detect, even in the context of
overexpression systems (Goodier et al., 2004). Therefore, the pre-
cise step(s) during which both LINE and SINE retrotransposition
are affected by APOBEC family proteins are still unknown.

APOBEC1, as well as APOBEC3A and APOBEC3G, are able to
inhibit nascent L1 DNA accumulation, suggesting that L1 reverse
transcription, integration, and/or the intracellular movement of
L1 RNPs are affected by these APOBEC enzymes (Kinomoto
et al., 2007; Ikeda et al., 2011). The suppressive activity of these
molecules against de novo L1 DNA synthesis occurred mainly
in a deamination-independent manner, and was not affected by
the subcellular localization of the proteins (Ikeda et al., 2011). It
has not been described whether APOBECs interact with specific
sequences in the Alu and L1 genomic RNA and/or L1-encoded
ORF2p and/or host factor(s) that facilitate retrotransposition.
These interactions might be able to interfere with the subsequent
transport and/or nuclear import of cytoplasmic RNPs (for reviews,
see Koito and Ikeda, 2011).

Although these genetic transposable elements have been mainly
considered to be molecular fossils until recently, SINEs, which
include murine B1 and human Alu elements, appear to play
roles in the regulation of gene expression, the stress response,
and proteome diversity (Chu et al., 1998; Ponicsan et al., 2010).
This L1-mediated Alu retrotransposition has also been demon-
strated to result in human diseases such as cancer (Dewannieux
et al., 2003; Konkel and Batzer, 2010). Current studies are fur-
ther emphasizing that SINEs insertions are involved in organizing
and regulating intricate transcriptional pathways by dispersal of
CCCTC-binding factor (CTCF), which acts as a master regulator
of mammalian genomic boundaries that helps establish vertebrate
insulators (Schmidt et al., 2012). Of note, increasingly detailed
analyses of primate genomes informed that human genome con-
tains threefold more abundant Alu sequences than that of the
chimpanzee (Mikkelsen et al., 2005). Alu insertions appear to be
particularly active in the human lineage after human–chimpanzee
divergence, where they likely contribute to shaping some of the
human-specific characteristics, such as brain size (Britten, 2010).

On the other hand, the L1 sequences of a transcript were
demonstrated to possess a strong A-rich bias in the sense strand
and serve as an evolutionary fine-tuner of the mammalian tran-
scriptome by significantly decreasing RNA expression, and there-
fore protein expression (Han et al., 2004). Because L1 is also an
abundant and broadly distributed mobile element, the inhibition
of transcriptional elongation by L1 might profoundly affect the
expression of endogenous human genes. Interestingly, recent stud-
ies further suggested that somatic genome mosaicism driven by L1
retrotransposition in the brain may influence brain activity (Bail-
lie et al., 2011). The rapid expansion of non-LTR retrotransposons

is likely to have had a major impact on the landscape and plasticity
of the host genome, and significantly increased the rate of mam-
malian evolution, especially that of primates. Current hypotheses
predict that the rapid expansion of L1 and Alu elements exerted
strong positive selective pressure that resulted in the rapid evolu-
tion of APOBEC3s in primates around 30–50 million years ago
(Jarmuz et al., 2002; Zhang and Webb, 2004).

APOBEC FAMILY MEMBERS AS RESTRICTION FACTORS FOR
LTR RETROTRANSPOSONS
Retroviruses that integrate into the germ line may be inherited
vertically as ERVs, also known as LTR retrotransposons. Around
10% of the mammalian genomes is composed of these ERV ele-
ments (Figure 1), but the majority of them have been sufficiently
degraded over time through mutations and deletions so that they
are incapable of expressing infectious viruses (Bannert and Kurth,
2004; Kazazian, 2004; Jern and Coffin, 2008).

