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Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Italy

Edited by:

Nuno Pereira Mira, Instituto Superior
Técnico; Institute for Biotechnology
and Bioengineering, Portugal

Reviewed by:

Maria João Sousa, Universidade do
Minho, Portugal
Dina Petranovic, Chalmers University
of Technology, Sweden
J. Marie Hardwick, Johns Hopkins,
USA

*Correspondence:

Sergio Giannattasio, Istituto di
Biomembrane e Bioenergetica,
Consiglio Nazionale delle Ricerche,
Via Amendola 165◦, 70126 Bari, Italy.
e-mail: s.giannattasio@ibbe.cnr.it

Beyond its classical biotechnological applications such as food and beverage production
or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism
to study fundamental mechanisms of cell response to stressful environmental changes.
Acetic acid is a physiological product of yeast fermentation and it is a well-known food
preservative due to its antimicrobial action. Acetic acid has recently been shown to
cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of
S. cerevisiae stress adaptation and programmed cell death in response to acetic acid.
We shall elaborate on the intracellular signaling pathways involved in the cross-talk of
pro-survival and pro-death pathways underlying the importance of understanding
fundamental aspects of yeast cell homeostasis to improve the performance of a given
yeast strain in biotechnological applications.
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INTRODUCTION
Acetic acid is a stress and death inducing agent produced en route
to alcoholic fermentation carried out by Saccharomyces cerevisiae.
Acetic acid can have negative effects in industrial fermentation pro-
cesses such as wine production, negatively affecting wine quality
(Garay-Arroyo et al., 2004; Vilela-Moura et al., 2010), or ligno-
cellulosic fermentations for bioethanol production (Klinke et al.,
2004; Liu and Blaschek, 2010; Mira et al., 2010b) underpinning its
biotechnological relevance. For example, acetic acid concentration
in grape must and wine may vary from 4 to even 80 mM, depending
on its microbial origins (Antonelli et al., 1999; Vilela-Moura et al.,
2010). Acetic acid is also a food preservative and the resistance
of some yeast species to this compound can be associated with
food spoilage causing major economic losses in the food indus-
tries (Stratford, 2006; Fleet, 2007). Thus the elucidation of the
stress resistance and cell death mechanisms induced by acetic acid
in yeast can impact the design of strategies for improving fermen-
tations or decrease the food spoilage by acetic acid resistant-yeast
species.

On the other hand, a fundamental aspect of acetic acid stress
response is related to the capacity of the model organism S.
cerevisiae to cope with newly encountered environmental con-
ditions. Yeast may adapt and survive with alternatives in their
genome expression and metabolism and is one of the most thor-
oughly studied unicellular eukaryotes at the cellular, molecular,
and genetic level due to its well-known experimental tractabil-
ity (Gasch and Werner-Washburne, 2002). Evidence has also
been gathered showing that S. cerevisiae is able to undergo a
programmed cell death (PCD) process triggered by different
internal and external stimuli including acetic acid (Madeo et al.,
1997, 1999; Ludovico et al., 2001, 2003). Such findings provide

new tools and a model for cell death research at the molecular
level (Carmona-Gutierrez et al., 2010). It is of note that mortality
induced by acetic acid which accumulates in the culture medium
has been proposed to participate in the mechanism of chronolog-
ical aging in yeast; accordingly, buffering the medium to pH 6–7
significantly extends chronological life span (Burtner et al., 2009;
Weinberger et al., 2010).

In this review we elaborate on current knowledge on the mech-
anisms of toxicity and tolerance to acetic acid stress obtained in
the model eukaryote S. cerevisiae.

