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Hydrothermal plumes are an important yet understudied component of deep-sea vent
microbial ecosystems. The significance of plume microbial processes can be appreciated
from three perspectives: (1) mediation of plume biogeochemistry, (2) dispersal of
seafloor hydrothermal vent microbes between vents sites, (3) as natural laboratories for
understanding the ecology, physiology, and function of microbial groups that are distributed
throughout the pelagic deep sea. Plume microbiology has been largely neglected in recent
years, especially relative to the extensive research conducted on seafloor and subseafloor
systems. Rapidly advancing technologies for investigating microbial communities provide
new motivation and opportunities to characterize this important microbial habitat. Here we
briefly highlight microbial contributions to plume and broader ocean (bio)geochemistry and
review recent work to illustrate the ecological and biogeographic linkages between plumes,
seafloor vent habitats, and other marine habitats such as oxygen minimum zones (OMZs),
cold seeps, and oil spills. 16S rRNA gene surveys and metagenomic/-transcriptomic data
from plumes point to dominant microbial populations, genes, and functions that are also
operative in OMZs (SUP05, ammonia-oxidizing Archaea, and SAR324 Deltaproteobacteria)
and hydrocarbon-rich environments (methanotrophs). Plume microbial communities are
distinct from those on the seafloor or in the subsurface but contain some signatures of
these habitats, consistent with the notion that plumes are potential vectors for dispersal
of microorganisms between seafloor vent sites. Finally, we put forward three pressing
questions for the future of deep-sea hydrothermal plume research and consider interactions
between vents and oceans on global scales.
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INTRODUCTION
Deep-sea hydrothermal plumes occur where seafloor vents inject
hydrothermal fluids replete with potential microbial energy
sources such as H2S, Fe, Mn, CH4, and H2 into the deep oceans.
These hot, chemically reduced fluids rapidly mix with cold, oxidiz-
ing seawater, forming hydrothermal plumes that rise hundreds of
meters off the seafloor and disperse hundreds of kilometers away
from their source. Because of their extensive spatial coverage and
easily detectable hydrothermal signals (Fe, Mn, turbidity, Helium-
3), plumes played an important role in the history of deep-sea
hydrothermal vent research (Lupton and Craig, 1981) and con-
tinue to be utilized for discovery of new seafloor hydrothermal
systems (German et al., 2010). Hydrothermal plumes are highly
variable in terms of scale and chemical and physical properties,
and can be detected by a variety of methods (chemical, physical,
optical), thus the definition of a plume depends on the parameter
being measured (Lupton, 1995). For many of the geochemical and
microbiological processes of interest here, “plume” often refers to
hydrothermal fluid that has been heavily diluted by seawater (e.g.,
∼1:10,000), but some work has addressed microbial processes in

the rising portion of the plume where hydrothermal constituents
are more concentrated.

Hydrothermal plumes are found at vents sites distributed glob-
ally along the mid-ocean ridge system (Figure 1) at a frequency
correlated to seafloor spreading rate (Beaulieu et al., 2012). Deep-
sea vent systems continue to be discovered at a rapid pace; over
500 vent fields are now known, nearly double the number known
before the year 2000 (Beaulieu et al., 2012). Yet much of the mid-
ocean ridge system remains unexplored, especially at ultra-slow
spreading ridges, which have only recently been recognized to
host hydrothermal activity (German et al., 2010) and are particu-
larly abundant in the Arctic and Southern oceans. Hydrothermal
venting in shallow waters is also widespread (Prol-Ledesma et al.,
2005), but here we focus only on deep-sea systems. Given the global
distribution and extent of hydrothermal venting, it is clear that
deep-sea vents exert significant influence on the chemistry of the
global oceans (Elderfield and Schultz, 1996). A recent modeling
study of hydrothermal contributions to the marine iron inven-
tory (Tagliabue et al., 2010) highlights the global impacts of vents
(Figure 1).
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FIGURE 1 | Global distribution of deep-sea hydrothermal systems, iron

anomalies due to hydrothermal inputs, and low oxygen environments.

Blue shading indicates minimum concentration of O2 in the water column

with intervals defined by Wright et al. (2012). Iron data is from Tagliabue et al.
(2010). Major oxygen minimum zones (OMZ) and sites of persistent hypoxia
[year-round or near year-round (Diaz and Rosenberg, 2008)] are also indicated.

MICROBIAL MEDIATION OF PLUME BIOGEOCHEMISTRY:
TRACE ELEMENTS, PHOSPHORUS AND CARBON
The impact of deep-sea hydrothermal vents on ocean chemistry
involves several processes that are influenced by microbial activ-
ities in hydrothermal plumes. First, vents are thought to be a
significant source of Fe and Mn to the oceans because their
concentrations in hydrothermal fluids are up to 106 times that
of background seawater (Elderfield and Schultz, 1996; Tagliabue
et al., 2010; Sander and Koschinsky, 2011). The oceanic fate of
these metals is influenced by scavenging and oxidation, which are
promoted by microorganisms (Cowen and Bruland, 1985; Cowen
et al., 1986; Mandernack and Tebo, 1993; Dick et al., 2009), and
by binding with organic matter, which is presumably derived
from microbial activity (Bennett et al., 2008; Toner et al., 2009;
Breier et al., 2012; Holden et al., 2012). Second, the iron and
manganese oxides produced by microbial oxidation are extraordi-
narily reactive (Goldberg, 1954; Tebo et al., 2004) and thus remove
phosphorous and trace elements (rare earth elements, potassium,
vanadium, arsenic, chromium, uranium) from seawater via scav-
enging and co-precipitation reactions (Feely et al., 1998; German
and Von Damm, 2004). Because of the rapid mixing of seawater
with hydrothermal fluids and the large volumes of plumes, the
entire volume of the global oceans cycles through hydrothermal
plumes and is scavenged of reactive elements on relatively short
times scales (2.4 × 105 y; Kadko, 1993). Thus plumes essentially
act as a filter for the global oceans, scavenging them of phos-
phorous, rare earth elements, and trace metals, and acting as
a chemical sink for these elements (Kadko, 1993). As these Fe
and Mn oxides and their scavenged elements are deposited to the
seafloor, they form metalliferous sediments that potentially pre-
serve a record of seawater nutrient status and chemistry that is
valuable from paleoceanographic perspectives (Feely et al., 1998).
Similarly, banded iron formations, which are likely sourced from

hydrothermal activity, provide a Precambrian record of ocean
chemistry (Konhauser et al., 2009; Planavsky et al., 2011). Thus,
microbially mediated metal oxide formation and the properties
of the resulting biogenic minerals in plumes influence scaveng-
ing reactions and outcomes in terms of ocean chemistry, and
understanding these processes is critical for interpretation of the
sedimentary record for paleoceanographic purposes.

