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INTRODUCTION

The prevalence of antimicrobial resistance (AR) in bacteria isolated from U.S. food animals
has increased over the last several decades as have concerns of AR foodborne zoonotic
human infections. Resistance mechanisms identified in U.S. animal isolates of Salmonella
enterica included resistance to aminoglycosides (e.qg., alleles of aacC, aadA, aadB, ant,
aphA, and StrAB), p-lactams (e.g., blacmy.2, TEm-1, pse-1), chloramphenicol (e.g., floR, cmiA,
catl1, cat2), folate pathway inhibitors (e.g., alleles of sul and dfr), and tetracycline [e.g.,
alleles of tet(A), (B), (C), (D), (G), and tetR]. In the U.S., multi-drug resistance (MDR)
mechanisms in Salmonella animal isolates were associated with integrons, or mobile
genetic elements (MGEs) such as IncA/C plasmids which can be transferred among
bacteria. It is thought that AR Salmonella originates in food animals and is transmitted
through food to humans. However, some AR Salmonella isolated from humans in the U.S.
have different AR elements than those isolated from food animals, suggesting a different
etiology for some AR human infections. The AR mechanisms identified in isolates from
outside the U.S. are also predominantly different. For example the extended spectrum
B-lactamases (ESBLs) are found in human and animal isolates globally; however, in the
U.S., ESBLs thus far have only been found in human and not food animal isolates.
Commensal bacteria in animals including Escherichia coli and Enterococcus spp. may
be reservoirs for AR mechanisms. Many of the AR genes and MGEs found in E. coli
isolated from U.S. animals are similar to those found in Salmonella. Enterococcus spp.
isolated from animals frequently carry MGEs with AR genes, including resistances to
aminoglycosides (e.g., alleles of aac, ant, and aph), macrolides [e.g., erm(A), erm(B),
and msrC], and tetracyclines [e.g., tet(K), (L), (M), (O), (S)]. Continuing investigations are
required to help understand and mitigate the impact of AR bacteria on human and animal
health.
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ANTIMICROBIAL RESISTANCE (AR) IN BACTERIA

Antimicrobial compounds have been used to treat bacterial infec-
tions since the middle of the twentieth century. These compounds
were highly successful in treating various diseases and were widely
used in both human and veterinary medicine. However, resis-
tance to these compounds was detected in target pathogens only
a few years after initiation of therapeutic use in humans (Alanis,
2005). The selective pressure created by the use of antimicro-
bials was identified as a driving force behind the emergence of
resistance which was genetically encoded, inherited by subse-
quent progeny of the resistant pathogens, and in some cases could
be transferred horizontally even to distantly related bacteria [as
reviewed by Linton (1977)]. Because of their efficacy in treating
and preventing disease, antimicrobials were used widely in food
animal husbandry, and were also found to promote the growth of
some animals when fed to the animals at sub-therapeutic levels
(Aarestrup and Wegener, 1999; Mathew et al., 2007). Over the

antimicrobial resistant bacteria increased which can make treat-
ment of these diseases more difficult [reviewed by Alanis (2005)].
Because of the genetic nature of resistance and the ability to select
for resistant organisms through the use of antimicrobials, using
these compounds in animals was considered a potential source
of antimicrobial resistant bacteria which could be transmitted to
humans (Aarestrup, 2005; Aarestrup et al., 2008; Shryock and
Richwine, 2010).

U.S. MONITORING SYSTEMS

Research into the impact of antimicrobial use in animals on
human health has focused on determining the prevalence of
resistance in bacteria isolated from animals and from human
infections (Tollefson et al., 1998; Aarestrup, 1999, 2004; Bager
et al., 1999a; McEwen and Fedorka-Cray, 2002). These studies
were then followed by characterization of the mechanisms
leading to resistance and determining if resistance found in

www.frontiersin.org

May 2013 | Volume 4 | Article 135 | 1


http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/10.3389/fmicb.2013.00135/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JonathanFrye&UID=46373
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=CharleneJackson&UID=81738
mailto:jonathan.frye@ars.usda.gov
http://www.frontiersin.org
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/archive

Frye and Jackson

Antimicrobial resistance in U.S. animals

human infections were likely to have first occurred in animals
followed by transmission to humans. To achieve these goals,
antimicrobial resistance (AR) monitoring programs have been
initiated globally. In the U.S., the Centers for Disease Control
and Prevention (CDC), the Food and Drug Administration
(FDA), and the U.S. Department of Agriculture (USDA)
established the National Antimicrobial Resistance Monitoring
System (NARMS) to monitor changes in antimicrobial sus-
ceptibilities of zoonotic pathogens from human and animal
clinical specimens, from healthy farm animals, and from raw
product of food-producing animals at slaughter and processing
(http://www.fda.gov/AnimalVeterinary/SafetyHealth/Antimicrobi
alResistance/National AntimicrobialResistanceMonitoringSystem/
default.htm; Tollefson et al., 1998, 1999). Similar programs were
developed in Canada, Mexico, the European Union, and in other
locations (Martel et al., 2000; Barton et al., 2003; Aarestrup, 2004;
Biedenbach et al., 2006; Hammerum et al., 2007). This informa-
tion is shared globally to detect the emergence of resistance and
the dissemination of antimicrobial resistant foodborne pathogens
(http://www.who.int/foodborne_disease/resistance/agisar/en/ind
ex.html). Many of these programs also include epidemiological,
microbiological, and molecular biology research projects to
improve our understanding of the data collected.