ACETIC ACID STRESS AND YEAST ADAPTATION
Like other weak acids, acetic acid displays increased antimicrobial
action at low pH (<pK a = 4.76) in the undissociated state (Lam-
bert and Stratford, 1999). At pH 4.5 the uncharged molecules enter
cells primarily by facilitated diffusion through the Fps1p aquaglyc-
eroporin channel (Mollapour and Piper, 2007), encounter a more
neutral pH in the cytoplasm and dissociate into acetate and pro-
tons (Figure 1). The protons lead to cytoplasmic acidification
thereby inhibiting important metabolic processes (Arneborg et al.,
2000). Weak acids induce activation of the proton-translocating
ATPase Pma1p in yeast plasma membrane, which pumps out the
protons generated by weak acid dissociation in the cytosol in an
ATP-dependent manner. This ensures maintenance of the electro-
chemical potential across plasma membrane regulating ion and
pH balance and providing energy for nutrient uptake (Carmelo
et al., 1997; Martinez-Munoz and Kane, 2008; Ullah et al., 2012).

However, the differences in weak acid toxicity appear to mir-
ror major differences existing in the transport and metabolism
of the weak acid in yeast cells. Differently from sorbic and ben-
zoic acid, which cannot be metabolized by S. cerevisiae and act
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FIGURE 1 | Mechanisms of acetic acid stress response in S. cerevisiae

cells. When yeast cells utilize acetic acid as the sole carbon source acetate
anion enters cells through either Jen1p or Ady2p monocarboxylate transporter
where it is converted into acetyl-CoA which enters the TCA or the glyoxylate
cycle. Both acetate transport and metabolism are inhibited by glucose. At low
pH (pK a = 4.76), in the presence of glucose, acetic acid enters cells in its
undissociated form by facilitated diffusion through Fps1p aquaglyceroporin
channel, where more neutral cytosolic pH causes its dissociation into acid
anions and protons. Concomitant cytoplasmic acidification by protons induces
the activation of the Pma1p, a plasma membrane ATPase that pumps protons
out of the cell. Acetic acid challenge may activate Hog1p, a MAP-kinase
involved in phosphorylation and subsequent ubiquitination, endocytosis, and
final vacuolar degradation of Fps1p, and transcription factor Haa1p enabling
cells to adapt to varied levels of acetic acid. On the other hand, lethal

concentrations of acetic acid induce ROS accumulation, cyt c release and
mitochondrial dysfunction, caspase-like activity increase leading eventually to
cell death (AA-PCD), with chromatin condensation and nuclear DNA
fragmentation occurring as PCD hallmarks. AA-PCD can occur in
YCA1-dependent or YCA1-independent manner. RTG signaling pathway is
proposed to be activated in certain growth conditions causing AA-PCD
resistance and cell adaptation to acetic acid stress (see text for details). RTG
pathway is linked to TOR and Ras signaling pathways, where the former has
an inhibitory effect on Rtg1/3-dependent gene expression, and the latter
enhances retrograde response. Hyperactivation of Ras–cAMP–PKA pathway
can lead to mitochondrial dysfunction, ROS production and apoptosis. Cell
adaptation and acetate metabolic pathways (green arrows) and AA-PCD
pathways (red arrows) are shown. COX, cyt c oxidase; RCI, respiratory control
index; ROS, reactive oxygen species; TCA, tricarboxylic acid.

as membrane-damaging substances causing severe oxidative stress
under aerobic conditions (Stratford and Anslow, 1998; Piper, 1999;
Piper et al., 2001), acetic acid can be used as the sole carbon and
energy source by S. cerevisiae and is not toxic under such condi-
tions. Thus, S. cerevisiae cells are normally able to grow on acetic
acid medium. Under this condition the weak acid is found in
a dissociated form and acetate is transported across the plasma
membrane either through an electroneutral proton symport trans-
porter, encoded by ADY2 (Casal et al., 1996; Paiva et al., 2004) or
the monocarboxylate transporter encoded by JEN1 (Casal et al.,
1999). Acetate taken up by cells is converted to acetyl-CoA by
one of either peroxisomal or cytosolic acetyl-CoA synthetases.
Acetyl-CoA is then consumed in the glyoxylate shunt or oxidized in

mitochondria through the tricarboxylic acid cycle (Vilela-Moura
et al., 2008; Lee et al., 2011, and references Therein). However, typ-
ical S. cerevisiae cells grown on glucose cannot metabolize acetic
acid due to the activation of glucose repression pathways (Rolland
et al., 2002). Thus, yeast is sensitive to acetic acid stress in the pres-
ence of glucose. Acetate transport, as its metabolism, is also under
glucose repression in S. cerevisiae but not in Zygosaccharomyces
bailii that can metabolize acetic acid in the presence of glucose and
is known for its high resistance to weak acids in glucose-containing
media (Sousa et al., 1998; Rodrigues et al., 2012).