The third process by which plume microorganisms medi-
ate broader ocean biogeochemistry is chemosynthetic fixation of
carbon. Chemosynthetic activity at vents was recognized upon
the initial discovery of deep-sea hydrothermal vent ecosystems
(Jannasch and Wirsen, 1979) and in early plume studies (Winn
et al., 1986) yet the magnitude of chemosynthesis in plumes
remains poorly constrained. Based on extrapolation of data from
the Southern East Pacific Rise to the global oceans, Maruyama
et al. (1998) estimated that net primary production in plumes
represents 0.1–1% of total marine photosynthetic net primary pro-
duction. Because only a small fraction of surface organic carbon
reaches the deep oceans, the hydrothermal contribution could rep-
resent up to 25% of the global deep ocean organic carbon inventory
(Maruyama et al., 1998). Thermodynamic models support the idea
that plumes are a significant source of chemosynthetically derived
organic carbon to the deep oceans (McCollum, 2000), and sev-
eral observational studies confirm an important contribution of
plumes to deep-sea organic carbon on regional scales (De Angelis
et al., 1993; Cowen and German, 2003; Lam et al., 2004, Lam et al.,
2008). Indeed, plumes are enriched with organic carbon, some
of which is labile, and are responsible for dispersing it kilome-
ters away from vent sites (Roth and Dymond, 1989; Cowen et al.,
2001; Shackelford and Cowen, 2006; Lam et al., 2008; Bennett
et al., 2011a,b). More recently, transcriptomic evidence confirms
that autotrophy is a prevalent process in plumes (Baker et al., 2012;
Lesniewski et al., 2012; Anantharaman et al., 2013).
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Two recent developments provide fresh motivation for re-
examining the global impact of hydrothermal vents on the
chemistry and biology of the oceans. First, hydrothermal activ-
ity along the mid-ocean ridges is more common than previously
recognized, especially at slow-spreading systems (German et al.,
2010; Beaulieu et al., 2012). Slow-spreading ridges represent a
large but poorly explored portion of the global mid-ocean sys-
tem and host high-energy, H2-rich systems that are potential
hotspots for chemosynthesis (Amend et al., 2011). Second, the
discovery of cryptic biogeochemical cycling of sulfur (Canfield
et al., 2010) and widespread chemolithoautotrophy in the broader
pelagic oceans (Aristegui et al., 2009; Swan et al., 2011) suggests
that current models underestimate chemosynthesis and raise ques-
tions regarding ecological connections between plume and other
pelagic environments, which we consider below.

MICROBIAL COMMUNITIES IN DEEP-SEA HYDROTHERMAL
PLUMES
Despite the well-recognized importance of microorganisms in
the biogeochemistry of hydrothermal plumes, few studies have
characterized microbial communities that inhabit them. Thus the
physical source, taxonomic composition, and ecological nature of
these organisms remain poorly understood. Potential sources of
microbes for deep-sea hydrothermal plumes can be divided into
three broad categories: (i) seafloor (or sub-seafloor) communi-
ties, (ii) background deep seawater communities, or (iii) growth
within the plume (Figure 2). The traditional view is that plume
microbes are likely sourced from highly productive biological com-
munities that inhabit vent chimneys and surrounding areas (Winn
et al., 1986). Such sources could also include bottom water that is
heavily influenced by low-temperature diffuse flow (Kadko et al.,
1990), which may be responsible for geochemical flux comparable
to focused hydrothermal venting and contains microbes from the
subsurface biosphere (Wankel et al., 2011; Akerman et al., submit-
ted). Indeed, tracer studies indicate that diffuse flow and larvae
of vent fauna can be entrained into plumes (Jackson et al., 2010).
Alternatively, plume microbes could be derived primarily from
ambient background seawater, which seems feasible given that
plumes are a mix of >99% seawater and ∼0.01% hydrothermal
fluid (Lupton et al., 1985) and that benthic and pelagic habitats dif-
fer greatly (Zinger et al., 2011). Regardless of the original source
of microbes, it is likely that plume communities are dynamic
in time and space. Shifts in microbial community structure are
to be expected as the geochemical environment of hydrothermal
fluids evolves with plume age (i.e., become more dilute and oxi-
dized). Consistent with this notion are observations of progressive
removal of electron donors (Kadko et al., 1990) and morphologi-
cal evidence of changes in microbial communities with plumes age
(Cowen and Li, 1991). However, only recently has plume micro-
bial diversity been sampled and analyzed with molecular tools in
a spatially resolved manner.

Many studies have reported elevated microbial biomass and
activity in plumes relative to background, suggesting that plume
microbes are distinct from those in the ambient water column
(Winn et al., 1986; Naganuma et al., 1989; Juniper et al., 1998;
Maruyama et al., 1998; O’Brien et al., 1998; Lam et al., 2004, Lam
et al., 2008; Dick et al., 2009). In one of the first applications of

