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Intrinsically resistant bacteria have emerged as a relevant health problem in the last years.
Those bacterial species, several of them with an environmental origin, present naturally low-
level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly
the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux
pumps or the lack of appropriate targets for a given family of drugs. However, recently
published articles indicate that the characteristic phenotype of susceptibility to antibiotics
of a given bacterial species depends on the concerted activity of several elements, what
has been named as intrinsic resistome. These determinants comprise not just classical
resistance genes. Other elements, several of them involved in basic bacterial metabolic
processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present
review we analyze recent publications on the intrinsic resistomes of Escherichia coli and
Pseudomonas aeruginosa. We present as well information on the role that global regulators
of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial
susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the
intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical
practice.
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Clinical definition of antibiotic resistance is mainly based on the
bacterial response to treatment. One microorganism is considered
as resistant if there exists a high likelihood of therapeutic fail-
ure upon antibiotic treatment. Consequently, resistance has been
operationally defined in the basis of breakpoints of the minimal
inhibitory concentrations (MICs). More recently, an ecological
definition of antibiotic resistance is emerging, which is based in
the MIC value identifying the upper limit of the wild-type popu-
lation (Turnidge et al., 2006). This is defined as the ecological cut
off (ECOFF) value and all strains presenting MICs above ECOFF
are considered resistant from an ecological point of view, even if
they are classified as susceptible in the basis of clinical breakpoints.
When defining the intrinsic resistome, we are facing the same sit-
uation. Bacteria are classically considered intrinsically resistant in
the basis of the clinical definition, in other words, if their infections
cannot be treated with a given antibiotic. Three are the most rel-
evant causes of this intrinsic resistance: lack of the target, activity
of chromosomally encoded antibiotic-inactivating enzymes and
reduced uptake of the antibiotic, the later includes reduced per-
meability of the cellular envelopes and activity of efflux pumps
(Nikaido, 1989, 1994; Li et al., 1994; Fernandez and Hancock,
2012). More recently, in the same line of the ecological defini-
tion of resistance, the “intrinsic resistome” has been defined as the
set of elements that contributes directly or indirectly to antibiotic
resistance, and whose presence is independent of previous antibi-
otic exposure and is not due to horizontal gene transfer (HGT;
Fajardo et al., 2008; Wright, 2010).

This definition encompasses all the chromosomally encoded
elements that have not been recently acquired as the consequence
of the recent human use of antibiotics for therapy and farming

purposes. Consequently, for any bacterial species an intrinsic resis-
tome can be defined, irrespective on whether or not this species
is classified as intrinsically resistant in the basis of clinical break-
points. From the studies on the intrinsic resistome, two categories
of genes have emerged (Fajardo et al., 2008). Those which inac-
tivation make bacteria more resistant to antibiotics and those
which inactivation make bacteria more susceptible. The first ones
define elements that are relevant for the acquisition of resistance.
For instance, the mutation in a transcriptional repressor of a
multidrug (MDR) efflux pump turns the microorganism more
resistant to antibiotics (Alonso and Martinez, 1997, 2000, 2001).
Mapping these elements is important to define the capability of an
organism to evolve toward resistance by mutation (Martinez and
Baquero, 2000) and is thus relevant for predicting the evolution
of resistance (Martinez et al., 2007, 2011a). The other group of
elements define the determinants that contribute to the natural
phenotype of susceptibility to antibiotics of a given species, and
constitute the bona fide intrinsic resistome. Inactivation of these
elements make bacteria more susceptible to antibiotics, which may
be useful for improving efficacy of current drugs (Martinez, 2012).
This has been the situation of inhibitors of plasmid-encoded β-
lactamases, which have been demonstrated to be efficient drugs
to be used in combination with β-lactams (Reading and Cole,
1977). Similarly, the inhibition of a MDR efflux pump (or another
mechanism of intrinsic resistance) might also improve the effi-
cacy of antibiotics currently in use or allow the utilization of
others (Lomovskaya et al., 1999; Renau et al., 1999; Lomovskaya
and Watkins, 2001). For instance, macrolides are not used for
treatment of Gram-negative infections because these organisms
are intrinsically resistant to this family of antibiotics. However,
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the major Escherichia coli efflux pump AcrAB extrudes macrolides
and its inactivation might increase the susceptibility of Escherichia
coli to these antibiotics (Chollet et al., 2004). This evidence indi-
cates that macrolides might be useful for treating Gram-negative
infections if they are used in combination with an inhibitor of
MDR efflux pumps.

As stated above, the main causes of intrinsic resistance from
a clinical viewpoint are lack of the target and the inactiva-
tion, low uptake and efflux of the antibiotic. However, all
bacterial species harbor in their genomes genes encoding MDR
efflux pumps, and several present also chromosomally encoded
antibiotic-inactivating enzymes, even though they are not classi-
fied as intrinsically resistant from the clinical point of view (Saier
et al., 1998; Webber and Piddock, 2003; Piddock, 2006; Poole, 2007;
Vila and Martinez, 2008; Nikaido, 2009). The study of the intrin-
sic resistome of bacterial pathogens has shown that in addition
to these elements, several others contribute to the phenotype of
resistance. Among them, there are the aforementioned classical
resistance genes, but there exist also several other elements belong-
ing to all functional categories, including elements of the bacterial
general metabolism (Fajardo et al., 2008). These results indicate
that the specific phenotype of susceptibility to antibiotics of a
given bacterial species is an emergent property consequence of
the concerted action of several elements (Girgis et al., 2009). The
large functional diversity of the elements of the intrinsic resistome
indicates this has not evolved to specifically counteract the activ-
ity of the antibiotics. Together with the proposal that antibiotics
might be molecular signals at the low concentrations they are likely

present in natural ecosystems (Davies, 2006; Linares et al., 2006;
Yim et al., 2006, 2007; Fajardo and Martinez, 2008), this situation
allows a complementary view to the traditional weapons/shields
roles that antibiotics and their resistance genes may have at natu-
ral ecosystems (Martinez, 2008; Aminov, 2009, 2010; Fajardo et al.,
2009; Martinez et al., 2009a; Allen et al., 2010; Davies and Davies,
2010; Sengupta et al., 2013).

Studying the intrinsic resistome is of relevance for predict-
ing evolution of resistance (Martinez et al., 2007, 2011a), for
understanding the linkage between resistance and other bacte-
rial processes as virulence (Martinez and Baquero, 2002; Martinez
et al., 2009a,b) or metabolism (Martinez and Rojo, 2011), and for
defining novel targets which inactivation make bacteria more sus-
ceptible to antibiotics (Martinez et al., 2011b; Martinez, 2012). In
this article we present information of those organisms (Escherichia
coli and Pseudomonas aeruginosa) for which more information
on their intrinsic resistome is available. We discuss as well some
issues concerning transient phenotypic resistance, which also
depends on the intrinsic capabilities of the bacteria for evad-
ing antibiotics action (Figure 1). Finally, we present updated
information on studies on the development of inhibitors of
resistance.

