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The finite reservation of fossil fuels accelerates the necessity of development of renewable
energy sources. Recent advances in synthetic biology encompassing systems biology and
metabolic engineering enable us to engineer and/or create tailor made microorganisms
to produce alternative biofuels for the future bio-era. For the efficient transformation of
biomass to bioenergy, microbial cells need to be designed and engineered to maximize
the performance of cellular metabolisms for the production of biofuels during energy
flow. Toward this end, two different conceptual approaches have been applied for the
development of platform cell factories: forward minimization and reverse engineering. From
the context of naturally minimized genomes,non-essential energy-consuming pathways
and/or related gene clusters could be progressively deleted to optimize cellular energy
status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or
modules including biomass-degrading enzymes, carbon uptake transporters, photosynthe-
sis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain
novel metabolic functions for bioenergy. This review focuses on the current progress in
synthetic biology-aided pathway engineering in microbial cells and discusses its impact on
the production of sustainable bioenergy.
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INTRODUCTION
Biological processes using microorganisms have a wide range of
superior advantages (e.g., renewability, sustainability, and carbon
neutralization) over conventional chemical processes for the pro-
duction of biofuels. However, besides from compatibility with
existing fuel infrastructure, production yields of the advanced
biofuels are nevertheless not yet great enough to compete with
and replace fossil fuels. The key issues to overcome in biological
systems are the cost of substrates and biofuel toxicity/inhibition
of fermenting microorganisms, which are directly related to bio-
fuel productivity, titer, and yield (Ezeji et al., 2007; Fischer et al.,
2008). To overcome these impediments, development of a robust
and high-yielding microbe is required. Recently, a variety of
engineered microorganisms, by metabolic engineering integrated
with genome engineering and synthetic biology, appear to be
quite promising with improved yields of biofuel production (e.g.,
ethanol, biodiesel, butanol, terpenoids, syngas, and H2; Bokinsky
et al., 2011; Srirangan et al., 2011; Zhang et al., 2011; Lan and Liao,
2012; Li et al., 2012; Westfall et al., 2012).

Synthetic biology provides us with innovative approaches to
a wide range of applications (Purnick and Weiss, 2009): sus-
tainable bioenergy production, bioremediation, biorefinery, and
biopharmaceuticals. Based on a wealth of genome sequences, sys-
tems biology and metabolic engineering integrated with advanced
genetic tools have enabled us to make engineered microbes as a
blueprint for the near future (Gibson et al., 2008a, 2009; Benders
et al., 2010; Jewett and Forster, 2010). Indeed, not only artificial
microorganisms based on parasites (Fraser et al., 1995) and small

size-genome microorganisms (Gibson et al., 2008b, 2010), but
also engineered microorganisms were successfully generated for
the production of biofuels, fine chemicals, pharmaceuticals, and
biosensors (Martin et al., 2003; Keasling, 2010; Huo et al., 2011;
Zhang and Keasling, 2011; Zhang et al., 2011). Thus, construction
of efficient biofuel-producing microbial cell factories is now con-
ceivable by design-based engineering of biological systems (Forster
and Church, 2006, 2007; Carothers et al., 2009; Nitschke, 2009;
Holtz and Keasling, 2010; Nielsen and Keasling, 2011; Tolonen
et al., 2011).

To design and engineer microorganisms for the high-yields of
biofuel production, we need to better understand how micro-
bial cells can coordinate their metabolic pathways under different
environmental conditions, underlying essential and non-essential
genes for bacterial life and metabolic networks. This information
will help us to modulate the efficiency of production pathway
and to optimize the energy balances between bioproduction and
biosynthesis in cell factories. To date, there are increasing examples
of engineering metabolic pathways tightly linked to the cellu-
lar energy balance that is one of the key determining factors
of cell factories in the yield and productivity of biofuels (John-
son and Schmidt-Dannert, 2008; Trinh et al., 2008; Portnoy et al.,
2010; Lan and Liao, 2011, 2012). Recently, molecular engineering
using protein or RNA scaffolds also could be applied for pathway
engineering in synthetic cell factories (Conrado et al., 2008; Dele-
becque et al., 2011; Medema et al., 2011). For example, organizing
mevalonate pathway enzymes on scaffolds have been developed
for efficient production of isoprenoids (Dueber et al., 2009). In
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this review, we will focus on the current strategies for design-
ing and developing cell factories for the maximized production
of sustainable bioenergy in the context of “forward engineer-
ing” and/or “reverse engineering” of efficiently energy-optimized
cells.

“TOP-DOWN” REDUCTION OF MICROBIAL GENOME BY
FORWARD ENGINEERING
Recent advances in sequencing techniques have generated enor-
mous amounts of microbial genome databases, which can be
invaluable information for the physiology and metabolism of the
sequenced microorganisms (Brochier-Armanet et al., 2011; Gon-
zalez and Knight, 2012). This information also provides insight
into the diversity of microorganisms and the molecular basis of
their adaptive evolutionary mechanisms in different environments
(Forterre et al., 2000). Comparison of genomes can often reveal
similar and/or distinctly different metabolic pathways in bacteria,
archaea, and eukarya (Siebers and Schonheit, 2005; Brochier-
Armanet et al., 2011). In particular, the genome sequences of
diverse microorganisms including extremophiles showed genetic
traits of adaptation through gene duplication and/or deletion
(Riehle et al., 2001; Averhoff, 2009). It suggests that gain and
loss of genes is one of the major adaptation mechanisms for
their cellular viability under selection pressure in nature. Thus,
the genome sequences of diverse microorganisms that have an
ancestor in common have diverged in a variety of ways, indicat-
ing that specific genes of a microorganism that are not found in
others and highly conserved genes among organisms can be feasi-
bly categorized. Accordingly, this leads us to have a fundamental
question of which genes are indispensable for cellular lives and are
involved in their essential and distinct metabolisms in comparison
with other microbes. Moreover, these fundamental informations
can provide indirect but very essential knowledge to overcome
the endogenous regulation of biofuel-producing pathways to
achieve high yields in using native hosts to convert feedstocks into
biofuels.