molecular tools to deep-sea hydrothermal plumes, Sunamura et al.
(2004) showed that the Suiyo Seamount hydrothermal plume is
dominated by just two phylotypes, one group of Gammaproteobac-
teria and one group of Epsilonproteobacteria. Interestingly, both of
these phylotypes were most closely related (at the time) to sym-
bionts of hydrothermal vent animals – the Gammaproteobacteria
to bivalve gill symbionts and the Epsilonproteobacteria to ectosym-
bionts of the tubeworm Riftia pachyptila and shrimp Rimicaris
exoculata (Sunamura et al., 2004). The Gammaproteobacteria, des-
ignated “SUP05,” were also found to dominate low-temperature
diffuse flow emanating from a bivalve-colonized mound (99% of
cells; Sunamura et al., 2004), raising the possibility that microbial
communities in the subsurface or animal symbioses are sources of
plume microbes (see further discussion of links between plumes
and symbionts below). Indeed, SUP05-like sequences have also
been retrieved from diffuse hydrothermal fluids on the seafloor
at the Juan de Fuca ridge (Huber et al., 2003; Bourbonnais et al.,
2012; Anderson et al., 2013). However, recent rRNA gene surveys
show that SUP05 are also widely distributed in pelagic environ-
ments, raising the question of whether the connection between
plumes and subsurface is physical (i.e., transport only) or ecologi-
cal (i.e., actively operating in similar niches in both environments)
in nature. An extreme example of the physical transport of seafloor
and/or subsurface material to the water column is “snowblower”
vents that discharge elemental sulfur and bacterial filaments (Hay-
mon et al., 1993; Crowell et al., 2008). Thermophilic microbes
derived from the subsurface have also been observed in eruptive
event plumes (Summit and Baross, 1998). Epsilonproteobacteria
are also commonly encountered in vent seafloor environments
(Nakagawa et al., 2005; Campbell et al., 2006; Zinger et al., 2011),
again highlighting potential connections between the seafloor and
plumes. Clear signals of Epsilonproteobacteria and other seafloor
hydrothermal microbes have been observed in plumes at the Mid-
Cayman Rise (German et al., 2010), in the Iheya hydrothermal
field (Nakagawa et al., 2005), the Logatchev hydrothermal plume
(Perner et al., 2013), and in descending particles from plumes
at the East Pacific Rise, which are genetically distinct from sur-
rounding seawater (Sylvan et al., 2012). Recent studies employing
fine-scale phylogenetic approaches and coupled DNA and RNA
approaches hold great promise for elucidating the niche space
and distribution of sulfur-oxidizing Gammaproteobacteria and
Epsilonproteobacteria in subsurface, seafloor, plume, and back-
ground environments. Anderson et al. (2013) noted partitioning
of distinct clades of sulfur-oxidizing Gammaproteobacteria in
vent environments (SUP05 in plumes and animal symbioses)
versus others [Arctic96BD-19 in background and oxygen mini-
mum zones (OMZs)] and noted that sulfide concentration likely
controls the balance of Gammaproteobacteria versus Epsilonpro-
teobacteria. Consistent with that view, coupled RNA and DNA
analyses revealed showed that Epsilonproteobacteria are more
active in the reducing environment of the subseafloor, whereas
Gammaproteobacteria are more active at the seafloor where mixing
with seawater is more prevalent (Akerman et al., submitted).

In contrast with the hypothesis that seafloor environments
are the major source of plume biota, microbial communities in
hydrothermal plumes at Guaymas Basin in the Gulf of California
are distinct from those of the underlying seafloor habitats such
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FIGURE 2 | Potential sources of plume microorganisms include microbial

communities in background seawater, vent chimneys, near-vent animal

symbioses, subsurface environments, near-bottom waters, and

recirculation of aged plumes. Microbial growth within the plume also
shapes the plume community, including utilization of hydrothermally sourced

electron donors for chemosynthesis as well as heterotrophic consumption of
organic carbon produced chemosynthetically or hydrothermally. Hydrothermal
plumes contain distinct regions (e.g., the rising plume and neutrally buoyant
plume) with steep gradients of physical and chemical properties that likely
hold distinct microbial communities.

as hydrothermal sediments or chimneys (Dick and Tebo, 2010).
Rather, Guaymas Basin plume communities closely resemble those
from background seawater samples taken just above the plume or
in the neighboring Carmen Basin, which is 100 km away and does
not host hydrothermal activity. Metagenomic and metatranscrip-
tomic data further reinforces the plume-water column connection,
showing that the metabolically active microbes in Guaymas
plumes are pelagic rather than benthic in nature, and suggesting
an ecological boundary between seafloor and plume (Lesniewski
et al., 2012). These studies interpreted the above-plume and Car-
men Basin samples as true background communities, and this
is supported by the absence of detectable physical and chemi-
cal tracers of hydrothermal activity in those samples. However,
another possibility is that this deep seawater surrounding Guay-
mas Basin is impacted by microbes that are exported from the
highly productive chemoautotrophic plumes. Processes that could

facilitate export include ascending and descending particles and
migratory zooplankton (Cowen et al., 2001), buoyant transparent
exopolymeric substances (Shackelford and Cowen, 2006; Prieto
and Cowen, 2007), and large scale advection such as mesoscale
eddies (Adams et al., 2011). Regional influence of vents on deep-
sea microbial communities may be particularly important in the
Gulf of California, where restricted basins could limit dispersal
of plumes and mixing with true non-hydrothermally-impacted
seawater. We will re-visit the potential impact of hydrothermal
plumes on the broader deep oceans below.

ECOLOGICAL AND BIOGEOGRAPHIC LINKAGES BETWEEN
HYDROTHERMAL PLUMES AND OTHER MARINE HABITATS
There is growing recognition that chemical species that fuel
microbial growth in hydrothermal plumes (H2, various sulfur
species, ammonium, and iron) also support microbial growth in
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marine environments well beyond hydrothermal systems, includ-
ing OMZs, oils spills, and cold seeps (Paull et al., 1984; Lösekann
et al., 2007; Tavormina et al., 2008, 2010; Redmond et al., 2010),
whale falls (Baco and Smith, 2003; Tringe et al., 2005; Gof-
fredi and Orphan, 2010), and within microenvironments of
organic-rich particles in the oxic water column (Karl et al., 1984;
Figure 3). Indeed, recent molecular surveys show that microor-
ganisms that are abundant in deep-sea hydrothermal plumes
are also abundant in these other marine habitats. SUP05 and
another group of uncultivated putative sulfur-oxidizing bacte-
ria, SAR324 Deltaproteobacteria, are abundant in OMZs, where
they play important roles in linking the sulfur and nitrogen cycles
(Lavik et al., 2009; Walsh et al., 2009; Canfield et al., 2010; Stew-
art et al., 2012; Wright et al., 2012). These two groups have also
been identified in the dark pelagic oceans (e.g., Swan et al., 2011;
Ghiglione et al., 2012). In addition, methanotrophic populations
and functional genes for methane oxidation (particulate methane
monooxygenase; pMMO) that are prevalent in the Guaymas Basin
hydrothermal plume are closely related to those in plumes of
the Deepwater Horizon oil spill (Lesniewski et al., 2012; Li et al.,
unpublished). Cultures also support connections between plumes
and other marine environments; close relatives of the Mn(II)-
oxidizing alphaproteobacterium SI85-9A1 (>99% 16S rRNA gene
sequence identity), which was originally isolated from the Saanich
Inlet oxic/anoxic interface (Dick et al., 2008), have been isolated
from the surface of Alvinella pompejana tubeworms at 9◦N East
Pacific Rise (Anderson et al., 2009), and from plumes of the Lau

