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Treated wastewater is increasingly being reused to achieve sustainable water management
in arid regions. The objective of this study was to quantify the distribution of antibiotic
resistance genes (ARGs) in recycled water, particularly after it has passed through the
distribution system, and to consider point-of-use implications for soil irrigation. Three
separate reclaimed wastewater distribution systems in the western U.S. were examined.
Quantitative polymerase chain reaction (qPCR) was used to quantify ARGs corresponding
to resistance to sulfonamides (sul1, sul2), macrolides (ermF), tetracycline [tet (A), tet (O)],
glycopeptides (vanA), and methicillin (mecA), in addition to genes present in waterborne
pathogens Legionella pneumophila (Lmip), Escherichia coli (gadAB), and Pseudomonas
aeruginosa (ecf x, gyrB). In a parallel lab study, the effect of irrigating an agricultural soil
with secondary, chlorinated, or dechlorinated wastewater effluent was examined in batch
microcosms. A broader range of ARGs were detected after the reclaimed water passed
through the distribution systems, highlighting the importance of considering bacterial re-
growth and the overall water quality at the point of use (POU). Screening for pathogens
with qPCR indicated presence of Lmip and gadAB genes, but not ecf x or gyrB. In the
lab study, chlorination was observed to reduce 16S rRNA and sul2 gene copies in the
wastewater effluent, while dechlorination had no apparent effect. ARGs levels did not
change with time in soil slurries incubated after a single irrigation event with any of the
effluents. However, when irrigated repeatedly with secondary wastewater effluent (not
chlorinated or dechlorinated), elevated levels of sul1 and sul2 were observed. This study
suggests that reclaimed water may be an important reservoir of ARGs, especially at the
POU, and that attention should be directed toward the fate of ARGs in irrigation water and
the implications for human health.
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INTRODUCTION
Water reuse is an increasingly common sustainable water manage-
ment practice motivated by climate change, urbanization, energy
efficiency, and environmental protection (US Environmental Pro-
tection Agency [USEPA], 2012). Reclaimed or recycled wastewater
is treated by municipalities for a variety of purposes, including
non-potable urban reuse (Grant et al., 2012; USEPA, 2012). In the
United States Environmental Protection Agency (USEPA) guide-
lines on water reuse, the presence of antibiotics as trace organic
contaminants in wastewater is noted and a need for more infor-
mation is acknowledged to reduce the proliferation of antibiotic
resistance and protect public health (USEPA, 2012).

Antibiotic resistance proliferation is currently outpacing the
development of novel antibiotics, calling for effective strategies
to mitigate the spread of antibiotic resistance (Carlet et al., 2012).
Bacterial resistance to antibiotics is partially conferred through
antibiotic resistance genes (ARGs), which code for specific antimi-
crobial functions such as efflux pumps (Webber and Piddock,
2003). ARG contamination has been quantified in a variety of envi-
ronmentally relevant matrices, including wastewater treatment
plant (WWTP) effluent, which is known to contribute to ARG

loadings in surface waters (Pruden et al., 2013; Storteboom et al.,
2010; LaPara et al., 2011). Some states require chlorine or UV dis-
infection for reused water (USEPA, 2012) and certain disinfectants
(free chlorine, O3, and UV) are capable of reacting with nucleic
acids during treatment and therefore may potentially reduce ARGs,
as recently reviewed by Dodd (2012). However, McKinney and
Pruden (2012) recently demonstrated in a controlled lab study
that typical UV doses applied at WWTPs are capable of reducing
antibiotic resistant strains of bacteria, but not ARGs. Others have
noted little reduction in ARGs following UV effluent treatment in
full-scale WWTPs (Auerbach et al., 2007; Kim et al., 2010).