GENOME COMPARISON OF ARCHAEA
Minimal cells comprise only the genes and biomolecular
machineries required for basic life. During the past decade, over
100 genomes of archaea that form the third domain of life
(Brochier-Armanet et al., 2011) have been sequenced. In fact,
their genome data provide insights into the evolution of key
central metabolisms, which are directly correlated with the mini-
mal functionality for cell viability and adaptation under extreme
environments. Intriguingly, the euryarchaea Picrophilus torridus,
which thrives optimally at 60◦C and pH 0.7, has 1.55 Mb genome
(1535 ORFs), the smallest genome among non-parasitic aerobic
microorganisms (Futterer et al., 2004). In particular, an exception-
ally high ratio (5.6:1) of secondary over ATP-consuming primary
transport systems represents a highly relevant strategy for the
adaptation of this organism to its extremely acidic environment.
Although Picrophilus torridus has several distinct gene traits in
energy metabolism at low pH, not only all genes required for the
Embden–Meyerhof–Parnas (EMP) pathway but also a complete
set of genes for the oxidative tricarboxylic acid (TCA) cycle are
present. Currently, there is a variety of genome data available for

other archaea and bacteria, such as Thermoplasma acidophilum
(1.56 Mb; Ruepp et al., 2000), Archaeoglobus profundus (1.56 Mb;
von Jan et al., 2010), Prochlorococcus marinus (1.75 Mb; Dewall
and Cheng, 2011), and Methanocaldococcus jannaschii (1.74 Mb;
Bult et al., 1996), of which genome size is less than 2 Mb. Thus,
these microorganisms seem to be “closer” to the minimal genome
for life, which will also provide the fundamental basis of minimal
gene sets for the construction of a genome-minimized platform
cell (Figure 1). If this is the case, can we design and construct an
engineered platform cell to perform our wanted tasks such as bio-
fuel production? If so, then can we selectively choose which genes
are friends or foes for the high productivity between cell mass
and biofuels? Prior to considering this issue, we need to catego-
rize essential sets of genes for cellular viability even with imperfect
accuracy.

GENOME OF PHOTO-AUTOTROPHIC AND -HETEROTROPHIC
CYANOBACTERIA
Genes involved in informational processes (not only DNA replica-
tion, but also transcription and translation represented by rRNA,
tRNA, or structural RNA genes) plus protein folding and process-
ing with strain-dependent metabolisms, are essential. In addition,
a complex array of functional systems, including those for mem-
brane transport, energy conversion, the synthesis of vitamins,
and nucleic acid precursors, is indispensable for maintaining
cellular integrity. Notable examples are the marine cyanobacte-
ria Prochlorococcus, which is the smallest known oxygen-evolving
photoautotroph (Chisholm et al., 1988). Although the high light-
adapted ecotype MED4 strain has a genome of 1.66 Mb that
codes for 1717 proteins, its low light-adapted counterpart con-
tains a larger genome of 2.4 Mb (2275 genes; Rocap et al., 2003).
Remarkably, the comparative analysis with their genomes revealed
that only 1350 genes are common, whereas the remaining genetic
loci are quite different, implying that the variable genes appear
to be a consequence of a selective process favoring the bacte-
rial adaptation to their environments (Dufresne et al., 2003, 2005;
Rocap et al., 2003). Indeed, the photoheterotrophic marine bac-
terium Pelagibacter ubique has the smallest genome (1.3 Mb) of
any cell known for a free-living microorganism (Giovannoni et al.,
2005). Its genome coding for 1354 ORF shows the nearly com-
plete absence of non-functional or redundant DNA, with very
short intergenic regions, and the lack of pseudogenes and phage
genes, reflecting an adaptive strategy that resembles the highly suc-
cessful marine unicellular cyanobacteria in its simple metabolism
and small genome size.

NON-ESSENTIAL GENES
Synthesizing minimal and minimized cells will improve under-
standing of core biology, accelerate development of biotechnology
strains of bacteria, and enable evolutionary optimization of natu-
ral and unnatural biopolymers (Jewett and Forster, 2010). Genome
reduction is of particular importance to identify non-essential
genes for understanding of not only how many genes are essential
for cellular viability, but also which genes are necessary for cellu-
lar beneficial properties. Reduction and engineering of microbial
genome is the fundamental basis of design and development of
synthetic minimal platform cells for estimation of the minimal
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FIGURE 1 | Overview of the microbial pathways on the KEGG pathways using the iPath tool (Letunic et al., 2008). To date, conserved pathways known
as essential are shown in red. Hypothetical proteins found as essential are excluded.