Basin. Finally, Halomonas and Marinobacter species detected in
hydrothermal plumes are present throughout the oceans (Kaye
and Baross, 2000, 2004; Kaye et al., 2011). Hence, plume ecolog-
ical niches and the microorganisms that fill them appear to be
widespread in the oceans, and understanding their distribution is
paramount for understanding the dispersal of plume microorgan-
isms, the “inoculation” of plumes with microbes from background
seawater, and ultimately for understanding the distribution and
abundance of chemoautotrophy throughout the global oceans.
Below we focus on comparisons of plumes to OMZs and seafloor
environments.

CONNECTIONS TO OXYGEN MINIMUM ZONES
Oxygen minimum zones are widely distributed in the oceans and
are expanding due to anthropogenic global change (Wyrtki, 1962;
Stramma et al., 2008; Wright et al., 2012). Reduced O2 concentra-
tions favor alternative terminal electron acceptors, the products
of which drive chemoautotrophic metabolisms. Hence, microbial
metabolisms that take advantage of redox gradients mediate OMZ
biogeochemistry and contribute significantly to the global cycling
of nitrogen and greenhouse gasses (Wright et al., 2012). OMZs
in which the concentration of O2 falls below 20 μM, a thresh-
old below which some anaerobic metabolisms operate (Kalvelage
et al., 2011; Ulloa et al., 2012), overlap geographically with the mid-
ocean ridge system, especially in the Eastern Pacific (Figure 1).
Although OMZs and deep-sea hydrothermal vent plumes are typ-
ically separated vertically by 1500 m or more, communication

FIGURE 3 | Schematic water column profile showing selected

marine habitats that are sources of electron donors for

chemosynthetic growth and support microbial communities similar to

those found in deep-sea hydrothermal plumes. Electron donors for

microbial growth are supplied by geothermal sources at deep-
sea vents and as the products of anaerobic microbial respiration
in low-O2 environments. OMZ and redox schematics after
Wright et al. (2012).
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between these habitats likely occurs via sinking particles. Whereas
nitrogen cycling was classically thought to dominate the microbial
ecology and metabolism of OMZs, cryptic sulfur cycling has also
been recently demonstrated in the Eastern Tropical South Pacific
OMZ (Canfield et al., 2010). Such cryptic sulfur cycling occurs
when sulfide produced by sulfate reduction is rapidly oxidized
back to sulfate. Though easily overlooked by chemical meth-
ods, numerous reports of abundant sulfur-oxidizing autotrophs
in OMZs (Stevens and Ulloa, 2008; Lavik et al., 2009; Walsh et al.,
2009) and even in oxic waters (Swan et al., 2011) suggest that this
process may be widespread in the broader oceans.

To evaluate potential connections between the microbial ecol-
ogy of deep-sea hydrothermal plumes and other marine envi-
ronments, we compared the most abundant microbial groups
across a variety of pelagic and benthic habitats including both
oxic and anoxic as well as hydrothermal and non-hydrothermal
environments (Figure 4). Although there are obviously a variety
of environmental and biogeographic factors that shape micro-
bial community structure in these diverse habitats, there are
some striking similarities in terms of the organisms that domi-
nate. SUP05 are among the most abundant microbial groups in
the Guaymas Basin and Suiyo Seamount hydrothermal plumes,
Saanich Inlet and ETSP OMZs, and in coastal waters of the
Benguela upwelling zone off Namibia (Lavik et al., 2009). SUP05
are also found at appreciable abundance in the OMZ of Guaymas
Basin (Anantharaman et al., 2013) and in the Black Sea redoxcline
(Fuchsman et al., 2011). The SAR324 group of Deltaproteobacteria

(also known as the Marine Group B), which has recently been
implicated in hydrocarbon and sulfur metabolism and autotrophy
(Swan et al., 2011; Li et al., unpublished; Sheik et al., unpublished),
is also abundant in widespread environments (Figure 4). It should
be noted there is considerable diversity within these important
groups, which likely reflects specific ecological adaptations. For
example, there are clades of SAR324 that appear to be specific to
Saanich Inlet (Wright et al., 2012), and there is plasticity of elec-
tron donors and acceptors within the SUP05 (Anantharaman et al.,
2013). Enigmatic groups such as SAR406, SAR86, and Arctic97B-4
also exhibit similar distributions to those of SAR324 and SUP05
and further highlight the links between deep-ocean and pelagic
environments.

PLUMES AS DISPERSAL VECTORS FOR VENT MICROBES, SYMBIONTS,
AND LARVAE
Hydrothermal plumes entrain both focused and diffuse hydrother-
mal fluids and thus are potential dispersants of vent-associated
organisms (Jackson et al., 2010). Indeed, vent-associated larvae
have been observed in plumes (Mullineaux et al., 1995), where
they are likely transported great distances to colonize vent sites
(Mullineaux et al., 2010). As discussed previously (Dick and
Tebo, 2010; Lesniewski et al., 2012), the microbial community of
the Guaymas Basin hydrothermal plume is clearly distinct from
seafloor communities (Figure 4). Despite this ecological boundary
between hydrothermal seafloor and plume habitats, hydrother-
mal plumes could play a key role in the dispersal of seafloor

FIGURE 4 | Microbial community structure and abundance of key

populations in plumes and other marine habitats. 16S rRNA gene clone
and pyrosequencing reads were downloaded from Genbank or VAMPS
(vamps.mbl.edu) repositories and classified to the Silva v. 111 database
(Quast et al., 2013) using the Mothur software package (Schloss et al., 2009).
Sequences were taken from: Hawaii Ocean Time Series (HOT; Pham et al.,
2008), Black Sea (Fuchsman et al., 2011), Cariaco Basin (Madrid et al., 2001),
Northeast Subarctic Pacific (Wright et al., 2012), Saanich Inlet (Walsh et al.,