BACKGROUND, DEFINITIONS, AND DESCRIPTIONS OF BASIC
MECHANISMS AND GENETICS

In addition to determining the prevalence of resistant bacte-
ria, research associated with the surveillance programs focuses
on determining the mechanism leading to resistance. Typically,
mechanisms of AR fall into three categories: (1) inactivation
of the antimicrobial, (2) efflux or changes in permeability or
transport of the antimicrobial, or (3) modification or replace-
ment of the antimicrobial target (McDermott et al., 2003; Walsh,
2003; Boerlin and Reid-Smith, 2008; Foley and Lynne, 2008).
Resistances are genetically encoded and can vary from mutations
in endogenous genes, to horizontally acquired foreign resistance
genes carried by mobile genetic elements (MGEs) like plasmids.
Both point mutations and horizontally acquired genes can encode
all three categories of resistance. Point mutations in a promoter
or operator can result in the overexpression of endogenous genes
such as an antimicrobial inactivation enzyme like the AmpC
B-lactamase gene, or an efflux system like the mar locus (Van
et al.,, 2000; Siu et al., 2003; Tracz et al., 2005). Point muta-
tions in genes encoding antimicrobial targets can result in a
resistant target, such as mutations to the gyrase gene leading
to the expression of a fluoroquinolone-resistant gyrase enzyme
(Eaves et al., 2004; Hopkins et al., 2005). Exogenous resistance
genes encoded on plasmids, integrons, phage, and transposons
can be horizontally transmitted by transformation, conjuga-
tion, or transduction and these foreign genes can encode all
three mechanisms of resistance. This includes genes encoding
enzymes that inactivate the antimicrobial, such as B-lactamases
that cleave the four membered ring in B-lactams, genes which
encode efflux systems like tet(A), genes encoding a modified ver-
sion of the enzyme that is the target of the antimicrobial, such
as dfrA, or genes encoding an enzyme that modifies the antimi-
crobial target like a ribosomal RNA methylase, such as ermB

(Carattoli, 2001, 2009; Boerlin and Reid-Smith, 2008; Ajiboye
et al.,, 2009). Analysis of these resistance mechanisms can then
be used to determine the genetic relationship between resis-
tances found in isolates from animals and humans. Because of
the diversity of genetic elements that lead to AR, it may be pos-
sible to determine if resistances seen in bacterial isolates from
human infections are closely related to those found in animal
isolates, thus identifying animal sources of resistant bacteria
in human infections that can be targeted in order to reduce
human disease (Bager et al., 1999b; Aarestrup, 2000b; Boerlin,
2004).

IMPACT ON HEALTH AND MEDICINE IN ANIMALS AND HUMANS
When first detected, AR in bacteria was relatively rare and new
antimicrobial compounds were discovered or developed that were
not susceptible to the resistance mechanisms that had arose
(Alanis, 2005). However, resistance mechanisms to new antimi-
crobials can develop, or existing ones can emerge due to selective
pressure from their use, leading to increasing resistance in human
and animal isolates over time (Swaminathan et al., 2006; Frye and
Fedorka-Cray, 2007; Gilbert et al., 2007; Frye et al., 2008, 2011).
Increasing infections with antimicrobial resistant bacteria is also
accompanied by a decrease in efficacy of treatment with these
compounds (Alanis, 2005; Stoycheva and Murdjeva, 2006; Walsh
and Fanning, 2008; Ajiboye et al., 2009). In addition, infections
caused by antimicrobial resistant bacteria have also been shown to
result in increased morbidity and mortality in humans and ani-
mals (Mundy et al., 2000; Alanis, 2005; Foley and Lynne, 2008;
Ajiboye et al., 2009; Gebreyes et al., 2009; Huehn et al., 2010).
The consequences of antimicrobial use are also caused by prophy-
lactic treatment of animals to prevent infection or antimicrobials
employed as growth promoters. Concerns about selective pressure
caused by the utilization of sub-therapeutic growth promoting
antimicrobials have led to precautionary restrictions and bans
on these applications (DuPont and Steele, 1987; Aarestrup and
Seyfarth, 2000; Aarestrup et al., 2001; Anthony et al., 2001; White
et al., 2002, 2004; Stokes et al., 2008). In some cases these bans
have appeared to result in increased animal illnesses and increased
therapeutic use of some antimicrobials in animal husbandry, thus
confounding the evaluation of these practices in preventing resis-
tance and protecting human and animal health (DuPont and
Steele, 1987; Aarestrup and Seyfarth, 2000; Aarestrup et al., 2001;
Anthony et al., 2001; White et al., 2002, 2004; Stokes et al., 2008).
While the proportions of resistant bacteria have fluctuated
from year to year, the percentage of antimicrobial resistant bac-
teria seems to be increasing as well as the fraction of bacteria
that are multi-drug resistant (MDR; Devasia et al., 2005; Alcaine
et al., 2007; Johnson et al., 2011a). MDR bacteria are troublesome
because it is possible for a pathogen to be resistant to all of the
antimicrobial compounds that are used to treat the infections it
causes (Alanis, 2005). In addition, horizontally transferred mech-
anisms of resistance are often physically linked on genetic loci
such as plasmids, integrons, and transposons (Poole and Crippen,
2009; Douard et al., 2010; Frye et al., 2011; Glenn et al., 2011,
2012; Lindsey et al., 2011a). These genetic elements often encode
MDR and are capable of being transferred to sensitive bacteria,
rendering a new bacterial host MDR through a single transfer
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event (Zhao et al., 2003; Poole and Crippen, 2009; Frye et al,,
2011; Lindsey et al., 2011a).