METHODS FOR ANALYZING THE INTRINSIC RESISTOME
Genome-wide analysis of the intrinsic resistome of a given
microorganism requires using high-throughput technologies.
Among them, the use of insertion or deletion libraries, allows
determining the contribution of each single gene to the

FIGURE 1 |The different elements in bacterial resistance to antibiotics.

All bacteria have a repertoire of elements that contribute to their
characteristic phenotype of susceptibility to antibiotics, what has been
dubbed as intrinsic resistome. Some of the elements of this resistome are
classical resistance elements, as antibiotic-inactivating enzymes, whereas
others belong to all functional categories. The mutation of some of these
elements makes bacteria more susceptible to antibiotics, whereas for

some others increased resistance is acquired. Nevertheless, acquisition
of a phenotype of increased resistance to antibiotics not always implies a
genetic change, either because of mutation or as the consequence of the
acquisition of a resistance gene by horizontal gene transfer. Phenotypic,
non-inheritable resistance can be achieved by different processes that include,
among others, growth in biofilms, swarming adaptation, and development of
persistence.
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characteristic phenotype of a given bacteria (Liu et al., 2010).
This method is the best suited to determine if the inactivation
of a gene changes bacterial susceptibility. However, it does not
allow analyzing the effect of mutations that do not fully inacti-
vate a given determinant but changes its activity. Alternatively, the
use of plasmid libraries containing each open reading frame of
a given genome allows to establish the contribution to resistance
of each gene when is overexpressed or when it is transferred to
a heterologous host (Soo et al., 2011; Spindler et al., 2013). This
method is only useful for analyzing acquired resistance, but not
for studying genes which inactivation alters the bacterial suscep-
tibility to antimicrobials. The use of high-throughput sequencing
and microarray technologies is also useful for studying intrin-
sic resistance. These methodologies can be used for comparing
populations grown in the absence and in the presence of antibi-
otics. These populations can be formed by the type of libraries
above mentioned (transposon-tagged of expression libraries), in
which case the enrichment of mutants or clones in the presence
of antibiotics allow defining genes contributing to resistance (Gir-
gis et al., 2009; Zhang et al., 2012; Spindler et al., 2013). While
these methods are faster and cheaper than methods based in ana-
lyzing the susceptibility of each single mutant/clone, their main
drawback is that among all potential determinants that contribute
to resistance, only those with lower fitness costs will be enriched
and several of the elements that may be detected by classical sus-
ceptibility tests would not be detected using enrichment-based
technologies. This drawback may be a benefit when the anal-
ysis is not made on a library, but using a wild-type strain. In
these circumstances, sequencing the evolving population allows
in a single step defining the mutations that produce resistance
and present the smallest fitness costs among those analyzed, as
well as to determine potential compensatory mutations (Gull-
berg et al., 2011; Toprak et al., 2012). These mutations are the
most likely found in clinical isolates (Martinez et al., 2007, 2011a;
Shcherbakov et al., 2010).

THE Escherichia coli INTRINSIC RESISTOME
Although Escherichia coli is traditionally considered a suscepti-
ble organism, acquired resistance to antibiotics was first detected
in enteric bacteria, Escherichia coli, Shigella, and Salmonella,
in the late 1950s to early 1960s (Watanabe, 1963). Nowadays,
Escherichia coli accounts for 17.3% of clinical infections requir-
ing hospitalization and is the second most common cause of
infection behind Staphylococcus aureus (18.8%). Among outpa-
tient infections, Escherichia coli is the most common organism
(38.6%).

The antibiotic intrinsic resistome of Escherichia coli has been
studied by testing the susceptibility to several antibiotics of
mutants from gene knockout collections (Tamae et al., 2008; Liu
et al., 2010) or transposon-tagged mutant libraries (Girgis et al.,
2009). The results from these screenings showed that several genes
participate in the phenotype of susceptibility to antibiotics in this
species. Among them, some are classical resistance genes. Indeed,
this bacterium has different known resistance mechanisms; such as
the AmpC β-lactamase and MDR efflux systems like AcrAB–TolC
(Lindberg and Normark, 1986; Ma et al., 1993; Lubelski et al., 2007;
Jacoby, 2009). In addition, Escherichia coli harbors several genes

that might be of relevance for its susceptibility to antibiotics as
those involved in the repair of DNA damage or cell membrane
synthesis and integrity. In addition to these comprehensive analy-
sis, other studies based on the whole-genome sequence of strains
evolving in the presence of antibiotics (Toprak et al., 2012) or on
the enrichment of specific mutants of transposon-tagged libraries
grown with antibiotics have been used to track genes relevant for
the development of resistance (Zhang et al., 2012). However, in
this type of analysis, mutants are competing one to each other and
only those with the highest fitness will be selected.

Escherichia coli as a Gram-negative bacterium presents two
cell membranes, and both are non-specific barriers preventing
drug influx into the cell. The lipopolysaccharide (LPS) of the
outer membrane protects the cell against hydrophobic antibi-
otics and polycationic compounds such as aminoglycosides and
polymyxins. LPS presents anionic groups and it is the first bar-
rier where some antibiotics bind (Hancock, 1984). Because of
this, changes in the LPS can alter the susceptibility to antibi-
otics. For instance, the loss of rffA, a gene encoding an enzyme
implicated in the LPS synthesis, increases susceptibility to gentam-
icin (Tamae et al., 2008). The Enterobacteriaceae common antigen
(ECA) is also an intrinsic resistance element that provides pro-
tection against organic acids (Barua et al., 2002). In a similar way
as happens with the LPS, changes in ECA may alter the suscep-
tibility to antibiotics. In line with this reasoning is the finding
that inactivation of the ECA biosynthesis protein WzxE increases
Escherichia coli susceptibility to nalidixic acid and amikacin (Gir-
gis et al., 2009). Mechanisms that control the negative charge of
the outer membrane, as the Yrb system and the Pmr regulon, mod-
ulate the bacterial susceptibility to neutral or negatively charged
compounds, such as nalidixic acid, lomefloxacin, and doxycycline
(Girgis et al., 2009).