gene set required to sustain growth of microorganisms (Fleis-
chmann et al., 1995; Fraser et al., 1995; Mushegian and Koonin,
1996). By use of comparative genomics, non-essential genes
have been sought to reconstruct ancestral life forms (Mushegian
and Koonin, 1996; Koonin, 2003) to define, by transposon-
mediated disruption study, with Mycoplasma genitalium (Glass
et al., 2006), and to validate and compare the minimal gene
sets in Bacillus subtilis (Kobayashi et al., 2003; Ara et al., 2007),
E. coli (Gerdes et al., 2003; Joyce et al., 2006), Aquifex aeolicus
(Deckert et al., 1998), Streptococcus sanguinis (Xu et al., 2011),
and Yeast (Kellis et al., 2003, 2004). Although symbiotic archeal
organisms apparently have a much smaller genome (Huber et al.,
2002; McCutcheon and Moran, 2012), these are out of scope
with respect to the minimal gene-set that is necessary and suf-
ficient to support cellular life. Notably, toxin–antitoxin (TA)
loci functioning as stress-response elements are not generally
essential to basic life (Pandey and Gerdes, 2005). Yet, combined
mutations in two or more genes lead to cell death, whereas a sin-
gle mutation in only one of those genes does not (Tucker and
Fields, 2003). Thus, synthetic lethality should be considered when
non-essential genes are deleted for genome minimization (Stieber
et al., 2008).

MINIMAL GENOME FOR SYNTHETIC CELLS
Intriguingly, Posfai et al. (2006) successfully reduced the E. coli
K-12 genome (up to 15%) to generate multiple-deletion series of

strains without physiological compromise. In addition, genome
reduction would provide unexpected benefits, such as high elec-
troporation efficiency and accurate propagation of recombinant
plasmids. Several laboratory evolution studies have also been
carried out to characterize the genetic traits of adaptation to
environmental stresses (e.g., thermal adaptation, salt stress tol-
erance, utilization of unusual substrates, and susceptibility to
antibiotics, etc.; Herring et al., 2006; Dhar et al., 2011; Tran et al.,
2011). Remarkably, reduction of the metabolic pathways by selec-
tive sorting and deletion of aerobic/anaerobic reactions based on
the biomass and biofuel productions enabled cells to have theoret-
ically maximal yields of ethanol even with minimized metabolic
functionality under anaerobic conditions (Trinh et al., 2006, 2008).
To convert the biomass-derived hexoses and pentoses to ethanol at
high yields and productivities, an efficient and robust microorgan-
ism has been designed and developed by the removal of seemingly
unnecessary pathways for the purpose (Trinh et al., 2006). To con-
struct a minimal E. coli cell that is dedicated to producing ethanol,
the functional space of the central metabolic network was reduced
with eight gene knockout mutations (e.g., poxB, pta etc.) from
over 15,000 pathway possibilities to 6 pathway options that sup-
port cell function (Trinh et al., 2008). The remaining pathways
consist of four pathways with non-growth-associated conver-
sion of pentoses and hexoses into ethanol at theoretical yields
and two pathways with tight coupling of anaerobic cell growth
with ethanol formation at high yields. Remarkably, catabolite
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repression was completely absent during anaerobic growth by the
deletion of acetate-producing pathways, resulting in the simulta-
neous utilization of pentoses and hexoses for ethanol production
in the most efficient way. Thus, this study demonstrated that the
ethanol yields of engineered strains with minimized metabolic
functionality closely matched the theoretical predictions, implying
that reduction of non-essential genes could be quite benefi-
cial with respect to economical production yields in synthetic
microorganisms.

“BOTTOM-UP” CREATION OF MICROBIAL CELL FACTORY BY
REVERSE ENGINEERING
To avoid and overcome our coming issues with global warming
and energy crises, increasing efforts to replace fossil fuels with
renewable biofuels are still actively being undertaken in biotech-
nology fields, resulting in several renewable alternatives such as
bioalcohol and plant oil-derived biodiesel from biomass feed-
stock (Atsumi et al., 2008; Nielsen et al., 2009; Lan and Liao, 2011;
Wargacki et al., 2012). Recently, First generation biofuels such as
ethanol and biodiesel have provided an avenue to sustainable bio-
fuels in the near future, but they also appear to have their own
limitations, such as a lower efficiency of combustion (Gray et al.,
2006; Chisti, 2008). Thus, scientists are seeking to develop more
sustainable and economically feasible second generation microbial
biofuels (i.e., butanol, hydrocarbon, alkanes, H2), which have great
potential to convert renewable sources into energy rich, fuel-like
molecules or fuel precursors (Schirmer et al., 2010; Steen et al.,
2010; Shen et al., 2011). Many efforts in the fields of metabolic
engineering, systems biology, synthetic biology, and genome
engineering for biofuel production enable us to modulate indige-
nous metabolic fluxes, or to insert novel pathways by employing
heterologous ones into host microorganisms for (i) increased pro-
ductivity/titer of biofuels and (ii) energy-efficiency of metabolic
pathways. In fact, the former effect is highly dependent on the
substrate utilization and tolerance of host cells for product inhibi-
tion (Papoutsakis, 2008; Geddes et al., 2011; Peralta-Yahya et al.,
2012). On the other hand, the latter seems to be much more
important for significantly improving the overall productivity,
because it is tightly coordinated with cellular energy transduc-
tion through redox homeostasis in cells under specific conditions
(Martin et al., 2003; Trinh et al., 2008; Lan and Liao, 2012).
Thus, design of microbial platform cells for high yields of bio-
fuel production requires understanding how energy transduction
systems including respiratory chains are partitioned and matched
stoichiometrically with central metabolisms. Moreover, when for-
eign energy transduction pathways are employed, they should
be compatible with indigenous central and energy metabolisms
in host cells. Indeed, this is major challenges in improving the
kinetics of metabolic enzymes and generating metabolic driving
forces to maximize metabolic flux. In light of this, less geneti-
cally tractable hosts that have high biofuel tolerance or the ability
to use non-sugar substrates are potentially applicable alterna-
tives. This requires not only whole genome sequences of platform
cells but also genome-wide systems analysis. Recent advent of
next-generation DNA sequencing expands the width of genomic
diversity and allows the exploitation of a variety of novel metabolic
enzymes/pathways.