Salmonella

Salmonella DISEASES, PATHOGENESIS, AND ANTIMICROBIAL
THERAPY

Salmonella enterica is a ubiquitous pathogen which can infect
many host species and cause different diseases (D’Aoust, 1997;
Lavigne and Blanc-Potard, 2008). Hosts can range from compan-
ion animals to food animals and humans, and disease symptoms
can range from self-limiting gastroenteritis to invasive systemic
infections with a high mortality rate (Lavigne and Blanc-Potard,
2008). Some serovars of S. enterica can survive in a wide vari-
ety of hosts and cause different diseases such as Salmonella
Typhimurium, which causes no symptoms in adult poultry, can
cause gastroenteritis in humans, or cause highly invasive sys-
temic enteric fever in mice (Goldberg and Rubin, 1988; Chan
et al., 2003; Lavigne and Blanc-Potard, 2008). Other serovars are
host specific like Salmonella Typhi which is an obligate human
pathogen that causes invasive Typhoid fever (Bhan et al., 2005),
which is extremely rare in the U.S., but can be endemic in other
parts of the world. Most other serovars of Salmonella usually
cause only gastroenteritis in humans while some other serovars
can potentially cause both gastroenteritis and invasive infections
in humans. Salmonella is usually transmitted by contaminated
food with contamination originating from animal products or
feces, contaminated processing equipment, or contaminated food
handlers (Goldberg and Rubin, 1988). Additionally, Salmonella is
sometimes antimicrobial resistant which can result in difficulty
treating infections (Fluit, 2005; Stoycheva and Murdjeva, 2006).
Because of the impact on human health, zoonotic transmission,
and ability to acquire AR, Salmonella has been chosen as the
sentinel organism for foodborne disease and for AR monitoring
(Tollefson et al., 1998, 1999; White et al., 2001, 2002).

In the U.S., Salmonella is estimated to cause over one mil-
lion human infections each year (Scallan et al., 2011). Most
of these infections result in gastroenteritis that resolves after
a few days; however, some infections can be chronic or inva-
sive, especially in the very young, the old, and groups of peo-
ple with compromised immune systems (Alcaine et al., 2007).
In these cases Salmonella infections may require antimicrobial
treatment to prevent further morbidity or mortality (Alcaine
et al., 2007). First line antibiotic treatment in the U.S. is typi-
cally a fluoroquinolone-like ciprofloxacin or a third generation
cephalosporin B-lactam such as ceftriaxone, and folic acid path-
way inhibitors are also available (Mandal, 1990; Guerrant et al.,
2001; Hohmann, 2001; Habib, 2004; Parry and Threlfall, 2008).
However, in children and pregnant women, treatment is usually
limited to B-lactams due to fluoroquinolone’s interference with
cartilage formation; therefore resistance to p-lactams is a con-
siderable concern in Salmonella (Parry and Threlfall, 2008). In
cases where infection is caused by Salmonella resistant to first line
treatments, alternative second line antimicrobials may be used,
such as aminoglycosides, or folic acid pathway inhibitors like
sulfisoxazole or sulfamethoxazole with or without trimethoprim
(Guerrant et al., 2001). In MDR Salmonella infections, the last
line treatments are usually the aminoglycoside, amikacin or the

carbapenems, imipenem or meropenem which are administered
intravenously. Due to observed increases in morbidity and mor-
tality in antimicrobial resistant infections, it has been suggested
that resistant Salmonella are more virulent than sensitive strains
(Mundy et al., 2000; Alanis, 2005; Foley and Lynne, 2008; Ajiboye
et al., 2009; Gebreyes et al., 2009; Huehn et al., 2010). However,
research into this has been inconclusive, and some studies have
demonstrated that resistance to some antimicrobials such as flu-
oroquinolones actually reduces virulence in Salmonella (O’Regan
et al., 2010).

PHENOTYPIC ANTIMICROBIAL RESISTANCE IN Sa/monella ISOLATED
IN THE U.S.