Following the discovery of the restriction activity of APOBEC3
proteins against HIV-1, similar DNA editing-dependent activi-
ties against murine ERVs, such as the intracisternal A particle
(IAP) and MusD, were documented (Esnault et al., 2005, 2006;
Bogerd et al., 2006b; Schumacher et al., 2008). The life cycle of
IAP and MusD includes the formation of VLPs and reverse tran-
scription in the cytoplasm of infected cells (Figure 2). IAP and
MusD lack an extracellular phase and are not infectious, due to
the absence of a functional env gene. The mouse genome con-
tains numerous copies of IAP and MusD, of which about 300 IAP
and 10 MusD copies are still active for autonomous intracellular
retrotransposition (Figure 1; Dewannieux et al., 2004; Ribet et al.,
2004). IAP and MusD mRNAs are expressed in germ cells, during
early embryogenesis and in various tumor cells, and IAP VLPs are
demonstrated to assemble and bud at the endoplasmic reticulum
(ER) membrane (Heidmann and Heidmann, 1991; Dupressoir
and Heidmann, 1996; Baust et al., 2003). In humans, IAP-like
VLPs were detected in salivary tissues and in peripheral blood
mononuclear cells, and appeared to be associated with Sjögren’s
syndrome and CD4+ T cell deficiencies, respectively (Garry et al.,
1990; Gupta et al., 1992). IAP insertions can lead to mutations
and contribute to pathological processes. Therefore, it is critical
for host cells to maintain their retrotransposition at low levels in
order to maintain genome stability.

The inhibitory activity of APOBEC3 proteins against IAP and
MusD appeared to be based, at least in part, on cytidine deamina-
tion. Consistent with reports indicating that the inhibitory activity
of APOBEC3 proteins against exogenous retrovirus, such as HIV-1,
was mediated by their selective incorporation into retroviral parti-
cles through an RNA-dependent interaction with the Gag protein,
direct interactions between APOBEC3 proteins and IAP Gag have
been demonstrated (Bogerd et al., 2006b). The molecular mech-
anisms responsible for the editing of reverse-transcribed DNA
from endogenous and exogenous retroviruses appeared to overlap
(Esnault et al., 2005; Bogerd et al., 2006b). Further, a genetic analy-
sis demonstrated that some endogenous murine leukemia viruses
(MuLVs) in the C57BL/6J genome bear the signatures of muta-
tions induced by the murine APOBEC3 protein (Jern et al., 2007),
indicating that these ERVs (MERVs) have been in conflict with
APOBEC3 during murine evolution. The APOBEC3 enzyme was
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demonstrated to be dispensable for mouse development, survival
and fertility (Mikl et al., 2005), although APOBEC3-knockout
mice were more susceptible to Moloney MuLV (M-MuLV; Takeda
et al., 2008; Low et al., 2009) and mouse mammary tumor virus
(MMTV) replication (Okeoma et al., 2007). Although the murine
APOBEC3 expressed in germ cells appears to be the likely mediator
of the hypermutations observed in the MERVs, the participation
of other cytidine deaminases in these modifications of the MERVs
genome cannot be excluded at present. In addition, previous ex
vivo studies on the effects of murine APOBEC3 on MuLV replica-
tion have been less clear (Doehle et al., 2005; Abudu et al., 2006;
Zhang et al., 2008). MuLV is simple gammaretrovirus and does
not encode any known vif analog. However, murine APOBEC3
does not induce obvious cytidine deamination when incorporated
into MuLV virions. It is proposed that MuLV has evolved yet an
unidentified mechanism for blocking the ability of APOBEC pro-
teins to mediate deamination-dependent hypermutation (Browne
and Littman, 2008, Rulli et al., 2008).

AID from multiple species, including lower vertebrates such as
fish, and APOBEC1 proteins from several mammalian species were
also found to possess the capacity to inhibit murine IAP and MusD
elements (Esnault et al., 2006; MacDuff et al., 2009; Ikeda et al.,
2011). These results raise the possibility that not only APOBEC3
proteins, but also AID and APOBEC1 cytidine deaminases par-
ticipate in the intrinsic immunity of various vertebrates against
the retrotransposition of endogenous and exogenous retroviruses.
The catalytic activity of APOBEC1 appears to be critical for this
repressive activity (Ikeda et al., 2008, 2011).