The gates of entry of several nutrients through the outer mem-
brane are the porins, which are also used by antibiotics for entering
into the cell (Nikaido, 1994). Many Escherichia coli strains have
developed resistance to antibiotics as β-lactams and quinolones
by mutations in the genes that encode porins or regulate their
expression (Hirai et al., 1986; Adler et al., 2013). In addition, tran-
sient down-regulation of the expression of the porins can also
trigger phenotypic resistance (Fernandez and Hancock, 2012).
A general mechanism that prevents the cellular accumulation of
drugs is their active extrusion from the cell or from the cytoplas-
mic membrane through MDR efflux pumps (Nikaido, 1998a,b).
The AcrAB–TolC system of Escherichia coli is one of the best-
characterized MDR transporters (Ma et al., 1995). This system
consists of AcrA, a membrane fusion protein; AcrB, a trans-
porter of the RND family; and TolC, an outer membrane protein.
AcrAB–TolC is a major determinant for drug intrinsic resistance
in Escherichia coli (Sulavik et al., 2001). Furthermore, its expres-
sion is increased in the presence of bile salts, which are present
in the habitat of Escherichia coli, the gut (Thanassi et al., 1997;
Rosenberg et al., 2003). This means that Escherichia coli might
present a lower susceptibility to antibiotics when is growing inside
its host as the consequence of the overexpression of the MDR
efflux pump AcrAB–TolC. Several other MDR transporters pro-
vide resistance to a narrow range of compounds. Escherichia coli
contains five putative ABC-type MDR-like transporters. However,
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none of these systems provides an appreciable drug resistance to
Escherichia coli, excepting YbjYZ (macrolide-specific ABC-type
efflux carrier), which confers resistance to macrolides composed
of 14- and 15-membered lactones, as erythromycin (Kobayashi
et al., 2001; Nishino and Yamaguchi, 2001). The EmrAB is
another MDR pump that protects the cell from several chem-
ically unrelated antimicrobial agents, e.g., the protonophores
carbonyl cyanide m-chlorophenylhydrazone and tetrachlorosali-
cyl anilide and the antibiotics nalidixic acid and thiolactomycin
(Lomovskaya et al., 1995).

In addition to MDR efflux pumps, Escherichia coli harbors
antibiotic-inactivating enzymes. It is worth mentioning that whilst
MDR efflux pumps usually confer low-level resistance to a wide
range of compounds, antibiotic-inactivating enzymes confer fre-
quently high-level resistance to antibiotics belonging to a single
structural family. All Escherichia coli strains have the chromo-
somally encoded β-lactamase AmpC. Although it contributes to
resistance to antibiotics, it is difficult to assume that this is its orig-
inal functional role if we take into consideration that the natural
habitat of Escherichia coli is the gut, which microbiota does not
include β-lactam producers. AmpC β-lactamases hydrolyze broad
and extended-spectrum cephalosporins but are not inhibited by
β-lactamases inhibitors such as clavulanic acid (Jacoby, 2009).
Considering that β-lactams inhibit peptidoglycan transpeptida-
tion, determinants involved in this process might be important for
the susceptibility to these antibiotics. This is the case for mltB and
slt, which encode membrane-bound lytic murein transglycosylases
(von Rechenberg et al., 1996) and of ampG, which encodes a trans-
porter involved in the recycling of murein (Jacobs et al., 1994).
These genes are not only relevant for β-lactam susceptibility. They
are also important for the regular physiology of Escherichia coli,
since the loss of mltB, slt, ampG, and ampC is deleterious (Girgis
et al., 2009).

Among those determinants involved in the intrinsic resistance
of Escherichia coli, some deal with the general response to stress,
including the repair of damaged DNA. It is known that quinolones
produce DNA damage and induce the SOS repair system (Howard
et al., 1993). However, other antibiotics with a different mech-
anism of action as nitrofurantoin and metronidazol can also
damage DNA, and the RecF pathway of DNA repair of single-
strand breaks and gaps (recF, recO, recR, recQ, and recJ ; Amundsen
and Smith, 2003) is important to prevent damages caused by these
drugs. It has been reported that the generation of hydroxyl radicals
leading to double-strands breaks contributes to cell death caused
by bactericidal antibiotics (Kohanski et al., 2008). In this sense
DNA repair mechanisms involved in the maintenance of DNA
integrity as the RecBCD system or genes involved in the response
of the cell to damaging agents (dinG, xseA, xseB, and gshB) consti-
tute a valuable battery of defense mechanisms against antibiotics
(Liu et al., 2010). A similar response to stress might be in the basis
of the role of ribosomal proteins on intrinsic resistance. Indeed,
several genes that encode ribosomal proteins (rplA, rpmE, rpmJ)
or proteins involved in their modification (rimK) have a role in the
susceptibility to a set of antibiotics belonging to different structural
families (Liu et al., 2010).

Resistance is also provided by some genes that encode elements
that are involved in the regulation of gene expression (dksA, fur,

hfq, hns, mfd, nusB, rseA, xapR, yciT ; Liu et al., 2010). These genes
act in different ways, some of them involved in the stress response.
For instance the DksA transcription factor regulates genes involved
in double-strand break repair (Meddows et al., 2005). However,
other determinants are global regulators of basic processes of the
bacterial physiology. This is the case of Fur, that is the master regu-
lator in the response to iron availability (Bagg and Neilands, 1987),
an environmental cue with relevance for infection (de Lorenzo
and Martinez, 1988; Martinez et al., 1990). This indicates that
bacterial physiology and the bacterial response to environmen-
tal inputs are cornerstones for the phenotype of susceptibility to
antibiotics. In addition to genes with known functions, there
are several other determinants of the Escherichia coli intrinsic
resistome which functional role is not known. This is the case
of yecR and yfgC. Removal of yfgC decreases the MIC of van-
comycin, rifampicin, and ampicillin (Tamae et al., 2008). yfgC
has homology to peptidases, and apparently it is located in the
bacterial inner membrane (Gardy et al., 2005). The existence of
elements of unknown function conferring resistance to several
antibiotics bear witness regarding the complexity and the variety
of intrinsic resistance mechanisms encoded in the Escherichia coli
genome.

THE INTRINSIC RESISTOME OF Pseudomonas aeruginosa
Pseudomonas aeruginosa is one of the most metabolically versatile
bacteria described so far (Lister et al., 2009). This particular feature
allows it to colonize multiple environments, being isolated from
seawater (Levin and Cabelli, 1972), soil (Green et al., 1974), inter-
acting mutualistically with plant roots (Green et al., 1974; Walker
et al.,2004), as a plant pathogen (Walker et al.,2004; Records,2011)
and infecting animals (Petersen et al., 2002), including humans
(Stover et al., 2000). In addition of its role in infections, P. aerugi-
nosa has been isolated at hospitals in different inorganic surfaces,
from ventilation and intubation equipments, contact lens and even
in hydrotherapy pools (Morales et al., 2012). This versatility and
ability to survive on minimum nutritional requirements (Favero
et al., 1971) have made this bacterium one of the most successful
nosocomial opportunistic pathogens (Lister et al., 2009).