While WWTPs are now well-established as a reservoir of ARGs
(Auerbach et al., 2007; Kim et al., 2010; Czekalski et al., 2012), and
some have considered effect of irrigation with reclaimed water
(McLain and Williams, 2012; Negreanu et al., 2012), there is a
void of studies focused on the potential for re-growth in treated
wastewater distribution systems (“purple” pipes). In one study
examining soil irrigated with treated wastewater, no differences
in the microbiome or ARG levels were observed compared to
soil irrigated with fresh water (Negreanu et al., 2012). In fact,
in Llobregat (NE Spain), reclaimed water emitted to a river
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had lower concentrations of indicator organisms than the stream
water (Rubiano et al., 2012). In contrast, re-growth of indicator
organisms has been observed between the point of entry (POE)
and point of use (POU) in reclaimed water systems (Ryu et al.,
2005), raising the question of whether ARGs can also increase
during distribution. In a study examining drinking water distribu-
tion systems, antibiotic resistant bacteria were shown to decrease
between POE and POU, but ARGs were observed to increase
(Xi et al., 2009).

In this study, ARG occurrence patterns were evaluated in the
POU water in three arid western U.S. recycled water distribu-
tion systems using quantitative polymerase chain reaction (qPCR).
Depending on access, POE, POU biofilm, and soil irrigated with
recycled water were also examined. Samples were also screened by
qPCR for the potential presence of known waterborne pathogenic
bacteria and indicators, Legionella pneumophila, Escherichia coli,
and Pseudomonas aeruginosa. To simulate the effect of reused
water for irrigation, a series of batch laboratory soil microcosm
studies were performed to compare irrigation with secondary,
chlorinated, and dechlorinated effluent from a representative
conventional WWTP.

MATERIALS AND METHODS
WATER REUSE SYSTEMS
Samples were collected from three non-potable reclaimed wastew-
ater distribution systems in the western U.S., together served by
four WWTPs (Table 1). Water samples (-POE or -POU) were col-
lected in sterile centrifuge tubes. Biofilm (-F) was collected with a
sterile swab, and packed in a sterile centrifuge tube. A soil sample
was collected from a field irrigated with reclaimed wastewater (-S),
in a sterile centrifuge tube. All samples were shipped overnight on
ice and stored frozen until extraction. Water samples were freeze-
dried prior to DNA extraction (FreeZone Plus, Labconco, Kansas
City, MO, USA).

BATCH MICROCOSMS
Aerobic, batch microcosms were prepared to investigate two water
reuse scenarios on historically manured soil: (1) a single irrigation
event (“batch irrigation”) and (2) repeated irrigation events (“peri-
odic irrigation”). Soil was collected (upper 7.5–10 cm) in winter
from historically manured corn fields near Virginia Tech campus
using a soil probe. Soil was air dried and sieved (2 mm), and an

Table 1 | Summary of reclaimed WWTP tertiary treatment

characteristics.

Aa1 Ab1 B C

Capacity (Mgd) 6 4 1.1 0.6

Filtration Media Dual media Carbon filter Sand + activated

carbon

Disinfection Chlorine UV Chlorine Chlorine

All WWTPs studied use conventional primary and secondary treatment pro-
cesses.
1Aa and Ab are separate WWTPs that emit water to a commingled distribution
system.

aliquot was preserved for DNA extraction. For each study, micro-
cosms were prepared in 250 mL flasks in triplicate with 50 g of soil
and incubated at room temperature on a shaking table to maintain
aerobic conditions. Slurry samples were collected weekly without
sacrifice. Secondary, chlorinated, and dechlorinated WWTP efflu-
ents were collected before each irrigation treatment event from a
representative 4.5 Mgd Domestic WWTP.