Antimicrobial resistant Salmonella have been isolated glob-
ally from human infections, clinically ill animals, healthy
food animals, food animal products, and fresh produce. In
the U.S., since 1997, NARMS has collected data on AR in
Salmonella isolated from humans, and animals, including
chickens, turkeys, cattle, swine, and their retail meat products.
The percentage of resistant isolates from these sources has been
presented in NARMS reports for each year from 1997 to 2009
(http://www.fda.gov/AnimalVeterinary/SafetyHealth/Antimicrobi
alResistance/National AntimicrobialResistanceMonitoringSystem/
default.htm). Antimicrobial compounds used for susceptibil-
ity testing in Salmonella are listed in Table 1. Resistance
to all of these antimicrobials was detected in isolates from
humans during 1997-2009; however, only 26 human iso-
lates were resistant to the first line treatment ciprofloxacin
and only two human isolates were resistant to amikacin
making it a possible treatment option (Table1). However,
substantial resistance to ceftriaxone, which is also often used
as a first line treatment for salmonellosis, was detected in
humans and increased from 1997 (0.5%) to 2003 (4.4%)
(http://www.fda.gov/AnimalVeterinary/SafetyHealth/Antimicrobi
alResistance/National AntimicrobialResistanceMonitoringSystem/
default.htm) and has remained fairly steady from 2004 to 2009
(average of 3.1%; Table 1) (Frye and Fedorka-Cray, 2007; Frye
et al., 2008). A similar trend was observed for animal isolates,
especially from cattle where resistance to ceftriaxone increased
from 0% in 1997 to 21.6% in 2003 (Frye and Fedorka-Cray,
2007; Frye et al., 2008) and then leveled-off. Resistance to other
antimicrobials varied between human and animal isolates, and
especially by animal source of the isolates. In human isolates,
resistance to tetracycline averaged 16.9%; in animal isolates
resistance averaged 34.9% for all animals, and over 50% in turkey
and swine isolates (Table1). Sulfamethoxazole/sulfisoxazole
resistance in human isolates was 15.3% and in animal isolates it
was 19.9% for all sources. Resistance to streptomycin was also
found in human and animal isolates at 14.4% in humans and
26.3% for all animals. Similarly, ampicillin resistance was 14.3%
in human isolates and 16.0% in animal isolates. Resistance to
chloramphenicol was detected in human (8.8%) and animal
(7.3%) isolates; however, this drug is not usually used to treat
human infections in the U.S. Levels of resistance to gentamicin
was detected at 2.1% in isolates from humans and 6.5% from
animals, and resistance to combined folate pathway inhibitors,
trimethoprim-sulfamethoxazole, were 2.0% in human isolates
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and 1.4% in animal isolates, making it also suitable as a treatment
in the U.S. (Guerrant et al., 2001).

GENETIC MECHANISMS OF ANTIMICROBIAL RESISTANCE FOUND IN
Salmonella U.S. ANIMAL ISOLATES

Aminoglycosides

Aminoglycoside antimicrobials were first introduced into clinical
application in the middle and last half of the twentieth century
primarily to treat severe infections caused by Gram-negative bac-
teria in animals (Maurin and Raoult, 2001; Schwarz and Chaslus-
Dancla, 2001; Schwarz et al., 2001). Their use in treatment of
infections in food animals is limited due to both their toxic
nature and the persistence of residual antimicrobial in the tissue
of the animals. In swine, aminoglycosides including gentamicin,
neomycin, or streptomycin have been used to treat intestinal
diseases such as scours in weanling pigs and swine dysentery
(Maurin and Raoult, 2001; Schwarz and Chaslus-Dancla, 2001).
Gentamicin is also used to prevent or treat Salmonella or E. coli
infections in poults. In some European countries, neomycin
is used in combination with the macrolide antimicrobial, lin-
comycin, for treatment of mastitis in dairy cattle caused by E. coli
and Staphylococcus aureus (De Oliveira et al., 2000). The synergis-
tic effect of an aminoglycoside antimicrobial with an antimicro-
bial that targets the cell wall of enterococci such as a p-lactam like
ampicillin or penicillin are also used in human medicine to treat
enterococcal infections (Arias and Murray, 2012).

The aminoglycosides function by binding to the 30S ribosomal
subunit inhibiting protein translation. Salmonella resistance to
aminoglycosides is usually an enzymatic modification of the com-
pound; however, in other bacteria, active efflux of the compound
or enzymatic modification of the 16S rRNA subunit to prevent
the aminoglycoside from binding to its ribosomal target can lead
to resistance. Mechanisms of aminoglycoside resistances in U.S.
Salmonella animal isolates are primarily due to acetyltransferases,
phosphotransferases, and nucleotidyltransferases which modify
and inactivate the aminoglycoside (Shaw et al., 1993; Ramirez
and Tolmasky, 2010). There are two systems of nomenclature for
these genes and some researchers have also used additional name
modifications to indicate new alleles resulting in a complex set of
names, many of which are synonymous. These have been expertly

reviewed in several papers as well as their prevalence in Salmonella
throughout the world (Ramirez and Tolmasky, 2010).