Not only is this ability to survive anywhere the cause of the
ecological success of this organism. This bacterium also shows
high levels of antibiotic resistance which often makes impossible
its eradication. Evolutionary forces have built its high resistance,
and countless elements contribute to intrinsic and acquired resis-
tance of this bacterium, considered a model organism to study
mechanisms of resistance (Poole et al., 1993).

Although the recent acquisition of antibiotic resistance genes
has been extensively described in P. aeruginosa (Woodford et al.,
2011), these acquired elements are not the unique cause of antibi-
otic resistance in P. aeruginosa; multiple elements contribute
substantially to the resistance of this bacterium. Many works have
been performed in order to unravel the intrinsic resistome of P.
aeruginosa. Transposon-tagged libraries have demonstrated that
the inactivation of several genes cause changes in antibiotic sus-
ceptibility. The majority of these genes are not related with the cell
envelope or efflux pumps and many of them are involved in bac-
terial metabolism (Breidenstein et al., 2008; Fajardo et al., 2008;
Schurek et al., 2008; Alvarez-Ortega et al., 2010; Fernandez et al.,
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2013). Mutants with changes in susceptibility to ciprofloxacin,
aminoglycosides, β-lactams, and polymyxin B have been identified
using this method.

Ciprofloxacin is a broad-spectrum fluoroquinolone that target
the bacterial enzymes DNA gyrase and topoisomerase IV (Drlica
and Zhao, 1997). Thirty-five and 79 mutants with increased and
decreased susceptibilities to this antibiotic, respectively (Breiden-
stein et al., 2008), were identified in a screening of a PA14 mutant
transposon library (Liberati et al., 2006). The majority of these
mutants demonstrated only twofold changes in susceptibility com-
pared with the respective isogenic strain; just the mutant in ftsK
was eightfold more susceptible. Mutants in four genes involved
in DNA replication and repair (Holliday junction helicase ruvA,
the ATP-dependent RNA helicase recG, recombinase xerD, and
the site specific recombinase sss) present increased susceptibility
to ciprofloxacin. Additionally, ruvA, xerD, and fstK grow slower
compared with the wild-type. On the contrary, mutants in genes
nuoBDGHIJLN that encode a dehydrogenase are less susceptible to
ciprofloxacin. These mutants in the nuo operon present decreased
susceptibility to tobramycin also (Schurek et al., 2008) supporting
the idea that some of the elements involved in intrinsic resistance
have not evolved to counteract the activity of a specific antibiotic
(Fajardo et al., 2008; Martinez and Rojo, 2011).

Despite this apparent lack of specificity, there is not a common
response to all antibiotics, even for those belonging to the same
structural family. In a screening using imipenem, meropenem and
ceftazidime just one mutant (PA0908) presented reduced suscep-
tibility to all three antibiotics and two (glnK and ftsK) showed
increased susceptibility to all three antibiotics (Alvarez-Ortega
et al., 2010). Even more, the mutant in ftsK, which encodes a pro-
tein involved in cell division (Lewenza et al., 2005), presents an
increased susceptibility to ciprofloxacin too (Breidenstein et al.,
2008). In the same way, mutants in many genes that were more
susceptible to β-lactams (PA0401, pyrB and pyrD; Alvarez-Ortega
et al., 2010) presented decreased susceptibility to polymyxin B
(Fernandez et al., 2013). However, this is not a general trend,
since mutants in galU, ampR, lptc, aroB, wapR, and ssg showed
decreased susceptibility to β-lactams and they are more suscep-
tible to polymyxin B also (Fernandez et al., 2013). The majority
of these genes participate actively in the central metabolism of
P. aeruginosa (Stover et al., 2000) reinforcing the idea that genes
involved in metabolism can play an important role in the intrinsic
resistance to antibiotics of the microorganisms.

The cell membrane is considered one of the principal contribu-
tors to intrinsic resistance (Nikaido, 1989). In this way mutations
in many genes that take part in the LPS synthesis in P. aerug-
inosa produce changes of the susceptibility against β-lactams
and tobramycin. A mutant in wapR, which encodes a protein
involved in the biosynthesis of the LPS core (Poon et al., 2008),
is less susceptible to ceftazidime and meropenem; mutations in
adjacent genes (PA5001, PA5002, PA5003, and PA5005) which
participate in the LPS synthesis also present reduced suscepti-
bility to ceftazidime and some mutants present cross resistance
with meropenem (Alvarez-Ortega et al., 2010). A similar effect
was observed in mutants of genes involved in the O-antigen
synthesis (wbpZ, wbpY, wzt, wzm, and wbpW ). These mutants
presented decreased susceptibility to tobramycin, demonstrating

the importance of the cellular membrane as a barrier to avoid the
entrance of antibiotics inside the cell (Schurek et al., 2008).

Efflux pumps contribute considerably to antibiotic resistance
in P. aeruginosa. They are involved in the extrusion of toxic
substances, including antibacterial compounds, from inside the
cell to the external environment (Webber and Piddock, 2003).
In this bacterium, 12 different RND-type efflux systems (Blair
and Piddock, 2009) that can eventually contribute to antibiotic
resistance have been described. However, only MexAB-OprM
has shown to play a relevant role on the intrinsic resistance of
P. aeruginosa to antibiotics (Kohler et al., 1997). Expression of
the other efflux pumps under standard growing conditions is
too low to achieve resistance, an issue that is also frequently
described for other bacteria (Grkovic et al., 2001, 2002). However,
MDR efflux pumps can be overexpressed, and hence render resis-
tance, either because of mutations in their regulatory elements or
because of the presence of effectors that trigger their expression
(Grkovic et al., 2001, 2002; Blair and Piddock, 2009; Hernandez
et al., 2009, 2011).

Since intrinsic resistance is a multifactorial phenomenon, it
might be modulated by global regulators. This is the case of
the P. aeruginosa “catabolite repression control” regulator Crc
(MacGregor et al., 1991). Crc is a post-transcriptional repressor
that regulates the use of preferred carbon sources in nutrient-
complex ecosystems (Morales et al., 2004; Moreno et al., 2009).
Recent work has shown that inhibition of Crc makes P. aerug-
inosa less virulent and more susceptible to different antibiotics
(Linares et al., 2010), the latter being a consequence of increased
expression of transporters and changes in the LPS composition.
This shows the existence of networks connecting antibiotic resis-
tance, bacterial virulence and metabolism. The hubs of these
networks may be good targets in the search of novel antimicro-
bials targeting simultaneously resistance, virulence, and bacterial
physiology.