2009), Namibian upwelling zone (Lavik et al., 2009), Eastern Tropical South
Pacific OMZ (ETSP; Stevens and Ulloa, 2008), Baffin Bay and Amundsen
Sea (Ghiglione et al., 2012), Mid-Cayman Rise hydrothermal vent plume
(German et al., 2010), ABE hydrothermal vent seafloor at Lau Basin (Flores
et al., 2012), Guaymas Basin (Anantharaman et al., 2013), Guaymas Basin
Sediment (Teske et al., 2002), and Suiyo Seamount (Sunamura et al., 2004).
*Primer sets used were bacterial specific and did not allow for comparison
of Archaea.
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hydrothermal organisms such as hydrothermal sediment and
chimney-associated microbes. Consistent with this notion, deep
sequencing of 16S rRNA genes from Guaymas Basin (Ananthara-
man et al., 2013) revealed the presence, albeit at low abundance,
of candidate division bacteria that are common in seafloor
hydrothermal environments (Figure 4). To our knowledge, this
represents the first evidence of seafloor microbes in the rare por-
tion of the plume microbial community at a chronic vent site [they
have been detected previously in eruptive event plumes (Summit
and Baross, 1998)], and suggests that plumes could indeed be an
important mechanism of dispersal of deep-sea vent organisms.

Potential connections between free-living microbes in plumes
and symbionts of hydrothermal vent animals have long been rec-
ognized, but views on the nature of this relationship are evolving.
The similarity of free-living SUP05 in plumes to symbionts was
noted with the original discovery of SUP05 (Sunamura et al.,
2004). More recently, plume SUP05 were found to have and express
genes for H2 oxidation (Anantharaman et al., 2013) that are highly
similar to those of bathymodiolin mussel symbionts at deep-sea
vents (Petersen et al., 2011), and symbiont-like methanotrophs
were detected in the Guaymas Basin hydrothermal plume (Li et
al., unpublished). The traditional view of these microbial sym-
bionts is that they evolved from free-living ancestors to form a
few distinct symbiont clades. However, recent analysis shows that
symbionts are phylogenetically interspersed with free-living forms
of the bacteria, suggesting numerous evolutionary transitions
between symbiotic and free-living forms (Petersen et al., 2012).
Furthermore, horizontal gene transfer has been implicated as a
significant mechanism of metabolic evolution of the symbionts
(Kleiner et al., 2012). Bathymodiolin symbionts are thought to be
transmitted horizontally and acquired by each generation from the
environment (Petersen et al., 2012), and the relatively low diversity
of symbionts within animal populations suggests that the animals
carefully select symbionts from the pool of diversity present within
free-living communities. However, the mechanisms by which this
selection takes place, the degree to which symbionts and free-living
populations are genetically and ecologically distinct, and the time
scales over which transitions between free-living and symbiotic
lifestyles occur all remain intriguing frontiers for understanding
the relationship between animal symbionts and free-living plume
microorganisms.

THE INFLUENCE OF BENTHIC AND PELAGIC HABITATS ON PLUME
MICROBIAL COMMUNITIES
What controls the relative contribution of benthic versus pelagic
microbes to plume microbial communities? Although the limited
data on microbial communities in plumes provides few answers,
there are some preliminary clues. Both physical and biological
factors likely play a role in determining the balance of seafloor
versus water column microbes in plumes. Physical factors include
(i) the fluid flux and entrainment rate of the rising plume, (ii)
the properties and habitability of the near-vent environment that
could potentially be entrained, such as temperature and material
properties (e.g., hard substrate versus easily transported sedi-
ments or biological material such as biofilms or dense animal
communities), (iii) bathymetry of the seafloor surrounding the
vent environment [e.g., bathymetric highs lead to rapid dilution

and dispersal whereas restricted volumes such as Guaymas Basin
or the Suiyo Seamount caldera tend to accumulate hydrothermal
chemistry and biota (German and Von Damm, 2004)], and (iv) the
bioenergetic potential of plume geochemistry (i.e., high concen-
tration of energy-rich electron donors is more likely to support a
seafloor-derived community in the plume). Biological factors that
influence the balance of seafloor versus water column microbes
likely hinge on the properties of the water mass in which vent-
ing takes place, including the cell density and the structure of the
community with regard to metabolic potential. Denser microbial
communities and those that hold a large portion of organisms able
to utilize inorganic electron donors for lithotrophic growth will
promote a greater water column contribution to plume microbial
communities. Finally, the microbial growth response to temper-
ature likely influences the degree to which seafloor microbes are
metabolically active in hydrothermal plumes. Thermophiles or
hyperthermophiles are unlikely to be metabolically active in cold
hydrothermal plumes, whereas mesophiles or psychrophiles from
lower-temperature seafloor habitats may indeed remain active at
plume temperatures.

METABOLIC AND FUNCTIONAL LINKAGES BETWEEN
PLUMES AND OTHER MARINE HABITATS
Recent reports of genomic and metabolic plasticity within micro-
bial groups such as SUP05 (Anantharaman et al., 2013) underscore
the need to use caution when inferring microbial metabolism and
function from 16S rRNA genes of plume populations, even at fine
phylogenetic scales. On the other hand, the emergence of ran-
dom shotgun metagenomic and metatranscriptomic approaches,
driven by rapidly increasing throughput and decreasing costs of
DNA sequencing, provides new opportunities to directly assess
microbial metabolism and its effect on biogeochemistry in deep-
sea hydrothermal plumes. Lesniewski et al. (2012) used a parallel
metagenomic and metatranscriptomic approach to show that
ammonium, methane, and sulfur are the primary energy sources
in the Guaymas Basin hydrothermal plume. Genomes and tran-
scriptomes of abundant microbial groups were subsequently
reconstructed to reveal the genetic potential and expression of
specific microbial populations (Baker et al., 2012; Anantharaman
et al., 2013; Li et al., unpublished; Sheik et al., unpublished).
Comparison of these large ‘omics datasets to those from other
marine environments provides a view of the dynamics of both
community-wide functions and specific microbial groups across
distinct settings, and potentially provides powerful insights into
the factors that govern microbial and ecosystem functions in the
deep sea.