In glucose-containing media at pH 4.5 yeast cells can activate
an adaptive response to weak acids, and resume to grow after
a lag phase. Mechanisms of yeast adaptation to most common
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monocarboxylate preservatives mainly involve plasma membrane
transporters and proton-translocating ATPase. Plasma membrane
transporter Pdr12p, a member of ATP-binding cassette (ABC)-
transporter family was strongly induced by sorbic, benzoic acid,
and certain other moderately lipophilic carboxylate compounds,
and to a lesser extent by acetic acid. The accumulation of
Pdr12p in the plasma membrane, dependent on War1p transcrip-
tion factor (see below), increases weak acid resistance mediating
cellular extrusion of weak acid anion (Hatzixanthis et al., 2003;
Piper, 2011).

Transcription factor Haa1p is required for a rapid yeast adapta-
tion to acetic and propionic acids (Fernandes et al., 2005; Figure 1).
In particular, Haa1p, directly or indirectly, specifically regulates
approximately 80% of the acetic acid-induced gene expression
(Mira et al., 2010a,b,c, 2011). Among the Haa1p regulon, elimi-
nation of HRK1 and, to a lower extent, of SAP30 gene, led to the
strongest susceptibility phenotypes to acetic acid, the first gene
encoding a protein kinase possibly involved in the reduction of
intracellular acetate concentration and the latter encoding a com-
ponent of the Rpdl3L histone deacetylase complex involved in the
epigenetic regulation of yeast transcriptional response to acetic
acid stress (Mira et al., 2010a). Other transcription factors which
are known to orchestrate weak acid stress response in yeast includ-
ing Msn2p/Msn4p and Rim101p, regulate only a few number of
acetic acid-tolerance gene transcription (Schuller et al., 2004; Mira
et al., 2010c; Piper, 2011).

Unlike the sorbic acid stress, in which a gain of function of
Pdr12p transporter is involved in the acid resistance through
PDR12 up-regulation, adaptation to acetic acid involves a loss of
function (Mollapour et al., 2008 and references therein) of Fps1p
aquaglyceroporin (Figure 1). Acetic acid challenge at low pH
causes activation of two mitogen-activated protein (MAP) kinases,
Hog1p, involved in the high-osmolarity glycerol (HOG) signaling
pathway (Hohmann, 2009) and Slt2p involved in cell wall integrity
pathway (Fuchs and Mylonakis, 2009). Hog1p-dependent phos-
phorylation of Fps1p results in its ubiquitination, endocytosis,
and final degradation in the vacuole (Mollapour and Piper, 2007;
Mollapour et al., 2009). Therefore, in a weak-acid specific manner,
the Hog1p-directed destabilization of Fps1p eliminates the route
for acetic acid entry into the cell, generating a resistance to varied
levels of acetic acid (Piper, 2011; Zhang et al., 2011).

Such acetic acid stress response is different from hyperosmotic
stress adaptation. At pH 6.8 on glucose medium cultures, very high
concentrations of acetate anion (500 mM) inhibit yeast cell growth
inducing a typical HOG response to sodium acetate salt stress
with up-regulation of the expression of GPD1, encoding glycerol-
3-phosphate dehydrogenase, and increased intracellular glycerol
level to counteract hyperosmotic stress (Mollapour and Piper,
2006; Hohmann, 2009). At pH 4.5 a much lower acetic acid level
(100 mM) is needed to cause comparable growth inhibition, with
GPD1 transcript displaying only a slight, transient induction and
declining of intracellular glycerol (Mollapour and Piper, 2006).
Yet, the transcription factors Gis1p and Rph1p, regulating glycerol
and acetate metabolism, have been shown to function downstream
of TOR, RAS/cAMP, and AKT/SCH9 pathways in extending the
lifespan of nutrient restricted yeast cells (Orzechowski Westholm
et al., 2012).