Batch irrigation soil was initially treated with 80 mL of freshly
collected WWTP effluent fractions. Slurry samples (∼0.4 g wet)
were collected and an equal volume of deionized (DI) water was
added to each flask to maintain soil moisture. WWTP effluent
fractions (2–4 L) were filtered through 0.22 μm membrane and
total DNA was extracted from the filter, as described below. The
periodic irrigation soil was initially treated with 100 mL of freshly
collected WWTP effluent fractions. Slurry samples (10 mL) were
collected, centrifuged at 3,300 × g for 5 min, and 0.4 g of the pellet
was used for DNA extraction. Fresh WWTP effluent fractions were
added to the flasks to replace the volume removed during each
sampling. WWTP effluent fractions (60 mL) were freeze-dried, as
above, and DNA was extracted from the residuals.

MOLECULAR TECHNIQUES
DNA was extracted from freeze-dried water/slurry, 0.4 g soil, or
swabs using a FastDNA® SPIN Kit for Soil (MP Biomedicals, Solon,
OH, USA) and diluted 1:50 or 1:100 for the water reuse field study
and 1:30 for the irrigation studies prior to downstream analy-
sis. qPCR was performed to quantify 16S rRNA (Suzuki et al.,
2000), sul1 (Aminov et al., 2001), sul2 (Aminov et al., 2001), tet(A)
(Aminov et al., 2002), tet(O) (Aminov et al., 2001), ermF (Chen
et al., 2007), vanA (Dutka-Malen et al., 1995), mecA (McKinney
and Pruden, 2012), L. pneumophila-specific mip (Nazarian et al.,
2008), E. coli-specific gadAB (Chen et al., 2006), and P. aerug-
inosa-specific ecfX/gyrB (Anuj et al., 2009) genes for the water
reuse field study. Reaction matrix and PCR protocols were as
previously described (Ma et al., 2011; Wang et al., 2012). For the
irrigation study, 16S rRNA, sul1, sul2, tet(O), and tet(W) genes
were monitored. All standard curves of qPCR were constructed
from serial dilutions of cloned genes ranging from 108 to 102

gene copies/μL. Samples were analyzed in triplicate with a stan-
dard curve and negative control included in each run. Limits of
quantification with respect to sample volume varied depending
on the volume processed and the dilution of DNA extract, rang-
ing from −1.4 to 0.6 log10 gene copies/mL, 3.1–5.1 log10 gene
copies per swab, and 0.5–2.5 log10 gene copies/g of soil. Addition-
ally, cloning and sequencing of qPCR product was performed for
assays that had not been validated previously (vanA) to demon-
strate specificity of PCR product (GenBank accession number
KC792557–KC792573).

STATISTICS
Cluster analysis was performed on transformed (square root) 16S
rRNA gene normalized ARG profiles from the reclaimed wastew-
ater systems and significance testing was carried out using the
SimProf test in PrimerE (Plymouth, UK). To compare between
wastewater treatment effluent fractions and treatments in the
irrigation study, data was Box–Cox transformed. Transformed
data were compared using ANOVA, and significant differences
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(p < 0.05) were determined using Tukey’s honest significance test,
as implemented in R (http://www.r-project.org/). Multiple com-
parisons for the distribution system and irrigation studies were
performed on Box–Cox transformed data using least square means
comparison with a Satterthwaite estimation of degrees of freedom
in SAS, again using Tukey adjustment for multiple comparisons.
Linear modeling for the irrigation study data was performed in
Microsoft Excel.

RESULTS
ARG OCCURRENCE PATTERNS IN RECYCLED WATER
Antibiotic resistance genes were detected in all water reuse samples
(Figures 1 and 2). The most frequently detected ARGs were vanA,
ermF, and sul2 with frequencies of detection of 100, 73, and 65%
(n = 23), respectively. tet(O) had the lowest frequency of detec-
tion (17%, n = 23) other than mecA, which was not detected in
any of the samples. For System A, significant differences in ARG

FIGURE 1 | Absolute (bars) and 16S rRNA gene-normalized (symbols) levels of ARGs in water samples collected at point of entry (POE) for WWTPs Aa

and Ab and at point of use (POU) for systems A, B, and C, numbers differentiate between sample locations.
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FIGURE 2 | Quantification of ARGs in biofilm samples available from recycled water distribution systems B and C. Bars represent absolute ARG copies
per swab, symbols represent 16S rRNA gene copies per swab.

concentrations were observed between POE and POU for sul1 and
tet(A), p < 0.001 for both. Concentrations of vanA, ermF, and sul2,
16S rRNA, and tet(O) were not significantly different between POE
and POU (p = 0.33–0.99).