The aminoglycoside acetyltransferases are usually named aac,
followed by a numeral in parentheses to designate the target of
their enzymatic activity on the aminoglycoside molecule [e.g.,
aacC(3')]. This can then be followed by a roman numeral to
indicate the resistance phenotype, and then a letter to indi-
cate the allele or variant of the gene. The aac genes found
in U.S. Salmonella isolates can confer resistance to gentam-
icin, tobramycin, and kanamycin. Aminoglycoside phosphotrans-
ferases confer resistance to kanamycin and neomycin, and are
usually named aph. These genes also have a designation of the
location they modify on the antibiotic [e.g., aph(3')], and some
aph genes also have other names, such as strA and strB which
encode resistance to streptomycin. Aminoglycoside nucleotidyl-
transferases can confer resistance to gentamicin, tobramycin, or
streptomycin and include aad and ant groups of genes that can
also have extensions to indicate the target of the enzyme. The
most common genes reported are listed in Table 2, and include
variants of aac, aad, aph, and str genes. Specific alleles of amino-
glycoside resistance genes detected in several studies of NARMS
U.S. food animal isolates have included aac(3’), aac(6'), aadA,
aadAl, aadA2, aadA12, aphAl, aph(3')-Ii-iv, strA, and strB (Frye
and Fedorka-Cray, 2007; Frye et al., 2008, 2011; Glenn et al., 2011;
Lindsey et al., 2011a).

B-lactams

Penicillin was one of the first B-lactams developed for clinical
use in humans, and was also one of the first antibiotics to which
bacteria became resistant. The B-lactams prevent synthesis and
maintenance of the peptidoglycan component of the bacterial cell
wall by mimicking one of the building blocks used by enzymes
to construct peptidoglycan (Prescott, 2000¢,d,g). The p-lactams
have a unique four membered “B-lactam” ring that when acted
upon by enzymes that build the cell wall, forms an irreversible
bond to the enzyme, inactivating it and preventing the enzyme
from completing cell wall synthesis. These enzymes are also
known as penicillin-binding proteins (PBP). Most resistance to
B-lactams is conferred by B-lactamases that enzymatically cleave
the B-lactam ring and prevent it from bonding to and inactivating

Table 2 | Antimicrobial resistance genes found in Salmonella enterica isolated from U.S. food animals.

Antimicrobial class Genes

References

Aminoglycosides

aph(3 )-li-iv, aph(3 )-lla, strA, strB

B»Iactams b/aCM\(_Z, b/aPSE_q , b/aTEMq

Chloramphenicol floR, cmlA, cat1, cat2

Fluoroquinolones
(QRDR) of gyrA, gyrB, parC, parE
Folate pathway inhibitors sull, sul2, sul3, dfr1, dfrA10, dhfrl, dhfrXIl

Tetracyclines

aacC(3'), aacC(3 )-lla, aacC(6'), aacC2, aadA, aadAl,
aadA2, aadA12, aadB, ant(3')-la, aphAl, aphAI-IAB,

Mutations in Quinolone Resistance Determining Regions

tet(A), tet(B), tet(C), tet(D), tet(G), and regulator tetR

Foley and Lynne, 2008; Ramirez and Tolmasky, 2010; Chen
et al.,, 2011; Frye et al., 2011; Glenn et al., 2011; Folster et al.,
2012

Lietal., 2007; Foley and Lynne, 2008; Frye et al., 2011; Glenn
etal., 2011;

Foley and Lynne, 2008; Frye et al., 2011; Glenn et al., 2011
Hopkins et al., 2005

Zou et al., 2009; Frye et al., 2011; Glenn et al., 2011
Roberts, 2005; Foley and Lynne, 2008; Zou et al., 2009; Frye
etal., 2011; Glenn et al., 2011
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cell wall enzymes (Prescott, 2000c,d,g). Because of this, new
pB-lactams were synthesized through modification of the chemical
groups around the f-lactam ring to produce p-lactams that are
resistant to the p-lactamases; other modifications also improved
their activity on specific bacteria or accessibility to certain infec-
tion sites. These include modified penicillins such as methi-
cillin and oxacillin; the cephalosporins like cephalothin, cefoxitin,
ceftriaxone, and cefipime, which are 1st through 4th genera-
tion cephalosporins, respectively; and the carbapenems such as
imipenem and meropenem (Prescott, 2000¢,d,g). In response to
the selective pressure created by these new antibiotics, muta-
tions in B-lactamase genes have also created enzymes that can
digest these later generation p-lactams. Some important groups
of these are the extended spectrum B-lactamases (ESBLs) (Bush,
2008), cephalosporinases (Arlet et al., 2006), and carbapenemases
(Miriagou et al., 2010). However, some B-lactamases can also be
inactivated by B-lactamase inhibitors, like clavulanic acid, which
bind irreversibly to particular B-lactamases, thus allowing the
B-lactam to work when the f-lactam and B-lactamase inhibitor
are used as a combined treatment, such as Augmentin (ampi-
cillin/clavulanic acid; Prescott, 2000g). Other resistance mecha-
nisms include genes that encode modified PBPs that have a low
affinity for p-lactams and are not inactivated by them or that use
different building blocks to construct the cell wall. Efflux of the
B-lactam or modification of porins (e.g., ompF and ompC) is also
a resistance mechanism to f-lactams. Often these different mech-
anisms are found in the same bacterium, resulting in high level
B-lactam resistance (Batchelor et al., 2005).