GENOME ENGINEERING TOOLS
To date, a wealth of gene disruption and shuttle vector systems has
been developed for E. coli as a model system. Simple inactivation
of chromosomal genes by the PCR-mediated gene replacement
(Datsenko and Wanner, 2000) has greatly facilitated the genera-
tion of specific mutants in the functional analysis of the microbial
genome. It has been noted that disseminated throughout the
genome are mobile DNA elements, which mediate recombina-
tion events, such as transposition and horizontal gene transfer,
including insertion sequence (IS) elements, transposases, defec-
tive phages, integrases, and site-specific recombinases (Frost et al.,
2005). To stabilize the genome and streamline metabolism, these
elements must be deleted and unwanted functions removed. These
unwanted functions include those specific for human hosts or
particular environments. Indeed, a Tn5-targeted Cre/IoxP exci-
sion system (Yu et al., 2002) and a high-throughput method for
the systematic mutagenesis of the genome by Tn5 transposon
(Kang et al., 2004) enabled us to create individual E. coli dele-
tion and insertion mutants without loss of normal growths. In
particular, a multiplex automated genome engineering (MAGE)
technique as a powerful high-throughput genome engineering tool
has been developed (Wang et al., 2009a). MAGE simultaneously
targets many locations on the chromosome for modification in
a single cell or across a population of cells using allelic replace-
ment to produce combinatorial genomic diversity through an
oligonucleotide-directed recombineering technique. In addition,
precise manipulation of chromosomes in vivo enables genome-
wide codon replacement as well (Isaacs et al., 2011). Further,
as described above genome reductions may improve metabolic
efficiency and decrease the redundancy among microbial genes
and regulatory circuits (Posfai et al., 2006). Therefore, a rational
design allows us to attempt to delete genes more extensively while
avoiding loss of robustness, which can allow a chassis cell to be
incorporated with biofuel-producing synthetic and/or engineered
pathways.

OPTIMIZATION OF CELLULAR ENERGY METABOLISM
The attractive strategy described above immediately tempts us to
ask questions like “Can we selectively delete the alternative energy
transduction pathways as an engineering target?” and “Are min-
imal sets of genes beneficial in terms of energy efficiency?” This
might be true simply because extreme environments already show
a variety of extremophiles that can grow optimally with relatively
small genome sizes (less than 2 Mb), as discussed above. In fact,
their energy metabolisms appear to be designed and adapted to
survive under their own specific environments in the most min-
imal but efficient way. This rationale seems to be supported by
several challenging experiments about the effect of the modu-
lation of respiratory chains on fermentation products (Portnoy
et al., 2008, 2010). In these studies, a series of aerobic respiratory
chains in E. coli were progressively knocked out and aerobically
adapted to generate an evolved mutant deficient in three terminal
oxidases. Initially, this mutant could not grow on M9 minimal
medium containing D-glucose. However, 60-day adaptive evolu-
tion on the same medium created E. coli mutants that exhibited the
ability to undergo mixed-acid fermentation during aerobic growth
and to produce lactate as a fermentation product from D-glucose.
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Moreover, the removal of three terminal cytochrome oxidase
genes (cydAB, cyoABCD, and cbdAB) and a quinol monooxyge-
nase gene (ygiN) yielded an E. coli mutant that exhibits anaerobic
physiology even in the presence of oxygen, through the activa-
tion of the anoxic redox control transcriptional regulator ArcA
(Portnoy et al., 2010). The knockout strain exhibited nearly iden-
tical physiological behaviors and produced D-lactate as the sole
by-product under oxic and anoxic conditions, suggesting that
the mutations resulted in significant metabolic and regulatory
perturbations.

Genome-scale transcriptome analysis, 13C tracing experiments,
and physiological characterization demonstrated that the dele-
tions resulted in the activation of anaerobic respiration under
oxic conditions and a consequential shift in the content of the
quinone pool (Portnoy et al., 2010). This result suggests that com-
position of quinone pool may be tightly coordinated with the
activation of ArcB/ArcA regulatory system, concomitantly linked
to a major shift in the metabolic flux distribution through the
central metabolism in cells (Alexeeva et al., 2000). Therefore, respi-
ratory control and/or modulation could be an efficient engineering
strategy for changing the central metabolic flux of cells for the high
yields of biofuel production (Fischer et al., 2008; Portnoy et al.,
2010). This strategy can be validated by a systems-level character-
ization of fermentative profiles, using single gene knockouts in E.
coli, which are related to redox reactions (Lee and Lee, unpublished
data). The data demonstrated that single gene deletion mutations
in guaB, pyrD, and serA increased D-lactic acid production. Com-
bined knockouts of guaB, pyrD, serA, fnr, arcA, or arcB further
enhanced D-lactate production.