PHENOTYPIC RESISTANCE
Most studies on antibiotic resistance are based in the analysis of
resistant organisms that have acquired the phenotype of resis-
tance as the consequence of genetic, inheritable, changes, which
can be mutations (including gene rearrangements) of the acqui-
sition, through HGT, of resistance genes (Walsh, 2000). However,
there are other situations, grouped under the name of phenotypic
resistance, in which bacteria present a non-inheritable situation
of resistance to the antibiotics (Levin, 2004; Levin and Rozen,
2006). Phenotypic resistance is thus defined as a transient sit-
uation in which a bacterial population, usually susceptible to
antibiotics, is transiently resistant (Figure 1). The elements con-
tributing to this phenotype are a part of the intrinsic resistome
that are only unveiled under specific growing conditions (Martinez
et al., 1994). Below, some examples of phenotypic resistance are
described.

PERSISTENCE
Persistence is defined as a situation in which a bacterial subpopula-
tion is not killed by a given antibiotic under conditions in which the
bulk of the population is inhibited. Once antibiotic is removed and
growth resumes, persistent cells behave as antibiotic susceptible as
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the original population, which means that persistence is not the
consequence of a genetic change. The existence of persister cells
into a population is known since 1944, when this phenomenon was
first reported for staphylococcal infections treated with penicillin
(Bigger, 1944). Currently, persistence has been described for many
other bacterial species and antibiotics. As stated, persisters are phe-
notypic variants that present increased resistance to antibiotics and
are genetically identical to the wild-type. The percentage of persis-
ters in a given culture can be as high as 1% of stationary-phase cells
for several microorganisms (Kim and Wood, 2010). Establishment
of a persistent subpopulation does not require previous antibiotic
exposure.

The presence of persister cells in infections increase the chance
of survival of the bacteria in the presence of antibiotics, an issue
particularly relevant in the case of chronic infections. Because of
this, the analysis of the genes and mechanisms responsible for the
development of a persister phenotype is of relevance to imple-
ment novel therapeutic approaches based on the eradication of
antibiotic resistant persistent cells.

The first gene described to be involved in the development of
persistence was hipA (Moyed and Bertrand, 1983) in Escherichia
coli. HipA is a toxin that belongs to the hipBA toxin/antitoxin
system (TA systems; Correia et al., 2006), which overexpression
inhibits cell growth and induces antibiotic resistance by persister
formation. Other TA systems as MqsRA (Kim and Wood, 2010)
or TisAB (Dorr et al., 2010; Lewis, 2010) have been also associated
to the formation of persister cells, indicating that a misbalance in
the production of toxin and antitoxin may be in the basis of this
phenotype.

Toxin/antitoxin systems are highly distributed among differ-
ent bacterial species. Usually, these systems are formed by two
components, a toxin that inhibits cell growth and an antitoxin
that impedes the activity of the toxin. At the moment, three
general TA systems have been described. The antitoxins of TA
types I and III are small RNAs, whereas the toxins of the type
II TA systems are inhibited by protein antitoxins (Gerdes et al.,
1997, 2005; Blower et al., 2011). Recent work has shown that type
II TA systems are highly relevant for developing persistence in
Escherichia coli and that the simultaneous deletion of 10 TA loci
from the chromosome of Escherichia coli reduced the fraction
of persistent cells by at least 100-fold (Maisonneuve et al., 2011;
Gerdes and Maisonneuve, 2012).

In addition to TA systems, other factors modulate the devel-
opment of persistence. Among them, elements involved in the
regular bacterial metabolism have shown to be relevant. This is
the case of phoU, which encodes a negative global regulator that
suppresses the cellular metabolic activity, altering expression of
several elements with relevance for bacterial physiology, ranking
from flagella-encoding genes to genes encoding energy production
enzymes (Li and Zhang, 2007).

In depth analysis on the mechanisms of persistence has shown
that there are two types of persistent cells (Balaban et al., 2004),
which further supports the idea that there exist different routes
toward the development of persistence. Type I persisters consti-
tute a pre-existing population of resting cells that are generated
at stationary phase. These cells when are inoculated into fresh
medium from stationary phase switch back to growing cells with

a characteristic extended time lag. An example of genes involved
in this phenotype is hipA7 (Moyed and Bertrand, 1983). Type II
persisters constitute a subpopulation of slowly growing cells. An
example of genes involved in this phenotype is hipQ (Wolfson
et al., 1990).

In agreement with the potential role that both bacterial
metabolism and TA systems may have on the establishment of
persistence, transcriptomic analysis of persister cells have shown
that persistence is associated with the down-regulation of biosyn-
thetic genes and the up-regulation of several TA modules (RelBE,
MazEF, DinJYafQ, YgiU; Lewis, 2010), Some of these TA systems
are known to affect translation (Christensen et al., 2001; Peder-
sen et al., 2002), which explains their effect in dormancy and
consequently on antibiotic resistance. The SOS response, which
up-regulates DNA repair functions, also induces several TA genes
in Escherichia coli, whose promoters contain a Lex box: symER,
hokE, yafN/yafO, and tisAB/istR (Dorr et al., 2010). This means
that TA systems, and hence the formation of persister cells, can
be activated by factors that trigger the SOS system. It is known
that some antibiotics, such as quinolones, induce the emergence
of persister cells (Dorr et al., 2010). Since these antibiotics pro-
duce DNA damage and activate the SOS system, it is likely possible
that the effect of quinolones on persistence is SOS-dependent. The
role of other stresses on persistence has been studied. This is the
case of oxidative stress that is important during infection due to
the immune response. However, this stress only induces persis-
tence against fluoroquinolones but not for other antibiotics such
as kanamycin. Surprisingly, this phenotype is due to the overex-
pression of the MDR efflux pump AcrAB–TolC (Wu et al., 2012).
This indicates that transient expression of classic antibiotic resis-
tance mechanisms forming part of the intrinsic resistome may be
of relevance for the establishment of persistence.

One important issue for avoiding persistence would be finding
elements which mutation impede the development of persistent
cells. However, the analysis of a transposon mutants library of
Escherichia coli (Hu and Coates, 2005; Hansen et al., 2008) and of
the comprehensive Kei collection (Baba et al., 2006), did not allow
identifying any gene which mutation fully impede the phenotype
of persistence. These data suggest a great degree of redundancy
in the elements and pathways involved in the development of
persistence. Even though TA systems could be good candidates
to decrease the fraction of persister cells in a given population,
their high number, with 671 TA systems already identified in 126
prokaryotic genomes (Pandey and Gerdes, 2005) makes difficult
developing drugs directed to reduce persistence by targeting these
systems.

Another approach for eliminating persisters can be by shifting
their metabolic state. A recent report shows that this is feasi-
ble by specific metabolic stimuli that allow the recovery of the
proton motive force of persistent cells, enabling their killing by
aminoglycosides (Allison et al., 2011).