P-bodies appear to influence viral life cycles, including those
of LTR retrotransposons within host cells, in either a positive
or negative manner (reviewed in Beckham and Parker, 2008),
although the underlying mechanism is not fully understood.
Indeed, P-bodies play a major role during the replicative cycles
of LTR retrotransposon Ty elements in yeast (Beliakova-Bethell
et al., 2006). P-body is subcellular foci where Ty mRNA and pro-
teins aggregate to facilitate their assembly and replication. On
the other hand, the siRNA-mediated knockdown of RNA-induced
silencing complex (RISC) and P-body-associated proteins was
demonstrated to increase HIV-1 replication and IAP retrotrans-
position (Chable-Bessia et al., 2009; Nathans et al., 2009;Lu et al.,
2011). P-body-associated host factor MOV10 is also demonstrated
to inhibit IAP retrotransposition (Lu et al., 2012).

It was suggested that HIV-1 preferentially packages newly
synthesized human APOBEC3G, rather than the RNA-bound
APOBEC3G found in P-bodies or in the HMM complex (Soros
et al., 2007; Ma et al., 2011). The efficiency of packaging into HIV-
1 particles appears to correlate with the ability of APOBEC3G to
binds to HIV-1 Gag nucleocapsid (NC) domain and to require
bridging to heterologous single-stranded RNAs such as Pol II-
transcribed poly(A)+ RNA and several Pol III-transcribed RNAs
(Bogerd and Cullen, 2008). Among Pol III-transcribed short, non-
coding RNAs, human 7SL RNA and Y RNAs were demonstrated
to promote HIV-1 Gag NC binding by APOBEC3G, while some
highly structured RNA molecules, such as the tRNA and rRNA,
failed to rescue APOBEC3G:NC complex formation. This RNA
bridging by APOBEC3G, not RNA binding by NC, appears to
render APOBEC3G competent to associate with HIV-1 NC.

So far, no active ERVs have been isolated in the human genome
(HERVs), despite evidence for recent (<200,000 years) amplifica-
tion (Bannert and Kurth, 2004). However, although none of the
HERVs are replication-competent due to their accumulation of
mutations (deletions, termination, and frame shifts), more than 20
independent HERV families, which include proviruses that belong
to beta-, gamma-, and spuma-retrovirus families, have been iden-
tified (Tristem, 2000). HERV families have been classified by the
tRNA specificity of their primer binding site (PBS; Blomberg et al.,
2009). Many HERV families have lost the ability to transfer, how-
ever, several HERV elements, e.g., HERV-K, HERV-H, HERV-W,
and HERV-L, possess intact ORFs that encode structural genes
and retain the capacity to be translated under certain conditions,
including embryonic development and disease states (Kurth and
Bannert, 2010).

The relationship between HERV elements and human dis-
eases has been widely discussed following the detection of various
HERV genome-derived mRNA, proteins, and even viral particles
in patients with several diseases (Nelson et al., 1999; Mayer, 2001;
Christensen, 2010). It has also been demonstrated that HERVs
exhibit complex interactions with exogenous infectious viruses,
such as HIV-1 and herpesviruses (Christensen, 2010). Of note,
the most recently active HERVs, known as the HERV-K family
with homology to MMTV (Mayer and Meese, 2005), which were
reconstituted on the basis of ancient HERV-K sequences, could
be restricted by APOBEC3 proteins in an ex vivo assay for their
mobility (Lee and Bieniasz, 2007; Esnault et al., 2008; Lee et al.,
2008). Moreover, the genetic analyses demonstrated that ancient
HERV-K elements carry clear footprints of the deamination activ-
ity by human APOBEC3G, and to a lesser extent, APOBEC3F.
The optimal sequence context of G-to-A mutations was consistent
with human APOBEC3s-mediated editing (Armitage et al., 2008).
This analysis provided the physiological relevance of the observed
ex vivo assay. Primate APOBEC3s have been subjected to strong
positive selection throughout primate evolution, and the rapid
expansion of this gene family was suggested to occur in primates
(Sawyer et al., 2004; Zhang and Webb, 2004).