Very recently, the hyperthermophilic archaeon Pyrococcus furio-
sus with the small genome size of 1.91 Mb, which grows optimally
at 100◦C, can be engineered to produce important organic chem-
icals from CO2 by use of low potential reducing power from
H2 (Keller et al., 2013). For this, five genes of the carbon fix-
ation cycle of the archaeon Metallosphaera sedula, which grows
autotrophically at 73◦C were heterologously expressed in Pyro-
coccus furiosus. The engineered Pyrococcus furiosus strain is able
to use H2 and incorporate CO2 into 3-hydroxypropionic acid,
a chemical building block for the production of acrylic acid,
acrylamide, and 1,3-propanediol. Remarkably, this is operated
at temperatures that are suboptimal for its growth to minimize
the metabolic burden of the engineered microorganisms during
chemical production from H2 and CO2. Such a strategic operation
support only minimal growth but maintain sufficient metabolic
activity to sustain the production of 3-hydroxypropionate. The
unique temperature-dependent approach (Basen et al., 2012) that
confers on a microorganism the capacity to use CO2, a reac-
tion that it does not occur naturally circumvents the overall
low efficiency of photosynthesis and the production of sugar
intermediates.

BIOMASS-BASED BIOFUEL PRODUCTION BY ENGINEERED
MICROORGANISMS
A wide variety of metabolic engineering and systems biology
approaches, including synthetic biology with microorganisms, has
been made for exploitation of diverse biomass resources (Wal-
ter et al., 2007; Rude and Schirmer, 2009; Oh et al., 2011; Zhang

et al., 2011). Although these approaches are promising, there
are still limitations in terms of the technical feasibility of cost-
effective energy resources and the availability of rapid genetic tools
and in-depth physiological knowledge for the effective manip-
ulation of energy transduction systems. Accordingly, a variety
of research works have been focused on the development of
a cost-effective and energy-efficient engineered microorganisms
as platform cells to produce biofuels (Nakamura and Whited,
2003; Johnson and Schmidt-Dannert, 2008; Nielsen et al., 2009;
Bokinsky et al., 2011; Yim et al., 2011). Implementation of het-
erologous pathways and/or metabolisms by the incorporation of
single enzyme or a metabolic pathway module into host platform
cells is the most frequently used strategy (Johnson et al., 2010;
Hopkins et al., 2011; Shen et al., 2011; Lan and Liao, 2012; West-
fall et al., 2012). With a macroscopic aspect, cellular metabolisms
can be divided into two metabolic pathways: “feed” and “produc-
tion” pathways (Fischer et al., 2008). Toward the high yields of
titer and productivity in an engineered platform cell, tuning the
redox balance between central energy and carbon metabolisms
via metabolic intermediates is a key factor to improve biofuel
productivity, while preventing from the reduction of bioener-
getic waste reactions. As shown in Figure 2, microbial pathways
for production of biofuels were categorized into four subgroups:
non-fermentative alcohols, fatty acid-derived hydrocarbons,
isoprenoid-derived hydrocarbons, and fermentative alcohols
(Rude and Schirmer, 2009).

CELLULOSIC BIOFUELS
In contrast to starches and simple sugars derived from sugar
cane and corn, lignocellulosic crops are regarded as sustainable
and renewable. However, they also have some technical hur-
dles due to recalcitrance of cellulosic biomass rich in lignin,
resistance to enzymatic hydrolysis and the presence of five car-
bon sugars (Demain et al., 2005). In this respect, consolidated
bioprocessing is a promising strategy to overcome biomass recal-
citrance by using cellulolytic microorganisms. One of the most
closely studied of the cellulolytic microbes, Clostridium thermo-
cellum (Wiegel et al., 1985), is being used for the production of
ethanol through the consolidated bioprocessing of plant biomass
(Bayer et al., 2008; Lynd et al., 2008). Recently, several genome
sequences of thermophilic, plant biomass-degrading members of
this genus (Blumer-Schuette et al., 2011) indicate that significant
differences in glycoside hydrolase inventories and numbers of car-
bohydrate transporters exist, which likely relates to variability
observed in plant biomass degradation capacity (Dam et al., 2011).
In addition, the proteomic analysis of C. phytofermentans, which
contains 161 carbohydrate-active enzymes, has been performed to
identify hydrolases and metabolic enzymes to engineer microor-
ganisms for improved cellulosic bioconversion (Tolonen et al.,
2011). Intriguingly, it has been found that increase in tryptophan
and nicotinamide synthesis was entailed with cellulosic fermenta-
tion for the production of ethanol, providing novel genetic targets
for more efficient conversion of biomass to fuels and biomateri-
als (Tolonen et al., 2011). Alternatively, degradation of cellulosic
biomass by extremely thermophilic bacteria Caldicellulosiruptor
strains could have high potential for the production of biofuels
(Blumer-Schuette et al., 2011).
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FIGURE 2 | Fermentative and non-fermentative pathways for the

production of biofuels in E. coli. Dashed lines represent multiple reaction
steps. Red circles represent metabolic intermediates. ACP, acyl-carrier
protein; DHAP, dihydroxyacetone phosphate; DMAPP, dimethylallyl