In the irrigated soil sample (B-7S), 9.5, 7.3, 7.2, and 5.6 log10

gene copies/g of soil were quantified for 16S rRNA, sul1, sul2, and
vanA, respectively; ermF, tet(A), and tet(O) were below detection.
Normalizing ARGs to 16S rRNA gene copy numbers indicated
that sul1 and sul2 were one to two orders of magnitude lower and
vanA three to five orders of magnitude lower in the soil sample
than observed in water and biofilm samples.

The occurrence of ARGs varied among the five biofilm samples
examined, ranging from two to six classes of ARGs (Figure 2).
However, individual ARG levels in the biofilm did not correlate
with corresponding bulk water ARGs among the available paired
samples (Figure 3). For example, the most abundant ARG, tet(A),
in B-2F was below detection in B-2POU.

Cluster analysis performed on 16S rRNA gene normalized ARG
profiles considered both the kinds of ARGs detected and their
frequencies and resulted in several significantly different sam-
ple clusters (Figure 4). Generally, three distinct clusters were
formed primarily by POE, WWTP-A POU, and WWTP-C POU
samples, while the WWTP-B POU samples were interspersed
among the three clusters, and a fourth cluster consisting only
of WWTP-B samples. The three WWTP-A POE samples formed
a significantly different cluster from POU samples in its cor-
responding distribution system (50% similarity). POU samples
from System A (n = 7) formed a cluster with 78–96% similar-
ity, except A-5POU which was significantly different (71%) and
clustered with some samples from System B (n = 5). No pat-
terns were observed in the biofilm and water clustering patterns
for paired samples (n = 4). Biofilms did not cluster with one
another nor did biofilm samples cluster with paired water sample
with similarities ranging from 16% for F2 and F3 (significantly
different) to 100% for F1 (no difference). The soil sample (B-
7S) clustered with other B system biofilm and water samples,
which were only 20% similar to the remainder of the samples
selected.

FIGURE 3 | Biofilm versus bulk water ARG copies normalized to 16S

rRNA gene copies in available paired biofilm and water samples. ARGs
were below detection in several samples, indicated on the x and y axes
as bd.

WATERBORNE PATHOGEN AND FECAL INDICATOR SCREENING
Quantitative PCR screening for E. coli and L. pneumophila through
gadAB and mip resulted in positive detections for 48% of sam-
ples: 35 and 17% for gadAB and mip, respectively (Table 2).
ecrfX/gyrB, corresponding to P. aeruginosa, were below detection
in all samples.

ARGs DURING SIMULATED LAND APPLICATION
WWTP effluent fraction ARG loads
Levels of ARGs in secondary, chlorinated, and dechlorinated
WWTP effluent are compared in Figure 5. sul1 was the most
frequently detected ARG (100%), followed by sul2 (71%), tet(W)
(71%), and tet(O) (61%; n = 21). Comparing the ARGs and
16S rRNA gene levels across effluent fractions, secondary effluent
was significantly higher than chlorinated and dechlorinated (both
p < 0.0001) effluents, which were not significantly different from
each other (p = 0.45). Comparing by gene across effluent fractions,
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FIGURE 4 | Cluster analysis of 16S rRNA gene normalized ARG copy numbers, considerate of class and relative abundance of each ARG measured in

the distribution systems (Aa, Ab, B, C) and across environmental matrices (POE, point of entry water; POU, point of use water; F, biofilm; S, soil). Solid
branches indicate significantly different clusters (p < 0.05).