ACETIC ACID-INDUCED PROGRAMMED CELL DEATH
Depending on their concentrations as well as on their lipophilic
moiety, weak acids may cause delay of microbial cell growth,
cytostasis, or cell death (Stratford and Anslow, 1996, 1998; Piper
et al., 2001). Less lipophilic acetic acid under certain conditions,
compromises cell viability leading cells to death (Pinto et al., 1989;
Ludovico et al., 2001).

The yeast S. cerevisiae undergoes a PCD process in response
to lethal concentrations of acetic acid. Recent achievements in
the characterization of cell components and mechanisms involved
in yeast acetic acid-induced PCD (AA-PCD) are reported below
(Figure 1).

Since the discovery of a yeast mutant exhibiting apoptosis hall-
marks (Madeo et al., 1997), S. cerevisiae has been established
as an ideal model system to study PCD pathways due to the
high level of phylogenetic conservation of biochemical pathways
and regulators between yeast and mammals (Carmona-Gutierrez
et al., 2010). Yeast PCD shares most of the morphological and
biochemical hallmarks of mammalian apoptosis, such as phos-
phatidylserine externalization to the outer layer of the cytoplasmic
membrane, DNA fragmentation, chromatin condensation, reac-
tive oxygen species (ROS) production as well as a pivotal role of
mitochondria (Eisenberg et al., 2007; Pereira et al., 2008; Guarag-
nella et al., 2012).

Exponentially growing S. cerevisiae cells undergo PCD when
exposed to 80 mM acetic acid (Ludovico et al., 2001; Giannatta-
sio et al., 2005a). Progressive loss of viable cells is complete after
200 min from AA-PCD induction. Consistently, AA-PCD cells
showed early chromatin condensation with intact plasma mem-
brane together with ribosomal RNA degradation; nuclear DNA
fragmentation ensues, with the maximum percentage at 150 min
(Guaragnella et al., 2006; Ribeiro et al., 2006; Giannattasio et al.,
2008; Mroczek and Kufel, 2008). The earliest event (15 min) fol-
lowing acetic acid challenge is ROS production, with a different
role for hydrogen eroxide and superoxide anion (Guaragnella et al.,
2007). Hydrogen peroxide appears to be a second messenger in
AA-PCD cascade of events, as also shown by AA-PCD inhibi-
tion by ROS scavenger N-acetyl cysteine (NAC; Guaragnella et al.,
2010b). ROS level en route to AA-PCD is modulated by the antiox-
idant enzymes catalase and superoxide dismutase (SOD), whose
over-expression prevents and exacerbates AA-PCD, respectively
(Guaragnella et al., 2008).

Mitochondria are strongly implicated in AA-PCD. Following
AA-PCD induction the release of cytochrome c (cyt c) starts at
60 min and reaches a maximum at 150 min. Cyt c is released from
intact coupled mitochondria and once in the cytosol can function
both as an electron donor and a ROS scavenger. Later in AA-PCD
released cyt c is degraded, possibly by yet unidentified proteases
and mitochondria become gradually uncoupled as judged by a
decrease of the respiratory control index (RCI), a collapse of the
mitochondrial membrane potential, a reduction in cyt c oxidase
(COX) activity and in cytochromes a–a3 levels (Ludovico et al.,
2002; Giannattasio et al., 2008). Studies on ADP/ATP carrier, YCA1
and cyt c knock-out cells have revealed that AA-PCD can also occur
without cyt c release, but with a lower death rate compared to wild
type cells (Pereira et al., 2007; Guaragnella et al., 2010a). Studies on
mutant cells expressing a stable but catalytically inactive form of
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the protein suggested that mitochondrial cyt c in its reduced state
modulates AA-PCD and this occurs independently on its function
as an electron carrier (Guaragnella et al., 2011b).