pyrophosphate; F-1,6-BP, fructose-1,6-bisphosphate; G6P,
glucose-6-phosphate; Gly3P, glyceraldehyde 3-phosphate; IPP,
isopentenyl pyrophosphate; 1,3-PG, 1,3-diphosphoglycerate; PEP,
phosphoenolpyruvate.
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Moreover, several attempts to tackle these practical issues to
promote biomass waste solutions and biofuel production have
been made through metabolic engineering and synthetic biology
(Himmel et al., 2007; Vazana et al., 2012). To efficiently degrade
crystalline cellulose, artificial enzymatic cellulosome complexes
were designed and examined. There are an increasing number
of research papers describing the production of designer cellulo-
somes either in vitro, ex vivo, or in vivo (Vazana et al., 2012). In
designer cellulosomes, each enzyme is equipped with a dockerin
module that interacts specifically with one of the cohesin modules
of the chimeric scaffoldin. Artificial scaffoldins serve as docking
backbones and contain a cellulose-specific carbohydrate-binding
module that directs the enzymatic complex to the cellulosic sub-
strate, as well as one or more cohesin modules from different
natural cellulosomal species, each exhibiting a different speci-
ficity that allows the specific incorporation of the desired matching
dockerin-bearing enzymes (Demain et al., 2005).

Another interesting approach in algae is that carbohydrates
as a primary store of photosynthates can be exploited for bio-
fuels through conversion to alcohols (Santelia and Zeeman, 2011).
Algal polysaccharides can be hydrolyzed and then either fermented
to ethanol by yeast or used as a heterotrophic carbon source
for the production of a variety of biofuels (Harun et al., 2010).
These carbohydrate productions in algae could be advantageous
for biofuel production through overexpression of key enzymes in
starch biosynthesis and secretion of soluble carbohydrates (Work
et al., 2010).

HYDROCARBONS
To overcome the challenges (e.g., limited supply and land yield,
inconsistent performance, and challenging economics) for pro-
duction of biodiesels derived from plant oils, microbial fatty acid
esters production could be an alternative way (Reijnders, 2008;
Work et al., 2010; Li et al., 2012). In contrast to chemical refin-
ing to obtain designed biodiesels, microbial fatty acid esters can
be easily altered in their composition (Mayer and Shanklin, 2007)
and degree of saturation through manipulation of key regulators
of the fatty acid biosynthesis (Peralta-Yahya et al., 2012) and intro-
duction of foreign genes encoding wax synthase/diacylglycerol
acyltransferase from other microbes (Stoveken and Steinbuchel,
2008). In addition, when Arabidopsis fatty acyl-CoA reductases
(Rowland et al., 2006), that catalyze the formation of a fatty
alcohol from an acyl-CoA, were expressed in E. coli, more favor-
able short fatty alcohols were synthesized (Doan et al., 2009),
indicating that more efficient fatty alcohol-producing enzymes
might be paramount for the commercial production of fatty
alcohols.

To improve the efficiency of electrical energy in storage, Li et al.
(2012) reported a method to store electrical energy as chemical
energy in higher alcohols, which used synthetic biology approach
for converting electricity and CO2 to liquid biofuels. They genet-
ically engineered a lithoautotrophic microorganism, Ralstonia
eutropha H16, to produce isobutanol and 3-methyl-1-butanol in
an electro-bioreactor using CO2 as the sole carbon source and
electricity as the sole energy input. This recent breakthrough
technology integrated with electrochemical formate production
and biological CO2 fixation and higher alcohol synthesis, opens

the possibility of electricity-driven bioconversion of CO2 to
commercial chemicals.

As an ideal replacement for diesel fuel, fatty acid-derived hydro-
carbons such as alkanes are produced directly from fatty acid
metabolites in numerous organisms. Although two biochemical
routes (decarbonylation vs. reduction of fatty alcohols) are
available (Dennis and Kolattukudy, 1992; Wackett et al., 2007),
their biosynthetic pathways to alkanes are not fully understood.
Recently, Schirmer et al. (2010) performed comparative genomics
and subtractive genome analysis with more than 50 genome
sequences of cyanobacteria to find out two hypothetical enzymes
and propose these as acyl-ACP reductase and aldehyde decar-
bonylase, responsible for alkane biosynthesis. Subsequently, their
co-expression in E. coli enabled in vivo alkane biosynthesis (C13 to
C17 mixtures), which is a major step toward the goal of low-cost
renewable transportation fuels.

NON-FERMENTATIVE SHORT-CHAIN ALCOHOLS
In contrast to fermentative alcohols produced from carbohy-
drates and lipids (Figure 2) like ethanol and butanol, the non-
fermentative short-chain alcohols can be generated with protein
sources by introducing exogenous transamination and deamina-
tion cycles (Huo et al., 2011). In order to develop a process for
conversion of mixtures of peptides and amino acids to biofuels or
chemicals, carbon skeletons could be provided from 2-keto acids
through deamination of amino acids by 2-keto acid decarboxy-
lases, and then to alcohols by alcohol dehydrogenases as shown
in Figure 2 (Atsumi et al., 2008). Alternatively, other amino acids
could be deaminated to TCA cycle intermediates, which can be
directed to pyruvate by malic enzymes or phosphoenolpyruvate
carboxykinase. Pyruvate can be further extended to longer keto
acids by acetohydroxy acid synthase or isopropylmalate synthase
chain elongation pathways (Zhang et al., 2008). Such implemen-
tation of synthetic pathways together with rewiring metabolisms
consequently enabled us to develop a protein-based process for
biorefining and fuel production in potential platform cells such
as E. coli, B. subtilis, yeast, and microalgae. Indeed, several E.
coli variants that were improved for amino acid utilization were
screened, and then isobutanol synthesis pathways were introduced
into the cells to yield a strain that grew despite the stress generated
by increased fuel production (Huo et al., 2011). Further, deletion
of ammonium-assimilation genes, gdhA and glnA, increased the
production of alcohols in the presence of the keto acid pathway.
Thus, in contrast to previous metabolic engineering of carbon
metabolic modules, application of nitrogen metabolic modules
can be a significantly considerable alternative strategy in biofuel
metabolic engineering.