Table 2 | Log copies of E. coli (gadAB) and L. pneumophila (mip)

specific genes per milliliter (POE and POU’s), swab (F’s), or gram

soil (S).

Sample gadAB mip

Ab-POE 3.7 bd∗

A-1POU 4.2 bd

A-2POU 5.1 1.8

A-3POU 4.4 bd

A-8POU 5.3 bd

B-1POU bd 1.4

C-1POU 6.6 bd

B-1F bd 4.6

B-2F 6.0 bd

C-1F 6.9 bd

B-7S bd 5.6

∗bd, below detection.

secondary effluent and chlorinated effluent were significantly dif-
ferent in terms of 16S rRNA and sul2 gene copies (p < 0.0001 for
both). Interestingly, when ARGs were normalized to 16S rRNA
gene copies, significant differences were not observed among the
secondary, chlorinated, or dechlorinated effluents (p = 0.29–0.91).
This suggests no preferential destruction of specific gene types by
chlorination.

Irrigation studies
Results of the batch irrigation study (Figure 6) indicated no dif-
ference between soil irrigated with secondary, chlorinated, or

dechlorinated effluent, or DI water in terms of ARG concentra-
tion with time for sul1, sul2, tet(O), or tet(W) (p > 0.405 for
all, except for sul2 deionized p = 0.05 and secondary effluent
p = 0.006).

Soil periodically irrigated resulted in a significant increase in
sul2 when receiving secondary effluent, compared to irrigation
with the other water types (p ranging from 0.032 to p < 0.0001;
Figure 7). Additionally, soil irrigated with secondary effluent had
significantly higher sul1 copies than that irrigated with chlorinated
effluent, dechlorinated effluent, or DI water (all p < 0.0001). No
significant difference across time was observed among the irriga-
tion water types for tet(O) (p = 0.13–1.0) or tet(W) (p = 0.74–1.0).
Linear modeling of gene copies versus time revealed an increas-
ing trend of sul2 copies with time in soil irrigated with secondary
effluent (R2 = 0.92).

DISCUSSION
This study explored the occurrence of several ARGs in three
reclaimed water distribution systems in the U.S. Given limited
access to such systems, only one sampling event was possible.
Nonetheless, the results provide important baseline information to
support future research, including insight into the kinds of ARGs,
bacteria, and applications that may be of concern. To the knowl-
edge of the authors, this is the first study specifically investigating
the potential for ARGs to persist or amplify within the reclaimed
water distribution pipes.

ARG OCCURRENCE IN RECYCLED WATER DISTRIBUTION SYSTEMS
Several ARGs were detected at the POU in this study, many of
which were below detection at the POE. This highlights the need
to consider microbiological processes occurring in reclaimed water
distribution systems that may be contributing to ARG amplifica-
tion and suggests that focus on the water quality at the POU may be
the most appropriate for assessing risk. Re-growth is a well-known
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FIGURE 5 | Censored boxplot of 16S rRNA genes, sul1, sul2, tet (O), and tet (W) gene copies per milliliter in secondary (no fill), chlorinated (gray), and

dechlorinated (blue) domestic WWTP effluents applied in the batch (2–4 L 0. 22 μm filtered) and periodic (60 mL freeze-dried) irrigation study (n = 6

tet genes, 7 sul and 16S rRNA genes).

FIGURE 6 | sul1, sul2, tet (O), and tet (W) genes in soils subject to one time (batch) irrigation with secondary, chlorinated, dechlorinated domestic

WWTP effluents and deionized (DI) water, per gram of soil (slurry). Error bars represent standard deviation of triplicate microcosms.
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FIGURE 7 | sul1, sul2, tet (O) and tet (W) genes in soils periodically irrigated with secondary, chlorinated, dechlorinated domestic WWTP effluents and

deionized (DI) water, normalized to soil mass (wet weight). Error bars represent standard deviation of triplicate microcosms.

phenomenon even in drinking water distribution systems (Xi et al.,
2009), and has also recently been documented in a recycled water
system (Ryu et al., 2005).