BIOFILM
Biofilm is a structured population of bacteria embedded in a
matrix, which is composed by polysaccharides, proteins, and extra-
cellular DNA. It has been shown than cells growing in biofilms are
less susceptible to antibiotics than those growing planktonically
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(Mah and O’Toole, 2001; Amini et al., 2011). This phenotypic
resistance is relevant for the treatment of infections on intubated
or catheterized patients, as well as in infections of prosthesis
and some chronic infections as those of cystic fibrosis patients
that involve the colonization of surfaces (Costerton et al., 1999)
in which biofilm formation is frequent. The antibiotic resistance
associated with biofilms depends on several causes, some due to
the structure of the extracellular matrix, some other to the phys-
iological state of biofilm-growing bacteria; which is different to
that of planktonic cells. Even inside the biofilm, bacteria show
different metabolic states, because there is a gradient of nutri-
ents and oxygen between the surface of the biofilm and its deeper
region.

The extracellular matrix may change the activity of the antibi-
otics by two different reasons; by diminishing the diffusion of the
antibiotic or by sequestering it through its binding to the matrix.
This is not a general trend, since in several occasions, slow dif-
fusion of the antibiotic is not the most important element in the
phenotypic resistance displayed by biofilms (Walters et al., 2003;
Stewart et al., 2009; Singh et al., 2010). Another aspect in which
the extracellular matrix may participate in the phenotype of resis-
tance of biofilms is by triggering specific mechanisms of resistance.
DNA, a macromolecule capable of chelate cations, is one of the
components of the extracellular matrix. Since a reduced concen-
trations of divalent cations trigger expression of the regulator of
resistance to cationic antimicrobials PhoP–PhoQ (Mulcahy et al.,
2008), the extracellular matrix trigger itself resistance to these
drugs.

When analyzing the role of the metabolic state of bacteria on
the phenotypic resistance of biofilms, it has been shown that the
degree of resistance depends on the region of the biofilm and on
the antibiotic involved. Different regions of the biofilms contain
subpopulations in different metabolic stages that mainly depend
on the oxygen and nutrients availability (Huang et al., 1995; Stern-
berg et al., 1999). It has been described than oxygen-rich regions of
P. aeruginosa biofilms are highly susceptible to quinolones whilst
cells in these regions are phenotypically resistant to cationic pep-
tides, and the opposite occurs at regions of the biofilms with low
oxygen tension (Rani et al., 2007). Altogether, these results indi-
cate that the phenotypic resistance of bacterial biofilms depend on
several factors that operate simultaneously.

SWARMING
Swarming is a specific type of movement of bacterial popula-
tions. It is characterized by the formation of hyper-flagellated cells
in nutrient-rich environments. It is supposed that this type of
motility allows the colonization of such environments. Conse-
quently, swarming is just the most visible phenotype of a complex
physiological adaptation process that is dependent on cell–cell
signaling [quorum-sensing (QS)] and on nutrients availability
(Fraser and Hughes, 1999). The capability of swarm has been
described in different microorganisms, including Escherichia coli,
Serratia marcescens, Burkholderia thailandensis, Bacillus subtilis,
Salmonella enterica serovar Typhimurium, and P. aeruginosa (Kim
et al., 2003; Overhage et al., 2008a; Lai et al., 2009), and it might
be of relevance for the colonization of surfaces during infection,
as for instance in the lungs of cystic fibrosis patients. A relevant

characteristic of swarmer cells consists on their reduced suscep-
tibility to different antibiotics (Kim et al., 2003; Overhage et al.,
2008b; Lai et al., 2009).

Transcriptomic analyses of P. aeruginosa have shown that
several genes change their expression during swarm cell differ-
entiation. Some of these genes encode porins and efflux pumps,
such as MexGHI-OpmD. A differential expression of these genes
in swarmer cells might be involved in their phenotype of reduced
susceptibility to antibiotics (Overhage et al., 2008a). Nevertheless,
the reasons for this transient phenotype of antibiotic resistance are
still far to be fully understood, since there are other elements that
might be involved in the phenotype. For instance, several proteases
(Lon, AsrA, PfpI, ClpS, and ClpP) that affect swarming motility are
also relevant for the formation of biofilms, and therefore for phe-
notypic antibiotic resistance (Marr et al., 2007; Kindrachuk et al.,
2011; Fernandez and Hancock, 2012).

Quorum-sensing seems to play a key role in swarming differen-
tiation. It has been shown that PvdQ, an acylase that hydrolyzes the
QS signal 3-oxo-C12-HSL [N-(3-oxo-dodecanoyl)-l-homoserine
lactone] is involved in swarming. The analysis of cells either over-
expressing or lacking PvdQ showed that PvdQ reduced P. aerug-
inosa outer membrane permeability, thereby elevating antibiotic
resistance under swarming conditions, upon which this protein is
up-regulated (Wang et al., 2013). A similar effect of reduced per-
meability has been shown for Salmonella enterica swarmer cells.
In particular the expression of the porin OmpA, which is used for
the entrance of nutrients and some antibiotics is low in swarming
cells (Sugawara and Nikaido, 1992; Kim and Surette, 2004), sug-
gesting that changes in the permeability of the cellular envelopes,
in response to nutrients’ availability, might be in the basis of the
antibiotic resistance phenotype displayed by swarmer cells.

There are some common factors that might induce the differ-
ent situations of phenotypic resistance above described. Changes
in the environment as the lack of nutrients or low oxygen levels,
which reduce the growth rates, occur in stationary phase and this
induces persisters, which are much more abundant in this growth
phase. These nutritional cues also take place in some regions of
bacterial biofilms, mainly at their deepest zone, and are relevant
for their reduced susceptibility to antibiotics. QS signaling is a
relevant system in the basis of biofilm formation, which is also
involved in triggering the bacterial physiological reprogramming
that occurs in swarmer cells. Expression of TA systems occurs
in response to external signaling, and is involved in the genera-
tion of persister cells, but also are differentially expressed during
biofilm formation, directly or via QS signaling. Cellular damage
produced by toxic compounds, antibiotics included, may induce
the SOS response, which triggers expression of reparation sys-
tems and usually also reduces metabolic activity, a situation that
induces the formation of persister cells and is also foreseen in
biofilms.

It thus seems that bacterial populations have developed a bat-
tery of mechanisms to respond to stress and these mechanisms are
also useful to transiently resist the activity of antibiotics.