It is still unclear whether human APOBEC3s have shaped the
HIV-1 genome, because the results have been conflicting. Obvi-
ously, modern retroviruses such as HIV-1 were not a driving force
that facilitated this rapid expansion of the APOBEC3 locus on
human chromosome 22q13 over millions of years of primate evo-
lution, since HIV-1 has emerged and entered into the human
population during the last 100 years (Korber et al., 2000; Keele
et al., 2006; Worobey et al., 2008). In accord with this, it was cur-
rently demonstrated that the highly targeted motifs by human
APOBEC3G and 3F (e.g., TGGG [the underlined G in the plus
strand is deaminated to A]) have not been removed by selective
pressure, suggesting the lack of an evolutionary footprint left by
human APOBEC3s on the HIV-1 genome (Ebrahimi et al., 2011),
although several studies have documented the possibility that evo-
lutionary pressure from human APOBEC3s has shaped the HIV-1
genome (Yu et al., 2004; Armitage et al., 2008).

Based on these findings, it is reasonable to consider that the
rapid evolution of APOBEC3s in primates can be attributed to
the strong positive selective pressure from their targets, endoge-
nous retrotransposons such as L1 and Alu elements, and that
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their evolution has been further promoted by repeated retrovi-
ral infection, including HERVs. The APOBEC3 locus appears to
have undergone major expansion during the evolutionary radia-
tion of primates (LaRue et al., 2008). In primate lineage, humans,
chimpanzees, and rhesus macaques share similar APOBEC3 locus
architectures, with a seven-protein coding capacity of analogous
domain organization (OhAinle et al., 2006; LaRue et al., 2008),
indicating that rapid expansion of the APOBEC3 locus started
before the separation of hominoids from Old world monkeys such
as rhesus macaques over 50 million years ago. These APOBEC3s
in rhesus macaques are demonstrated to be packaged into and
restrict HIV-1 and neutralized by the SIV mac239 Vif (Hultquist
et al., 2011). This rapid expansion of the APOBEC3 locus in pri-
mates may have caused a dramatic decline in the retrotransposon
expansion activity in primates, since 35–50 million years ago (Lan-
der et al., 2001). This scenario also raises the question why these
unique rapid expansions of the APOBEC3 locus have occurred
only in primate lineages, since “interspersed repeats” (copies of
transposable retroelements) appear to be characteristically abun-
dant in mammalian genomes (Lander et al., 2001; Waterston et al.,
2002; Gibbs et al., 2004). The activity of APOBEC1 genes against
retrotransposons may further expose evidence of a complex evo-
lutionary history between APOBEC family and retrotransposons.
The details of the expansion are not fully understood as the
orthologs of many APOBEC3 genes have not been sequenced in
other placental mammals. It is tempting to speculate that the func-
tion of APOBEC family proteins, such as APOBEC1, in intrinsic

immunity has been taken over by expansion of APOBEC3s in
primates, but they are conserved in the ancestor of placental
mammals.

CONCLUSION
The spectrum of biological functions of the APOBEC family is
expanding. Several members of this family play important roles in
intrinsic immunity by regulating the spread of foreign and endoge-
nous nucleic acids through non-editing and editing mechanisms.
In doing so, they balance the beneficial and deleterious effects of
retrotransposition on the host genome. While the restriction activ-
ity of the APOBEC family against retroviruses and retroelements
is a fairly recent discovery, earlier studies of the zinc-dependent
deaminase superfamily of both prokaryotes and eukaryotes that
act on nucleosides and nucleotides have provided evidence of
a complex evolutionary history. These research findings on the
ancient origins of the APOBEC family, and its presence in widely
divergent vertebrate lineages provide further insights into the
co-evolution of the APOBEC family and retrotransposons.
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