Yeast cells have a single gene, YCA1, encoding a type I meta-
caspase that was first implicated in the execution of oxidative
stress-induced PCD (Madeo et al., 2002; Wilkinson and Rams-
dale, 2011). AA-PCD can occur via two alternative pathways, one
dependent and the other independent of YCA1. The two pathways
differ one from another since the latter occurs without cyt c release,
which requires YCA1, and is not sensitive to the antioxidant NAC
(Figure 1). YCA1 participates in the AA-PCD in a manner unre-
lated to caspase-like activity increase which is the latest event of
AA-PCD occurring at 200 min from death induction (Guarag-
nella et al., 2006, 2010a,b, 2011a). YCA1 also exerts a non-death
role contributing to clearance of insoluble protein aggregates over
the natural yeast lifespan promoting its longevity and fitness (Lee
et al., 2008, 2010).

Interestingly enough, Gup1p, an O-acyltransferase required for
several cellular processes including lipid metabolism and mem-
brane remodeling, is required for AA-PCD to occur with Δgup1
cells dying by necrosis in response to acetic acid or in chronological
aging (Tulha et al., 2012).

THE MITOCHONDRIAL RETROGRADE PATHWAY IN YEAST
CYTOPROTECTION
Acetic acid stress sensitivity of yeast cells strongly depends on the
extracellular environment. Indeed, when AA-PCD is induced in
yeast cells growing on glucose as carbon source at pH 3.0, it has
been shown that 30 min pre-conditioning in pH 3.0 medium set
by HCl prior to acetic acid administration protects S. cerevisiae
cells from AA-PCD (Giannattasio et al., 2005a). Since acetic acid
is absent in the pre-conditioning medium, the hypothesis that
the Hog1p-dependent degradation of Fps1p, described in Section
“Acetic Acid Stress and Yeast Adaptation,” could be involved in acid
pre-conditioning (Mollapour and Piper, 2007; Mollapour et al.,
2008) should be ruled out.

Instead, differently from AA-PCD cells, in acid stress-adapted
cells acetic acid treatment does not cause any increase in intra-
cellular ROS production (Giannattasio et al., 2005a; Guaragnella
et al., 2007). Since mitochondria are the main source of ROS and
a decline of mitochondrial function is observed en route to AA-
PCD (Giannattasio et al., 2008), activation of mitochondrial stress
response might be hypothesized under acid stress adaptation.
Figure 1 shows certain signaling pathways involved in cell response
to mitochondrial dysfunction that may have a role in the cross-
talk between cell death and adaptation mechanisms activated by
acetic acid stress in yeast. The best characterized mechanism
of cell response to mitochondrial dysfunction is the retrograde
(RTG) pathway. Components and molecular details of RTG path-
way have been better characterized in yeast (Butow and Avadhani,
2004; Liu and Butow, 2006). RTG-target gene expression is largely
increased in cells with compromised mitochondrial function, such
as cells lacking mitochondrial DNA (ρ0; Liao et al., 1991). Rtg1p
and Rtg3p are transcription factors that interact as a heterodimer
to bind target sites called R boxes (GTCAC) located in the pro-
moter region of the RTG target genes (Jia et al., 1997). Activation
of Rtg3p correlates with its partial de-phosphorylation and its

translocation with Rtg1p from the cytoplasm to the nucleus (Sek-
ito et al., 2000). Rtg2p acts upstream of the Rtg1/Rtg3p complex,
being both a proximal sensor of the mitochondrial dysfunction
and a transducer of mitochondrial signals controlling Rtg1/3p
nuclear localization through the reversible binding with Mks1p, a
negative regulator of the RTG pathway (Uren et al., 2000; Liu et al.,
2003, 2005). Other positive and negative regulators of the RTG
pathway include Bmh1p, Bmh2p, Grr1p, and Lst8p (Liu et al.,
2001, 2003, 2005; Giannattasio et al., 2005b). Hog1p has been
shown to control Rtg1/3p nuclear localization and to phospho-
rylate Rtg3p upon osmostress (Ruiz-Roig et al., 2012). Activation
of the RTG pathway leads to up-regulation of a subset of nuclear
genes whose products function in anaplerotic pathways, fatty acid
oxidation, and glyoxylate cycle (Butow and Avadhani, 2004; Liu
and Butow, 2006).