We analyzed the abundance of key functional genes in shot-
gun sequencing datasets from recent studies of the Guaymas
Basin hydrothermal plume (Lesniewski et al., 2012), the Deep-
water Horizon oil spill (Goldstamp Gm00382, IMG TaxonID
2149837026), the Eastern Tropical Pacific OMZ (Stewart et al.,
2012), and the North Pacific subtropical gyre (DeLong et al.,
2006; Figure 5). This data shows that functional genes for oxi-
dation of nitrogen, sulfur, hydrogen, and hydrocarbons that are
highly expressed in the Guaymas Basin hydrothermal plume are
also widely present and expressed in these other disparate marine
habitats (Figure 5). Genes for ammonia oxidation are abundant
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FIGURE 5 | Abundance of functional genes and transcripts for

oxidation of selected nitrogen, sulfur, hydrogen, and hydrocarbon

species in the following samples and studies: EasternTropical

South Pacific OMZ (Stewart et al., 2012), Hawaii OceanTime Series

(DeLong et al., 2006), Guaymas Basin plumes and background

(Lesniewski et al., 2012), and Deepwater Horizon oil spill (Goldstamp

Gm00382, IMGTaxonID 2149837026). Metagenomic sequences from
these studies were used as queries with BLASTX against databases
containing the following sequences: AMO – ammonia monooxygenase
subunit A (from both ammonia-oxidizing archaea and bacteria); Nxr – nitrite
oxidoreductase subunit A; DsrA – dissimilatory sulfite reductase subunit A;
SoxA – sulfur oxidation protein subunit A; HupL and HydB – group 1
membrane-bound Ni,Fe hydrogenase, large subunit; pMMO – particulate
methane monooxygenase subunit A; pEMO – putative particulate ethane
monooxygenase subunit A, includes sequences from Methylococcaceae

bacterium species ET-HIRO (AB453962 and AB453963) and ET-SHO
(AB453960 and AB453961), and environmental sequences (Redmond et al.,
2010; Li et al., unpublished; SAR324_pHMO: putative C2–C4 alkane
oxidizing monooxygenase subunit A, contains sequences from SAR324_J09
(Swan et al., 2011) and Guaymas Basin SAR324 (Li et al., unpublished;
Sheik et al., unpublished). BLASTX bit scores >50 were considered positive
matches. Abundance of sequence reads recruiting to each functional
gene is shown as a percentage of total (putative) mRNA-containing
cDNAs. rRNA were identified using Ribopicker [Version 0.4.3 (Schmieder
et al., 2012)] with the comprehensive Ribopicker database “rrnadb” and
removed from all datasets. The absence of data for samples simply indicates
that it was not identified at the sequencing depth and does not necessarily
imply the absence of genes/transcripts. Note that due to novelty of
sequences, in some cases the pathway and substrate specificity are
uncertain.
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and highly expressed in nearly all datasets analyzed here except
for surface waters of the ALOHA station, consistent with the
widespread abundance of ammonia-oxidizing Archaea (Karner
et al., 2001; Francis et al., 2005), specific populations of which are
stimulated in the ammonium-rich hydrothermal plumes of Guay-
mas Basin (Baker et al., 2012). NXR (nitrite oxidoreductase) genes
for nitrite oxidation (Lucker et al., 2010; Baker et al., 2013) were
recovered from many of the datasets, especially OMZs. However,
this result should be interpreted with caution given the novelty
of NXR genes; it is difficult to distinguish the forms utilized
by nitrite-oxidizing bacteria versus anaerobic ammonia oxidation
(anammox) bacteria (Strous et al., 2006). Thus, we suspect that
a significant fraction of NXR hits in the OMZ are from genes
involved in anammox. Sulfur oxidation systems (sox and dsr genes)
are most prevalent in the Guaymas Basin hydrothermal plume and
in the OMZ cores, but they are also detectable in Guaymas Basin
background and in some samples in the oxic water column at
HOT (Hawaii Ocean Time Series). These sulfur oxidation genes
are present in all metatranscriptomes of the Guaymas Basin, but
only in a subset of those from the Gulf of Mexico, HOT, and
ETSP OMZ. These results, especially expression of sulfur oxidation
genes in oxic waters (HOT), are consistent with widespread cryp-
tic geochemical cycling of sulfur (Canfield et al., 2010), perhaps
in association with organic-rich particles (Karl et al., 1984; Wright
et al., 2012). H2 oxidation genes are less widely distributed, but
are most prevalent in ultramafic vent chimney samples (Brazelton
et al., 2012) and in the Guaymas Basin hydrothermal plume, con-
sistent with H2 being sourced primarily from hydrothermal fluids
and being rapidly utilized in plumes (Kadko et al., 1990). However,
H2 oxidation genes were also detected in some OMZ, ALOHA,
and background Guaymas samples (Anantharaman et al., 2013),
consistent with H2 production in association with organic-rich
particles in the oxic water column also being a substantial source
of H2 as predicted decades ago (Karl et al., 1984).

Utilization of methane and other hydrocarbons as an
energy source represents another potential connection between
hydrothermal plumes and other marine microbial habitats. The
capability of naturally occurring marine microbes to consume
hydrocarbons has recently been highlighted by the Deepwater
Horizon disaster (Mason et al., 2012). While the connections need
further investigation, natural sources of hydrocarbons in the deep
sea (Jorgensen and Boetius, 2007) such as hydrocarbon seeps,
hydrothermal vents, or in situ water column production (Karl
et al., 2008) may prime deep ocean microbial communities for
hydrocarbon degradation. Guaymas Basin hydrothermal fluids
have unusually high concentrations of methane due to interaction
with sediments that overlay the ridge. High methane concen-
trations are also found at the Endeavour Segment of the Juan
de Fuca ridge (De Angelis et al., 1993), and ultramafic systems
on the Mid-Atlantic Ridge (Charlou et al., 1998) and the Mid-
Cayman Rise (German et al., 2010). The imprint of methane is
clearly apparent in microbial communities of the Guaymas Basin
hydrothermal plume; genes for pMMO are among the most abun-
dant mRNAs represented in the metatranscriptome (Lesniewski
et al., 2012). Recent work shows that there is extensive diversity
of pMMOs and related Cu membrane monooxygenases at Guay-
mas, and that they affiliate phylogenetically with enzymes involved

in C2–C4 alkane oxidation (Li et al., unpublished). We refer to
these methane, ethane, and butane monooxygenases collectively as
particulate hydrocarbon monooxygenases (pHMOs). pHMOs are
also present in the metatranscriptome of the Deepwater Horizon
oil spill (Mason et al.,2012; Li et al., unpublished) and in a few sam-
ples from station ALOHA (Figure 5). pHMOs were only detected
at low levels in a few of the shotgun sequencing datasets, but
they have been reported to be abundant in OMZs off Costa Rica
(Tavormina et al., 2013).