Several studies have documented levels of ARGs in WWTP
effluents, providing a reference for comparison. Generally, ermF,
sul1, sul2, tet(A), and tet(O) levels measured in the POE, POU,
and WWTP effluent applied in the irrigation study were below or
at the lower end of ranges reported by others in WWTP effluents
(Kim et al., 2010; Czekalski et al., 2012; Negreanu et al., 2012).
However, the irrigated soil in this study carried higher levels
of sul1 (7.3 log10 copies/g) and sul2 (7.2 log10 copies/g) than
reported by others in a field study of irrigation with recycled water
(5.1–6.7 and 3.5–4.7 log10 copies/g, respectively; Negreanu et al.,
2012).

The occurrence of vanA is of particular interest given that
it confers resistance to vancomycin, a last-resort life-saving
antibiotic. Vancomycin is commonly prescribed to treat
methicillin-resistant Staphylococcus aureus (MRSA) infections, but
has been losing effectiveness due to increased resistance among
staphylococci (Stevens, 2006). vanA was detected in every sample
in this study using primers targeting a 732-bp product. Inter-
estingly, using vanA primers designed for longer target products

(1030 bp; Clark et al., 1993), vanA was detectable at several POU
sites, but not in any POE samples (data not shown). Detec-
tion differences between the two PCR primer sets may indicate
that vanA was partially damaged during disinfection, prevent-
ing amplification of longer PCR products. Long-amplicon PCR
has recently been demonstrated to provide enhanced detection of
DNA damage events (McKinney and Pruden, 2012). Few studies
have reported detection of vanA in environmental samples, pro-
viding little reference for comparison. However, vanA has been
reported in drinking water biofilms and wastewater (Schwartz
et al., 2003), but was below detection in wastewater reclaimed for
groundwater recharge environments (Böckelmann et al., 2009). To
the knowledge of the authors, this is the first report of the presence
of vanA in distributed recycled water.

MOLECULAR DETECTION OF WATERBORNE PATHOGENS AND
INDICATORS
Opportunistic pathogens residing in water systems, such as L.
pneumophila and P. aeruginosa, are now the primary source of
waterborne disease outbreak in developed countries (Brunkard
et al., 2011). However, there is a need for epidemiological stud-
ies to better quantify the precise contributions of various water
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systems to human disease (Pruden et al., 2013). Of interest to
the present study was whether such organisms may be present
in recycled water, which could be of special concern for bacterial
pathogens because they are capable of developing antibiotic resis-
tance. P. aeruginosa is an example of an opportunistic pathogen
that colonizes taps and is prone to multi-antibiotic resistant forms
(Trautmann et al., 2005). E. coli was also of interest as a fecal
indicator.

The mip gene, specific to L. pneumophila, was detectable at
levels comparable to those recently observed in chloraminated
drinking water distribution systems (Wang et al., 2012). Thus,
there could be concern for aerosolization of L. pneumophila during
spray irrigation. Future research is suggested to more closely exam-
ine this potential transmission pathway. gadAB, specific to E. coli,
detected at POU in this study, was comparable to levels previously
observed in manure runoff (4.6–4.9 log10 copies/mL, assuming
one gene copy per cell) and higher than previously observed in
WWTP effluent (2.74 log10 copies/mL) (Grant et al., 2001). This
combined with the observation of gadAB below detection at POE,
but detectable at POU, is further evidence of bacterial re-growth
within reclaimed water distribution systems.

EFFECT OF DISINFECTION ON ARGs
Chlorination is commonly applied to WWTP effluents during
warm seasons, in which case the effluent must be dechlorinated
prior to discharge. Chlorination had a significant impact on 16S
rRNA and sul2 gene copies, which is consistent with the expec-
tation that chlorination would have a moderate reactivity with
nucleic acids (Dodd, 2012). Although occasionally ARGs detected
in dechlorinated effluent were not detected in chlorinated efflu-
ent, the levels of detected genes were not significantly different.
The levels of ARGs in secondary, chlorinated, and dechlorinated
WWTP effluent fractions were comparable to those detected at the
POU in the field study (Figure 5).