H2

Biological hydrogen (H2) is a potentially favorable, renewable,
and ideal fuel for future demand in terms of climate change
and sustainability. At present, biological H2 has been produced
through three major processes: biophotolysis, photofermenta-
tion, and dark fermentation (Oh et al., 2011). In green algae
and cyanobacteria, photosynthesis coupled to H2 evolution
requires only water and sunlight (Prince and Kheshgi, 2005). Sev-
eral cyanobacteria utilize an indirect pathway wherein storage
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carbohydrates generated through photosynthesis are fermenta-
tively used to produce H2. Significant improvements for H2 pro-
duction yield could be achieved by truncation of light-harvesting
complexes and reduction of chlorophyll content in green algae
and cyanobacteria (Beckmann et al., 2009; Mitra and Melis, 2010;
Srirangan et al., 2011). Impaired cyclic electron transport also
results in increased electron flow to the hydrogenase (Kruse et al.,
2005a). Further findings of alternative anaerobic pathways (Hem-
schemeier and Happe, 2011), auxiliary electron transport (Peltier
et al., 2010), and other distinct anaerobic H2 metabolisms (Meuser
et al., 2009) could be potential targets to improve H2 production.
Most hydrogenases are extremely oxygen-sensitive, which is one
of the greatest challenges facing the establishment of an industrial
biophotolysis process. For this reason, either control of O2 lev-
els (Surzycki et al., 2007) or use of protein engineering should be
implemented to create enzymes with greater O2 tolerance (Fritsch
et al., 2011; Goris et al., 2011; Liebgott et al., 2011).

Alternatively, strictly anaerobic extremophiles, such as
methanogenic archaea and hyperthermophilic bacteria, could be
an attractive option for the production of biological H2(Kim
et al., 2010). H2 provides an excellent source of low potential
reducing power for growth and biosynthesis of archaea (Sun
et al., 2010). Recently, the heterologous expression in E. coli of a
functional [NiFe]-hydrogenase from a hyperthermophilic archaea,
Pyrococcus furiosus, was performed by employing a novel set
of compatible vectors modified with an anaerobically induced
E. coli hydrogenase promoter (Hopkins et al., 2011). Together
with successful engineering of hydrogenase and nitrogenase (O2

sensitivity and higher molar production; Stripp et al., 2009;
Yamamoto et al., 2009; Liebgott et al., 2010, 2011; Fritsch et al.,
2011), development of versatile genetic systems and improve-
ments in such oxygen-sensitive and intricate maturation requiring
enzymes enable us to design and exploit the use of novel microor-
ganisms and their constituent hydrogenases for biohydrogen
production.

PHOTOSYNTHESIS AND CO2 FIXATION
Solar energy-derived biofuels are one of the most abundant and
favorable energy resources with respect to carbon neutralization
and sustainability. The photosynthetic process, comprising the
reduction of CO2, utilizing light and water by plants and algae
(Figure 3), conserves solar energy in the form of reduced carbon
compounds at a rate of approximately 120 TW, far exceeding the
current annual global energy demand of approximately 14.9 TW
(Barber, 2009; Hambourger et al., 2009). Hence, many researchers
have focused on utilization of marine algae as a potential source
of sustainable energy for biofuels, which can contribute to global
energy independence (Robertson et al., 2011).

Photosynthetic microorganisms can serve as feedstocks for
biofuels (Dismukes et al., 2008; Radakovits et al., 2010; Wijffels
and Barbosa, 2010). Toward this aim, pathway engineering and
culture modification have been developed with a result of high
yields of biohydrogen, lipids, and carbohydrates. Nevertheless,
the photosynthesis-derived biofuels with green algae still have sig-
nificant challenges in the inefficiency of photosynthesis (Kruse
et al., 2005b; Barber, 2009; Blankenship et al., 2011), the produc-
tivity of biomass, and the availability of genetic manipulation

FIGURE 3 | Illustration of photosynthesis and carbon fixation (A) and

key light-driven processes in microorganisms (B). Black solid and
dashed arrows represent reactions catalyzed by each enzyme and electron
flows, respectively. (Top panel) Overview of oxygenic photosynthesis from
cyanobacteria. (Middle panel) Overview of anoxygenic photosynthesis from
α-proteobacteria. (Bottom panel) Light-driven proton pump. The major
components of photosynthesis and carbon fixation including elements are
depicted: S, chloroplast stroma; T, thylakoid lumen; P, periplasm; C,
cytoplasm; Cyt c, cytochrome c; Cyt bc1, cytochrome bc1; Cyt b6f,
cytochrome b6f ; Fd, ferredoxin; FNR, ferredoxin-NADP+ reductase; LH,
light-harvesting complex; PC, plastocyanin; PS, photosystem; PQ,
plastoquinone; Q, ubiquinone; QH2, ubiquinol.