COMPARATIVE METATRANSCRIPTOMICS OF POPULATIONS
IN PLUME AND BACKGROUND: SUP05 AND Thaumarchaeota
One of the remarkable conclusions emerging from comparison of
different interfacial redox environments in the oceans is that the
same microbial groups often dominate disparate environmental
settings. For example, despite marked environmental differences
between deep-sea hydrothermal plumes and OMZs (e.g., depth,
temperature, pressure, nutrient availability, water mass history,
quantity, and quality of DOC and POC), they share several of the
most abundant microbial populations, including SUP05, SAR324,
and Thaumarchaea (Figure 4). The nature of these two oxic/anoxic
interfaces is quite different: in plumes, reduced chemicals are
injected into an oxic water column, whereas in OMZs, reduced
chemical species are produced through anaerobic microbial respi-
ration of organic carbon. However, many of the microbial players
appear to be the same, indicating that these organisms thrive at
redox interfaces regardless of differences in other environmental
parameters described above.

Recent metatranscriptomic studies (Baker et al., 2012;
Lesniewski et al., 2012; Stewart et al., 2012; Anantharaman et al.,
2013) permit detailed views of the gene expression patterns
of these microbial groups and their roles in biogeochemistry.
Comparison of transcripts from OMZ and Guaymas Basin
plume/background samples recruited to SUP05 and Thaumar-
chaea genomes shows that the overall patterns of transcript abun-
dance are quite similar between the two environments (Figure 6).
Indeed, the differences between samples within each environ-
ment (plume versus background at Guaymas, different depths
of the OMZ) appear to be as significant if not greater than
differences between environments. For Thaumarchaea, acquisi-
tion of ammonium and oxidation of ammonia dominate the
metatranscriptome in both environments. Conserved hypothet-
ical proteins of unknown function are similarly highly expressed
in both environments, highlighting large gaps in our knowledge
of what are likely critical functions for these organisms. In addi-
tion to obtaining ammonia directly from the environment, uptake
of urea also appears to be an important source of ammonia for
both populations (Figure 6). Utilization of urea has now been
noted for Thaumarchaeota in diverse settings such as sponge sym-
bionts (Hallam et al., 2006), soil (Tourna et al., 2011), polar waters
(Alonso-Saez et al., 2012), and surface waters of the Gulf of Maine
(Tully et al., 2012).

Like Thaumarchaea, transcript abundance profiles of SUP05
show striking similarities in the genes that are most highly
expressed in plumes and OMZs (Figure 6B). Many of the highly
expressed genes are involved in cell maintenance and growth
(e.g., translation and DNA replication), which is expected in any
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environment. However, similarly high transcript abundance of
other genes likely reflects common interactions between SUP05
and the two different environments. Ammonium transporters
were the most highly expressed genes in all OMZ and plume
samples except the 200 m depth of the OMZ. A predicted ABC
(ATP-binding cassette) transporter for amino acids is expressed
in all samples, but it appears to be most abundant in the
deep sea.

SUP05 potentially plays an important role in linking the sul-
fur and nitrogen cycles by coupling the oxidation of reduced
sulfur species to the reduction of nitrate or nitrite (Walsh et al.,
2009; Canfield et al., 2010). Perhaps the most intriguing dif-
ference between plume and OMZ transcript profiles is that the

soxA gene for sulfur oxidation is highly expressed in plumes but
not in deep background waters or the OMZ. This suggests a
difference in the form of sulfur used by SUP05 in plumes versus
OMZs; abundant soxA transcripts point to thiosulfate oxidation
in plumes, whereas free sulfide may be the preferred substrate in
OMZs, as hypothesized by Walsh et al. (2009). Additional differ-
ences between populations of SUP05 include diversity in terms
of electron donors and acceptors. SUP05 at the Saanich Inlet
oxic/anoxic interface were described as anaerobes (Walsh et al.,
2009), but SUP05-related symbionts appear to be aerobic (Kuwa-
hara et al., 2007; Newton et al., 2007), and those in the Guaymas
Basin plume are primarily aerobic (Anantharaman et al., 2013).
Guaymas Basin SUP05 also have genes for H2 oxidation that do

FIGURE 6 | Continued
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FIGURE 6 | Comparison of most abundant transcripts recruited to

Thaumarchaeota (A) and SUP05 (B) between Guaymas Basin

hydrothermal plume and EasternTropical South Pacific OMZ

(Stewart et al., 2012). The mRNA reads (>70 bitscore) were recruited

to the community genome assemblies of Thaumarchaea
(Baker et al., 2012) and SUP05 (Anantharaman et al., 2013) from
the Guaymas Basin with BLASTX. Bars that extend beyond the
plot area are labeled.

not appear to be present in other populations (Anantharaman
et al., 2013).

THREE BIG QUESTIONS FOR THE FUTURE OF DEEP-SEA
HYDROTHERMAL PLUME MICROBIOLOGY
The recent explosion of new data on deep-sea microbial commu-
nities has revealed connections between deep-sea hydrothermal

plumes and other marine habitats. These insights raise intriguing
new questions regarding the roles of deep-sea hydrothermal sys-
tems in the chemistry and biology of the broader oceans. At
the same time, revolutionary technological advances provide new
opportunities to address these questions. One exciting future goal
is to define how the interplay between microbiology and geochem-
istry in hydrothermal plumes extends to global-scale interactions
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between mid-ocean ridges and deep-sea microbiology. The global
mid-ocean ridge hosts geochemically diverse hydrothermal sys-
tems. This geochemical diversity is tied to geological differences in
the underlying host rock of hydrothermal systems, which shapes
the quantity and types of metabolic energy available for chemoau-
totrophic growth in hydrothermal plumes (Amend et al., 2011).
Indeed, vents show the highest variability in biodiversity of all
marine systems (Zinger et al., 2011). Although microbial growth
in plumes is predicted to be significant for carbon budgets in
the deep oceans (McCollum, 2000), several first-order questions
remain poorly constrained and need to be addressed.