INHIBITORS OF RESISTANCE DETERMINANTS
One of the areas under development in the search for novel drugs
to fight infections is the study of inhibitors of resistance (Baquero
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et al., 2011; Martinez et al., 2011b; Martinez, 2012). The use of
these drugs in combination with those antibiotics against which
the mechanisms of resistance operate, increases bacterial suscepti-
bility to the antimicrobials. The first inhibitors of resistance were
developed against mechanisms acquired through HGT, in partic-
ular plasmid-encoded β-lactamases (Bush, 1988). However, the
definition of intrinsic resistome offers the possibility of develop-
ing inhibitors that increase susceptibility to all isolates of a given
species (Garcia-Leon et al., 2012). For instance, the inhibition of
MDR efflux pumps, which makes Gram-negative bacteria suscep-
tible to macrolides, will allow the use of these compounds for
treating infections by Gram-negative microorganisms.

Although clavulanic acid, the first inhibitor of β-lactamases
was described more than 40 years ago (Reading and Cole, 1977),
few other inhibitors, all of them inhibiting the same type of β-
lactamases, are already in the market. Main efforts have focused on
the inhibitors of other β-lactamases (Drawz and Bonomo, 2010)
and MDR efflux pumps (Lomovskaya and Watkins, 2001). In the
case of aminoglycoside-inactivating enzymes, the development of
inhibitors is problematic due to the large number and variability
of families of these resistance elements.

Based on the Ambler’s classification (Ambler et al., 1991), the β-
lactamases are divided into four classes: class A, C, and D being ser-
ine β-lactamases, and class B being metallo-β-lactamases (MBLs).
The commercially available β-lactamase inhibitors (BLIs), clavu-
lanic acid, sulbactam and tazobactam, are only effective against
class A β-lactamases. However, their combinations with β-lactam
antibiotics are still effective, despite the emergence of resistance,
either because of gene-dosage effect (Martinez et al., 1987, 1989;
Reguera et al., 1991), either because of mutations that make β-
lactamase resilient to inhibition (Blazquez et al., 1993; Canica et al.,
1998; Salverda et al., 2010; Frase et al., 2011; Li et al., 2012).

The discovery that carbapenems may inhibit some β-lactamases
opened the possibility of finding antibiotics with dual activities,
antimicrobial and inhibitor of resistance (Buynak, 2006). How-
ever, this can be a difficult task, since antibiotics as cefoxitin may
either inhibit or induce expression of β-lactamases depending on
their concentration (Tsuey-Ching et al., 2012). Because of this,
mathematical models are being implemented to establish reliable
dosage regimes (Bhagunde et al., 2012) and novel derivatives are
being developed to surpass these problems. Among them, N-acyl
β-sultams obtained, by sulfonylation of β-lactams and addition
of an acyl group, inhibit Enterobacter cloacae class C β-lactamase
(Page et al., 2003). Penicillin and cephalosporin sulfone deriva-
tives are also part of the pipeline of BLIs. LN-1-255 is a penicillin
sulfone that is active against OXA-type β-lactamases and is being
used as model for further improvements in this type of inhibitors
(Pattanaik et al., 2009; Drawz et al., 2010).

In addition to β-lactams that inhibit β-lactamases, there are
also non-β-lactams able to inhibit these enzymes. One of the
families receiving more attention is the one formed by boronic
acids (Kiener and Waley, 1978), which are potential inhibitors
of all types of serine β-lactamases (Tan et al., 2010), and seem
to be effective even against penicillin-binding proteins (PBPs)
resistant to β-lactams (Zervosen et al., 2012). Nevertheless clin-
ical use of these compounds is compromised because of the
toxicity of boron. Another class of non-β-lactam BLIs is formed

by the diazabicyclooctanes (DBOs). There are two compounds of
this family under clinical trials: MK-7655 and NXL104 (avibac-
tam) (Coleman, 2011). MK-7655 is a potent inhibitor of class
A and C β-lactamases, that can be used in combination with
imipenem to kill AmpC and KPC (Klebsiella pneumoniae car-
bapenemase) producers (Hirsch et al., 2012). Avibactam is a
promising BLI that inhibits class A and C β-lactamases, includ-
ing BlaC from Mycobacterium tuberculosis (Xu et al., 2012). In
combination with ceftazidime, avibactam protects β-lactams from
hydrolysis in β-lactamase-producing Enterobacteriaceae and P.
aeruginosa (Dubreuil et al., 2012; Levasseur et al., 2012). More
recently it has been proposed that a triple combination avibactam,
ceftazidime, and metronidazole will be useful for treating compli-
cated intra-abdominal infections, which may present a mixed pop-
ulation of Enterobacteriaceae and anaerobes (Dubreuil et al., 2012;
Lucasti et al., 2013).

Finding common inhibitors for all MBLs is a difficult task,
due to the diversity of class B β-lactamases (Drawz and Bonomo,
2010). However, different structural families of inhibitors are
under development, including tetrahydropyrimidine-2-thione
and pyrrole derivatives (Hussein et al., 2012), 3-mercapto-1,2,4-
triazoles and N-acylated thiosemicarbazides (Faridoon et al.,
2012), N-heterocyclic dicarboxylic acids and pyridylmercaptoth-
iadiazoles (Feng et al., 2012), 2-substituted 4,5-dihydrothiazole-4-
carboxylic acids (Chen et al., 2012), or mercaptoacetate (Wachino
et al., 2012).

Although most inhibitors of β-lactamases target a specific fam-
ily of these enzymes, efforts have been made to develop drugs
capable to inactivate a large range of β-lactamases. Among them
single molecules as mercaptomethylpenicillinates (Buynak et al.,
2004) or reverse hydroxamates and oximes (Ganta et al., 2009)
are under development as well as combinations of compounds
as BAL30376, which is a mixture of BAL19764, a siderophore
monobactam active to class B MBLs, BAL29880, a bridged
monobactam active to class C β-lactamases, and clavulanate
(Livermore et al., 2010; Page et al., 2011).

In addition to traditional methods in searching enzyme’s
inhibitors, information derived from other studies may help in
developing β-lactamases inhibitors. In this regard, the finding
of a small protein, produced by the same producer of clavulanic
acid, Streptomyces clavuligerus (Reading and Cole, 1977; Yuan et al.,
2011) and capable to inhibit class A β-lactamases opens the pos-
sibility of developing peptides or haptamers capable to inhibit
β-lactamases. Similarly, the finding that the active site structures
and the catalytic mechanisms of N-terminal nucleophile hydro-
lase (a component of the bacterial proteasome) and β-lactamases
are similar, allows discovering cross-inhibition of both enzymes
by compounds as O-aryloxycarbonyl hydroxamates (Pelto and
Pratt, 2008) or 1,3,4-oxathiazol-2-ones (Adediran et al., 2012).
This opens the possibility of testing already known inhibitors of
the bacterial proteasome as inhibitors of β-lactamases.