(Hambourger et al., 2009; Stephenson et al., 2011). In particular,
optimization of light capture, energy transfer, and carbon fixation
through manipulation of these pathways is essential for improve-
ments in their photosynthetic efficiency, which is the principal
determinant of productivity (Work et al., 2012). Several recent
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approaches by truncation or deregulation of light-harvesting
antenna complexes (Beckmann et al., 2009; Melis, 2009), imple-
mentation of C4-type carbon concentrating mechanisms into C3
plants (Yamano et al., 2010; Reinfelder, 2011), optimization of the
Calvin cycle by modulating expression levels of related enzymes
(Miyagawa et al., 2001; Zhu et al., 2007), and expanding the solar
spectrum (Chen et al., 2010; Chen and Blankenship, 2011) seem to
be quite successful. For example, engineering and overexpression
of ribulose-1,5-bisphosphate carboxylase oxygenase (RUBISCO)
is a clear target for raising the efficiency of light energy conver-
sion, resulting in productivity improvements (Lefebvre et al., 2005;
Whitney et al., 2011).

In addition, lipids (i.e., triacylglycerols) in microalgae serve as
an attractive biofuel feedstock, which can be converted to biodiesel
through not only transesterification in biorefining (He et al., 2012)
but also genetically interrupting starch biosynthesis (Wang et al.,
2009b; Work et al., 2010). Accordingly, several attempts have been
made to increase the lipid productivity of algae by screening
and/or engineering algae using new enabling technologies, such as
whole-genome sequencing, transcriptomics, metagenomics, and
flow cytometry (Scott et al., 2010; Work et al., 2010; Stephenson
et al., 2011). In addition, cyanobacteria as an excellent system
for biodiesel production have been engineered by overexpres-
sion of a bacterial diacylglycerol acyltransferase, a phosphatidate
phosphatase, and an acetyl-CoA carboxylase for increased lipid
production (James et al., 2010). Other important and reasonable
strategies for photosynthesis with microalgal biofuels (e.g., trun-
cation of antenna complexes and lipid accumulation) are well
described in (Wijffels and Barbosa, 2010; Work et al., 2012).

Alternatively, production of chemicals and fuels directly from
CO2 is an attractive approach to solving energy and environ-
mental problems (Lan and Liao, 2011). Previously, production
of 1-butanol as a potential fuel substitute and an important chem-
ical feedstock by the fermentative coenzyme A (CoA)-dependent
pathway (Ezeji et al., 2007; Papoutsakis, 2008) using the reversal
of β-oxidation has been performed in various organisms (Nielsen
et al., 2009; Nicolaou et al., 2010; Yu et al., 2011). In addition, a
modified clostridial 1-butanol pathway, including synthetic build-
up of NADH and acetyl-CoA, enabled E. coli cells to produce
a high titer and a high yield of 1-butanol production (Shen
et al., 2011). Subsequently, the thermodynamically unfavorable
step of the condensation of acetyl-CoA to acetoacetyl-CoA could
be driven by artificially engineered ATP consumption through
a pathway modification together with substitution of bifunc-
tional aldehyde/alcohol dehydrogenase with separate butyralde-
hyde (butanal) dehydrogenase and NADPH-dependent alcohol
dehydrogenase to improve the direct photosynthetic production of

1-butanol from cyanobacteria Synechococcus elongatus PCC 7942
(Lan and Liao, 2012). Therefore, these approaches, based on the
importance of ATP and cofactor driving forces, have made a novel
avenue to designing an efficient principle to alter metabolic flux
by use of non-natural pathways.

FUTURE PERSPECTIVE
A wealth of genome information dramatically expands our under-
standing of a variety of microbial metabolic pathways available
for our purposes. This leads us to attempt to design and engineer
microbial cell factories devoted to producing high yields of bio-
fuels by treating metabolic pathways as modules or parts that can
be readily moved at will from one organism to another. To date,
many successful examples of implementation of non-indigenous
metabolic or enzymatic modules in microbial host cells have been
made through redesign and rearrangement of pathways, and the
creative engineering of metabolic enzymes. Nonetheless, there
are still limitations to obtaining the theoretical maximal yields
of biofuels to meet our practical demands. Toward these aims,
we need to further understand how microbial cells can coordinate
their metabolic pathways under different environmental condi-
tions, underlying essential and non-essential genes for bacterial life
and metabolic networks. This can provide an effective direction
for the design of minimal maintenance energy in cells. Moreover,
balancing metabolic fluxes between biosynthesis of cellular mass
and production of biofuels through modulation of their metabolic
efficiency in cells can be an important key factor to achieving high
yields of biofuel productions. Hence, both aspects are directly cor-
related to the choice of feedstock and biofuel-producing pathways,
which is the fundamental basis for the cost-effective production
of biofuels in high yield.

Overall, to design and construct the ideally synthetic microor-
ganisms for biofuel productions, most desirable and effective are
both (i) the increased efficiency of biosynthesis by the reduc-
tion of unnecessary energy-transducing components and their
coordinated metabolic pathways, and (ii) high yields of biofuel
production by the implementation of non-indigenous pathways
with which renewable energy is ultimately transferred to the
conversion of usable biomass and/or CO2 to biofuels.
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