WHAT SHAPES THE STRUCTURE OF MICROBIAL COMMUNITIES IN
DEEP-SEA HYDROTHERMAL PLUMES?
As we have seen, hydrothermal plume communities are composed
of microbes from both seafloor and pelagic environments, and
while data is scarce, the balance between these two sources appears
to be variable and depends on both physical and biological fac-
tors. In addition to external contributions, chemoautotrophic
growth within plumes likely contributes to the plume microbial
community. Hence, the structure of communities in deep-sea
hydrothermal plumes is shaped by both the geochemistry of the
seafloor hydrothermal system (which shapes seafloor microbial
communities and the energy available for growth in plumes)
and the composition of communities in the surrounding water
column. Microbial biogeography in the deep oceans is largely
controlled by deep-sea circulation (Ghiglione et al., 2012) and
hydrography (Galand et al., 2010), thus if the contributions from
surrounding seawater are significant, then the geographic loca-
tion of vents along the global deep conveyor belt of circulation
could be an important determinant of plume community compo-
sition. Determining the relative importance of vent geochemistry
and geography in shaping the community structure of plumes
should be possible by tracking microbial diversity along local
gradients of vent geochemistry in locations such as the Eastern
Lau Spreading Center (Tivey et al., 2012). Expanded sampling
and characterization of microbial communities in geographically
widespread plumes in the broader deep sea will also be critical to
evaluate biogeographic characteristics of deep-sea hydrothermal
plumes.

DO HYDROTHERMAL PLUMES INFLUENCE THE DIVERSITY OF DEEP-SEA
MICROBIAL COMMUNITIES ON A GLOBAL SCALE?
So far we have focused on the contribution of background deep-
sea microbes to plumes, but the interaction between communities
in these two environments may in fact be bi-directional. Cell
count data and thermodynamic modeling indicate that deep-sea
hydrothermal plumes are productive environments compared to
surrounding deep waters, and several studies have suggested that
vents influence deep-sea microbial communities in their vicinity
(Moyer et al., 1998; Takai et al., 2004). Active venting occurs in
every ocean basin at over 1000 vent fields globally (Beaulieu et al.,
2012), and surface-generated mesoscale eddies potentially trans-
port hydrothermal plumes long distances (Adams et al., 2011).
Although dispersion of plumes may be largely constrained by
the ridge axis (Speer et al., 2003) or confined to a narrow cor-
ridor 10 km to either side of the ridge axis (German and Von

Damm, 2004), deep-sea microbial communities are relatively
stable (Ghiglione et al., 2012), so microbes exported from plumes
could persist for long periods of time. Clearly there is potential, but
to what extent does chemoautotrophic growth in plumes influence
the broader deep oceans? The answer is poorly constrained, but
given recent insights into cryptic chemoautotrophy throughout
the oceans, the nature of potential influence takes on new meaning.
Rather than being unique oases of chemoautotrophy in the oceans,
perhaps vents should be viewed as one of many potential sources of
electron donors that collectively maintain widespread chemoau-
totrophy in the oceans. Advances in thermodynamic-bioenergetic
modeling of plumes on a global scale, incorporation of this data
into ecological models, and evaluation of the results with exper-
iments and observations provides great promise for addressing
this question. Finally, even if the answer is that plumes do not
influence broader deep-sea microbial communities, the value of
deep-sea hydrothermal plumes as natural laboratories to examine
the response of deep-sea microorganisms to diverse geochemical
perturbations should not be ignored.

HOW DOES MICROBIAL ACTIVITY IN DEEP-SEA HYDROTHERMAL
PLUMES IMPACT CARBON BUDGETS OF THE DEEP OCEANS?
The deep oceans hold the largest reservoir of rapidly exchangeable
inorganic carbon on the Earth’s surface. Microbial autotrophy
potentially converts dissolved inorganic carbon into the organic
phase within the biota. Subsequent grazing and viral predation
transfer this carbon through the food chain or into the dissolved
organic carbon pool. Although plume autotrophy likely has a neg-
ligible impact on the dissolved inorganic carbon inventories over
global and short-term scales, its impact on organic carbon in the
deep sea, especially on regional spatial scales, is potentially sig-
nificant. In particular, the possibility that microbial autotrophy,
heterotrophy, and/or lysis in hydrothermal plumes contribute to a
significant conversion of inorganic matter to refractory organic
matter, and thus sequestration of carbon as a component of
the “microbial carbon pump” (Jiao et al., 2010), has not been
explored in any detail. Improved measurements of plume micro-
bial carbon fixation rates and studies of the fate of that carbon
are required to evaluate this possibility. Another important but
understudied aspect of microorganisms in deep-sea hydrother-
mal plumes is their role in modulating the flux of hydrocarbons
from the seafloor through the water column and into the atmo-
sphere (Orcutt et al., 2011). Future investigation on the inter
relationship between plume microbial activity and hydrocarbon
degradation will provide a better understanding of the impact
of hydrothermal plume microbial activity on deep ocean carbon
cycling.

Although this review has focused on hydrothermal plumes
from high-temperature venting along the mid-ocean ridges, it
should also be noted that low-temperature venting, including
ridge-flank circulation, also likely contributes significantly to the
processes described here. In fact, some estimates suggest that
low-temperature ridge flank systems drive fluxes of fluid, heat,
and solutes that are larger than those from high-temperature
hydrothermal systems (Wheat and Mottl, 2000; Fisher and Harris,
2010). The microbial biogeochemistry of such systems is poorly
known, but (McCarthy et al., 2011) showed that chemosynthesis
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by crustal microbial communities is a major source of dissolved
organic carbon in ridge-flank and on-axis hydrothermal fluids
sampled from the Juan de Fuca Ridge. Thus ridge-flank sys-
tems likely amplify the contributions of hydrothermal/subsurface
circulation to the biology and geochemistry of the oceans and
strengthen ecological and biogeographic connections between
these systems.
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