It is of note that the RTG pathway is linked to other signal-
ing pathways, such as target of rapamycin (TOR) pathway, which
regulates cell growth in response to nutrient availability, and it
has been reported to inhibit Rtg1/3-dependent gene expression
(Komeili et al., 2000). However, it is clear that these two pathways
do not overlap but act in parallel to converge on Rtg1/3p (Gian-
nattasio et al., 2005b). The RTG response is also related to the
Ras–cAMP signaling pathway (Jazwinsky, 2003). The inappropri-
ate activation of PKA can lead to the production of dysfunctional,
ROS generating mitochondria, and apoptosis (Colombo et al.,
1998; Lastauskiene and Citavicius, 2008; Leadsham and Gourlay,
2010; Figure 1). In this context, it is of note that both TOR and
Ras–cAMP–PKA signaling pathways are causally involved in yeast
AA-PCD (Phillips et al., 2006; Almeida et al., 2009).

Our initial results suggest that RTG-dependent signaling may
be activated in response to mitochondrial dysfunction in acid-
stressed S. cerevisiae cells grown in the low pH medium used for cell
pre-conditioning. In this conditions, the gene encoding peroxiso-
mal citrate synthase (CIT2), is up-regulated in ρ0 cells compared
to respiratory competent ρ+ cells, a hallmark of RTG-dependent
transcription activation. On the contrary, RTG pathway remains
inactive in response to mitochondrial dysfunction in cells grown
in neutral pH medium, which are sensitive to AA-PCD induc-
tion (unpublished results). This points to a possible role of RTG
pathway in AA-PCD signaling (Ždralević et al., 2012).

Mitochondrial RTG signaling occurs also in mammalian cells
as a result of mtDNA mutation/deletion, oxidative stress, hypoxia,
treatments with specific inhibitors of the respiratory chain or drugs
(Butow and Avadhani, 2004). The signaling cascade is character-
ized by the activation of different nuclear transcription factors,
including NF-κB which controls the transcription of a variety of
target genes involved in the general stress response. In terms of
pro-survival and adaptive response, the RTG-dependent signaling
pathway in yeast and the NF-κB pathway active in mammalian
cells appear to be involved in a conserved mechanism of cell
stress response (Srinivasan et al., 2010), validating yeast as a model
to study mitochondrial stress response pathways (Jazwinski and
Kriete, 2012; Ždralević et al., 2012).

Even a traditional industry such as wine production is taking
over the challenge of tailoring genetically customized wine-yeast
strains. Market-oriented wine-yeast strains are currently being
developed for the cost-competitive production of wine with
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minimized resource inputs, improved quality, and low environ-
mental impact (Pretorius and Bauer, 2002). The comprehension
of the complex mechanism integrating the signaling network acti-
vated by acetic acid per se, nutrient availability and metabolic
conditions will greatly impact the improvement of both biolog-
ical control of wine-spoilage microorganisms and, on the other
hand, wine-yeast fermentation performances (Pretorius, 2000).
With this respect, it is of note that laboratory yeast strains are
unable to completely transform all the sugar in the grape must into
ethanol under winemaking conditions, where multiple stresses
occur simultaneously and sequentially throughout the fermenta-
tion (Mitchell et al., 2009). Post-genomic techniques and a systems
biology approach will help to elucidate how the responses of

wine yeasts to these stimuli differs from laboratory strains (Pizarro
et al., 2007).
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