Beta-lactamases inhibitors will be very useful, but only for treat-
ing infections by those organisms presenting a β-lactamase. A
wider spectrum of activity might have the efflux pumps inhibitors
(EPIs). MDR efflux pumps are present in all bacterial species
contributing to intrinsic and acquired (when overexpressed)
resistance to all family of drugs. Since any single efflux pump
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can extrude a wide range of antibiotics belonging to different
structural families, its inhibition will simultaneously increase
the bacterial susceptibility to several antibiotics (Vila and Mar-
tinez, 2008). In vitro work has shown that inhibition of efflux
pumps makes bacteria more susceptible to antibiotics and also
reduces the probability of emergence of antibiotic resistant
mutants (Lomovskaya et al., 2001). In addition, since some efflux
pumps contribute to the virulence of bacterial pathogens, their
inhibition will also impair their capability for producing infec-
tions (Hirakata et al., 2009), including the formation of biofilms
(Baugh et al., 2012).

Theoretically, there are different alternatives for inhibiting
MDR determinants (Fernandez and Hancock, 2012). One that
could serve for inhibiting all efflux pumps would be the inhibi-
tion of energy sources required for pumps activity. Unfortunately
activity of MDR efflux pumps is coupled either to the membrane
potential, either to ATP, both of which are key element for any
eukaryotic of prokaryotic cell. This means that most of these
potential inhibitors will be too toxic to be used. There are, how-
ever, some elements that are specific for bacteria and could be used
as potential targets. This is the case of TonB, a protein involved
in the activity of P. aeruginosa MDR efflux pumps by coupling
the energized state of the membrane to the operation of bacterial
transporters (Zhao et al., 1998).

Other ways of inhibiting the activity of efflux pumps include the
interference with the pump assembly or the blockage of its activ-
ity, for instance using antibodies as has been described for SmrA
from Stenotrophomonas maltophilia (Al-Hamad et al., 2011), the
development of effectors precluding the release of the MDR repres-
sor from its operator DNA, and the competition with antibiotics
transported by the efflux pump.

One of the first EPIs with potential therapeutic use is the syn-
thetic dipeptide amide phenylalanine-arginyl-β-naphthylamide,
which inhibits several Gram-negative efflux pumps (Lomovskaya
et al., 2001; Mahamoud et al., 2006), although not all of them
(Sanchez et al., 2003). This molecule is a competitive inhibitor that
binds to the same site used by the pump to bind the antibiotic.
Some efforts have been made in the optimization of diamide-
containing EPIs (Watkins et al., 2003). However, it has been
shown that the moieties that are responsible for their unfavor-
able toxicological properties, are also essential for their activity, a
situation that impedes their therapeutic use (Lomovskaya and
Bostian, 2006).

Pyridopyrimidines and arylpiperazines have also been assayed
as EPIs of MDR pumps and major efforts have been performed
for their optimization (Nakayama et al., 2004a,b; Yoshida et al.,
2006a,b, 2007). Differing to the previously described dipeptide
amides, that only impede the action of the antibiotics they com-
pete, pyridopyrimidines increase the susceptibility to all substrates
of the efflux pumps, indicating a different mechanism of action
(Lomovskaya and Bostian, 2006).

Although some efforts on the development of EPIs against
efflux pumps for Gram-positive organisms, as Staphylococcus
aureus NorA, have been made (Markham et al., 1999; Holler
et al., 2012b; Sabatini et al., 2012), most EPIs so far described
inhibit efflux pumps from Gram-negative organisms with some
degree of specificity. Among them, pyridopyrimidines inhibit

MexAB-OprM of P. aeruginosa (Yoshida et al., 2007), 1-(1-
naphthylmethyl)-piperazine reversed multidrug resistance in A.
baumannii but not in P. aeruginosa (Pannek et al., 2006), or 13-
cyclopentylthio-5-OH tetracycline (13-CPTC), a semisynthetic
tetracycline analogue that binds TetB pump of Escherichia coli
(Nelson and Levy, 1999).

The finding that plant-produced compounds are substrates and
inducers of efflux pumps (Matilla et al., 2007) suggests that these
compounds may also inhibit MDR determinants. Indeed, it has
been shown that plant extracts contain a variety of EPIs (Tegos
et al., 2002; Musumeci et al., 2003; Lewis and Ausubel, 2006; Stavri
et al., 2007), which may be useful for increasing the susceptibility to
antibiotics of different bacterial species (Groblacher et al., 2012a,b;
Holler et al., 2012a; Roy et al., 2012; Zhou et al., 2012).

In addition of inhibitors targeting specifically classical resis-
tance elements, the study of the intrinsic resistome opens
the possibility of looking for inhibitors of targets that con-
tribute to resistance despite they are not classical resistance
determinants. This is the case of the P. aeruginosa cyanide-
insensitive terminal oxidase. Mutants defective in this gene
are hypersusceptible to antibiotics (Tavankar et al., 2003). Con-
sequently, inhibition of this component of the respiratory
chain will increase the overall susceptibility of P. aeruginosa
to antibiotics. Same situation happens with global regulators
as the P. aeruginosa Crc post-transcriptional repressor (Morales
et al., 2004; Moreno et al., 2009). Mutants defective in this
gene are hypersusceptible to different antibiotics (Linares et al.,
2010); hence its inhibition will increase susceptibility to these
antibiotics.

An interesting approach in the search of inhibitors of resis-
tance is the screening of non-antibiotic compounds, which had
been already tested for other diseases, and may be used as helper
compounds to improve efficacy of antibiotics (Martins et al.,
2008). The benefit of using these compounds is that their use
has been already approved, so as novel long and costly toxi-
cological trials are not needed. Among them some anesthetics,
antihistaminic, and psychotherapeutic compounds have demon-
strated to improve the activity of antibiotics (Kristiansen and
Amaral, 1997). Within this group of compounds some of them
change the permeability of the bacterial membrane (Martins
et al., 2008), as the anti-inflammatory drug diclofenac (Dutta
et al., 2007) or the anti-psychotic chlorpromazine (Blair and Pid-
dock, 2009), whereas for others, the mechanism of action is not
known.

A more recent approach for improving the activity of the
antibiotics is by enhancing the cellular responses associated to
the antibiotics induced cell death pathway. It has been proposed
that bactericidal antibiotics induce a cell pathway that involves the
generation of oxygen reactive species (Kohanski et al., 2007, 2010).
Understanding this pathway may reveal targets for adjuvants that
improve the efficacy of the antibiotics (Farha and Brown, 2013).
By using Escherichia coli whole-genome metabolic models and
further experimental validation of predicted targets, it has been
shown that inactivation of some elements increase susceptibility to
oxidants and antibiotics (Brynildsen et al., 2013), which opens the
possibility of searching a new family of drugs capable to increase
the activity of antibiotics.
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