Most of the B-lactam resistance in Salmonella is encoded
by horizontally acquired p-lactamases (Table 2); however, many
other bacteria have an intrinsic B-lactamase, such as ampC found
in E. coli (Table3) (Siu et al., 2003). In Salmonella isolated
from U.S. animals, the most prevalent p-lactamase genes are
blatgpm-1 and blapsg-1 (ak.a. blacarpz) encoding resistance to
ampicillin, and blacmy-; that encodes resistance to ampicillin,
Ist, 2nd, and 3rd generation cephalosporins and is also resis-
tant to p-lactamase inhibitors such as those found in Augmentin
(Table 2) (Frye and Fedorka-Cray, 2007; Frye et al., 2008,
2011; Glenn et al.,, 2011; Lindsey et al., 2011a). In contrast,
other B-lactamases have been detected globally including blaTgn,
blactx-m» blavp, blayiv, blaxpc, blasyy, and blapxa and variants
of these genes may encode ESBL or carbapenemase activity

(Falagas and Karageorgopoulos, 2009). Of particular concern may
be the global emergence of the blaypy-; metallo-p-lactamase that
confers resistance to carbapenems which are often the last line
of defense in Gram negative infections (Walsh, 2010). Recently
this gene was found in Salmonella isolated from a human in
the U.S. after travel to India (Walsh, 2010; Savard et al., 2011).
NARMS U.S. food animal isolates of Salmonella collected from
1999 to 2011 have been screened by both phenotypic and geno-
typic assays for ESBLs and none have been detected in isolates
from U.S. animals by these or any other published studies [(Frye
and Fedorka-Cray, 2007; Frye et al., 2008) and Fedorka-Cray,
pers. communication]. The B-lactam resistance genes identified
in NARMS animal isolates have been limited to mostly blatg-1,
blapsg-1, and blacyy-» (Table 2) (Frye and Fedorka-Cray, 2007;
Frye et al., 2008, 2011; Glenn et al., 2011; Lindsey et al., 2011a).

Phenicols

Chloramphenicol and related compounds such as florphenicol
inhibit protein synthesis by binding to the 50S ribosomal subunit.
In the developed world, chloramphenicol is virtually irrelevant
clinically and has been banned in the U.S. and other countries
for use in humans or food animals due to its potential toxic
effects on humans. In most of the developing world, its use is
also limited by high levels of resistance likely due to the low-
cost of the antimicrobial and unregulated, widespread over use. It
is primarily used for treatment of systemic salmonellosis caused
by bacteria that are resistant to other drugs of choice (Prescott,
2000e). Chloramphenicol has also been used for eye infections
and sparingly for treatment of infections caused by bacterial
anaerobes. Most resistance mechanisms are efflux pumps such as
floR and cmlA, as well as inactivating enzymes such as chloram-
phenicol acetyltransferase, catl (Prescott, 2000b,e). Resistance in
Salmonella and other bacteria isolated from animals is often seen
by these mechanisms. Mechanisms of phenicol resistance found
in U.S. NARMS animal isolates have been floR, cmlA, and catl
(Table 2). In addition, the chloramphenicol resistance gene floR is
often found in the class I integron located in Salmonella Genomic
Island 1(SGI-1) (Frye et al., 2011; Glenn et al., 2011, 2012).

Quinolones
Quinolones and fluoroquinolones are a synthetic group of
antimicrobials used in food animals to combat various infectious

Table 3 | Antimicrobial resistance genes found in Escherichia coli isolated from U.S. food animals.

Antimicrobial class Genes

References

Aminoglycosides aac(3'), aac(6'), aadA, aadE, strA/B, aph

B-lactams ampC, ampR, blacpy-2, blapser, blatem-
Chloramphenicol cat1, cmlA, floR

Fluoroquinolones
(QRDR) of gyrA, gyrB, parC, parkE
Folate pathway inhibitors sull, sul2, sul3, dfr

Tetracyclines

Mutations in Quinolone Resistance Determining Regions

tet(A), tet(B), tet(C), tet(G), tet(M), and regulator tetR

Ramirez and Tolmasky, 2010; Frye et al., 2011; Glenn
etal., 2012

Li etal., 2007; Frye et al., 2011; Glenn et al., 2012
Keyes et al., 2000; White et al., 2000; Bischoff et al.,
2002; Frye et al., 2011; Glenn et al., 2012