ARG FATE DURING WWTP EFFLUENT LAND APPLICATION
In the lab study, periodic irrigation with secondary effluent
increased the prevalence of sul1 and sul2 in historically manured
soil compared to soil irrigated with chlorinated, dechlorinated,
or DI water. This could be due to direct inputs of extracellular
ARGs, intracellular ARGs, or horizontal gene transfer to native
soil bacteria (Dodd, 2012). Interestingly, tet(O) or tet(W) levels
in the soil slurry were not affected by irrigation. This high-
lights that different ARGs have different environmental fates, as
has been observed recently with respect to sul1 and tet(W) in
a watershed-scale study (Storteboom et al., 2010; Pruden et al.,
2012). Differences in ARG fate likely relate to host properties and
their overall propensity for horizontal gene transfer. Because 16S
rRNA gene copy levels were relatively consistent with time across
the soil irrigation treatments (data not shown), changes in total
bacterial population sizes were not likely a factor in the observed
differences.

A recent field study carried out in Israel suggested that irriga-
tion does not significantly affect the soil microbiome, and increases
were not observed in sul1, sul2, tet(O), ermF, or ermB in soil sub-
jected to long-term (6–12 years) irrigation with secondary effluent
compared to freshwater irrigation (Negreanu et al., 2012). Given

the difference in controls, irrigation frequency, soil type, climate,
and wastewater chemistry, direct comparison between the studies
is difficult. It is suspected that the difference in soil moisture and
incubation time may likely be an important difference. Negreanu
et al. (2012) irrigated with 4 L of water/m2 soil/day which experi-
enced a combination of infiltration, run off, and evaporation. In
this study, soil-water slurries were used with irrigation waters that
incubated with soil rather than infiltrating, allowing for greater
contact time. Therefore, the microcosm results presented here
may indicate that irrigating at high rates with secondary efflu-
ent may still result in amplified soil ARGs. The present study is
consistent with the observation of increased ARG copies directly
under irrigation drippers compared to soils 50 m from drippers
(Negreanu et al., 2012). Further, soil type has been noted to be a
critical factor in determining the level of impact of land applica-
tion of biosolids containing ARGs (Munir and Xagoraraki, 2011),
and may also affect the fate of ARGs applied by irrigation.

Understanding land use scenarios that affect soil ARGs is of
utmost importance given that the resistome of multi-drug resistant
soil bacteria was recently shown to match that from diverse human
pathogens (Forsberg et al., 2012). Heavy irrigation with secondary
effluent is shown here to be capable of increasing soil ARGs. In
practice, given that ARG prevalence can increase between POE
and POU within distribution systems, increased ARG levels in
irrigation waters and therefore soils are expected. Given that spray
irrigation of recreational fields with treated wastewater is common
practice, there is considerable potential for human contact with
aerosols and soil.

CONCLUSION
This study brings to light the occurrence of ARGs at the POU
in recycled water irrigation systems, including vanA, which is of
significant concern to human health. Differences between POE
and POU ARG occurrences underscore the need to take into con-
sideration re-growth that occurs in the distribution system when
estimating overall exposure and risk. Based on the lab micro-
cosm study, amplified levels of ARGs in soil irrigated with recycled
water is possible. Molecular data in this study also indicates the
potential presence of waterborne bacterial pathogens, such as L.
pneumophila. As ARGs are emerging contaminants, risk assess-
ment is in its infancy and no guidance yet exists on safe levels
(Pruden, 2011). In addition to direct contact with water and
aerosols during recreational activity, a greater concern may be
overall contribution to the global pool of antibiotic resistance and
ultimately reducing the effectiveness of available antibiotics for
treating human disease.
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