Hopkins et al., 2005

Graves et al., 2002; Ajiboye et al., 2009; Frye et al.,
2011; Glenn et al., 2012
Bryan et al., 2004, Frye et al., 2011; Glenn et al., 2012
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agents (Hopkins et al., 2005). Introduced into use over two
decades ago, they have broad-spectrum activity coupled with
low toxicity and other pharmacokinetic characteristics which
make them attractive antimicrobials for use in food animals.
A number of fluoroquinolones have been used in food ani-
mals including enrofloxacin, difloxacin, marbofloxacin, orb-
ifloxacin, and sarafloxacin (Hopkins et al., 2005). Enrofloxacin
and danofloxacin are both useful for treatment of respira-
tory track disease in cattle; enrofloxacin and sarafloxacin were
approved in the mid-1990’s for treatment of chickens and turkeys
with E. coli infections (Endtz et al., 1991; Nelson et al., 2007).
Although valuable for treatment of disease in food animals,
fluoroquinolones are also used in human medicine for the
treatment of Salmonella, E. coli, and other bacterial infections.
Bacteria resistant to fluoroquinolones used in animals could
also be resistant to fluoroquinolones used in human medicine
due to the shared mechanism of action of these drugs (Nelson
et al., 2007). In Europe, after the introduction of enrofloxacin
in food animals, ciprofloxacin-resistant Campylobacter jejuni
were detected in food animals and humans and were suspected
to have been transmitted through food; this led to EU with-
drawal of use of these compounds (Endtz et al., 1991; Nelson
et al., 2007). In the U.S., fluoroquinolone use in poultry is
banned and use in cattle is limited to non-lactating heifers
under 20 months of age for treating bovine respiratory disease
in cattle.

Quinolones and fluoroquinolones bind to and prevent DNA
processing enzymes such as topoisomerases from assisting
in DNA replication and maintenance. Mechanisms found in
Salmonella and E. coli have been recently reviewed (Hopkins
et al.,, 2005). Most resistances to these compounds are due to
mutations within the genes that encode the enzymes such as
gyrA, gyrB, parC, and parE. Most of these mutations occur in
the quinolone resistance determining region (QRDR) which is
a conserved site in these enzymes targeted by these antimicro-
bials. Resistance to nalidixic acid and then to fluoroquinolones
builds in a stepwise process of mutations in the QRDR region
producing an enzyme with a target region that quinolones can-
not bind to (Chen et al., 2007). Resistance to nalidixic acid and
fluoroquinolones like ciprofloxacin has been found in human iso-
lates of bacteria globally. However, animal isolates of Salmonella
in the U.S. have very low levels of resistance while the close
relative E. coli has higher levels of resistance; for example,
only a handful of Salmonella isolated from animals by NARMS
were resistant to ciprofloxacin (Tankson et al., 2006). Studies
have shown that Salmonella resistant to ciprofloxacin also had
a growth defect in vitro and in vivo, while E. coli does not
(O’Regan et al., 2010). This may be responsible for the low lev-
els of ciprofloxacin resistance seen in Salmonella. Other resistance
mechanisms have also been identified including the gnr efflux sys-
tem, and an aminoglycoside acetyltransferase, aac(6’)-Ib, which
can modify and inactivate ciprofloxacin (Cavaco et al., 2007a,b;
Cavaco and Aarestrup, 2009). While these mechanisms have
been found in E. coli, they are rare or undetected in U.S.
Salmonella isolates (Tables 2, 3) (Frye and Fedorka-Cray, 2007;
Frye et al., 2008, 2011; Glenn et al,, 2011, 2012; Lindsey et al,,
2011a).

Folate pathway inhibitors

These are compounds that compete for substrates of the essen-
tial folic acid pathway in bacteria at two different steps, the
sulfonamides, which inhibit DHPS (dihydropteroate synthase)
and trimethoprim, which inhibit DHFR (dihydrofolate reduc-
tase). Sulfonamides are one of the oldest classes of antimicrobials
introduced into use more than 80 years ago (Skold, 2001). Both
sulfonamides and trimethoprim act on the folic acid pathway
in bacteria by interfering with the production of dihydrofolic
acid. They have been used extensively in food animals as growth
promoters in swine and for treatment of diseases such as col-
ibacillosis in swine and coccidiosis in poultry (Prescott, 2000b,h).
Sulfonamides are bacteriostatic when used alone or bacterioci-
dal when used in combination (trimethoprim-sulfamethoxazole;
Walsh, 2003).

Resistance to both of these antimicrobials occurs by acqui-
sition of genes encoding enzymes that do not bind these com-
pounds. These include the sul genes, sull, sul2, and sul3, which
encode an insensitive DHPS enzyme and are found in Salmonella
globally; however, in the U.S. most of the resistance is due to either
sull or sul2 (note that sometimes roman numerals are used to des-
ignate these genes; Prescott, 2000h). Resistance to trimethoprim
is by DHER encoding genes, either dhfr or dfr, both of which have
been found in Salmonella animal isolates in the U.S. (Prescott,
2000h; Frye etal., 2011; Glenn et al., 2011). More than 30 dfr genes
have been identified and are presently divided into two fami-
lies (White and Rawlinson, 2001). Type A dihydrofolate reductase
genes encode proteins between 157 and 187 amino acid residues,
while type B dihydrofolate reductase genes encode proteins of
~78 residues (White and Rawlinson, 2001). Sulfonamides and
trimethoprim are often used in combination to treat Salmonella
infections that are resistant to other antimicrobials (Hohmann,
2001). Currently, resistance to these combined compounds is rel-
atively rare in the U.S. as reported by NARMS and is a good
second line treatment for salmonellosis (Table 1). Genes that have
been identified in studies of NARMS Salmonella animal isolates
include: sull (a.k.a. sull), sul2 (a.k.a. sulll), dfr1, dfrA, dfrAl, dhf,
and dhfrI (Table 2) (Zou et al., 2009; Frye et al., 2011; Glenn et al.,
2011).

Tetracyclines

Tetracycline has been used in food animals to combat vector-
borne infections such as borreliosis, erlichiosis, rickettsiosis, and
tularemia as well as other infections including pneumonia, bru-
cellosis, and listeriosis (Roberts, 1996, 2002, 2005). In food
animals, tetracycline or doxycycline are used mainly in treat-
ment of respiratory infections (Mathers et al., 2011). Tetracyclines
(chlortetracycline or oxytetracycline) have also been used for
growth promotion and to promote feed efficiency in cattle, swine,
and poultry. Tetracycline targets the 30S subunit of the bacte-
rial ribosome binding to the ribosome and inhibiting protein
synthesis. Resistance mechanisms include efflux, modification of
the rRNA target, and inactivation of the compound. However, in
Salmonella, active efflux systems are most commonly observed
and include tet(A), tet(B), tet(C), tet(D), tet(G), and tet(H). In
U.S. Salmonella animal isolates, tet(A), tet(B), tet(C), tet(D), and
tet(G) are most often detected and are usually accompanied by
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the fetR regulator (Frye and Fedorka-Cray, 2007; Frye et al., 2008,
2011; Zou et al., 2009; Glenn et al., 2011; Lindsey et al., 2011a). As
reported by NARMS, tetracycline resistance is 16.9% in human
isolates and 34.9% in animal isolates of Salmonella in the U.S.
(Table 1). Tetracycline resistance has been linked to use over a
long time in humans, in animals, and as growth promoters in
animals (Witte, 2000; Chopra and Roberts, 2001; Jones and Ricke,
2003). The tetracycline resistance genes found most often in stud-
ies of NARMS Salmonella animal isolates are tet(A), tet(B), tet(G),
and tefR (Table 2) (Frye and Fedorka-Cray, 2007; Frye et al., 2008,
2011; Glenn et al., 2011; Lindsey et al., 2011a).

GENETIC ELEMENTS ASSOCIATED WITH ANTIMICROBIAL RESISTANCE
AND MULTI-DRUG RESISTANCE IN U.S. Salmonella FOOD ANIMAL
ISOLATES

AR genes are often arranged in cassette-like genetic elements,
which may include multiple resistances and be associated with
integrons or MGE:s that can facilitate the expression of these genes
as well as their movement both within a bacterium’s genome
and horizontally between bacteria (Carattoli, 2001, 2003, 2008,
2009; Blake et al., 2003; White et al., 2003; Lindsey et al., 2011a;
Douard et al., 2010; Folster et al., 2011; Frye et al., 2011; Glenn
et al., 2011, 2012; Johnson et al., 2011b; Lindsey et al., 2009).
These cassette-like elements may be associated with insertion
sequences (IS elements), integrons, and MGEs like transposons,
bacteriophage, and others. These cassettes may also be located on
plasmids, which are self-replicating, extra chromosomal DNA ele-
ments that can also encode machinery for DNA transfer between
cells such as conjugation systems (Carattoli, 2003, 2009). On a
global level, Salmonella harbor a wide variety of these elements
(Carattoli, 2003, 2009). These vary greatly with the location or
host source of the isolates and often reflect the environment to
which they are exposed (Carattoli, 2008, 2009). In Salmonella iso-
lated from U.S. farm animals, the most prevalent genetic elements
identified to date are plasmids and integrons (White et al., 2003;
Lindsey et al., 2009, 2011a; Folster et al., 2011; Frye et al., 2011;
Glenn et al., 2011, 2012; Johnson et al., 2011b).

Plasmids are categorized by incompatibility groups, or Inc
types, as only one plasmid of the same type can be stably
maintained during cell division; thus two plasmids of the same
Inc type are “incompatible.” Recently replicon typing has been
accepted as an improved plasmid typing method using specific
PCR assays (Carattoli et al., 2005, 2006). Replicon typing further
divides Inc groups into sub-groups of replicons based on their
specific DNA sequence. Therefore, replicon type is not necessar-
ily interchangeable with Inc type (Carattoli et al., 2005, 2006).
Studies of antimicrobial resistant, including MDR, Salmonella
have determined that specific plasmid replicon types are associ-
ated with resistance, source host, and geographic origin (Osborn
and Boltner, 2002; Su et al., 2004; Carattoli, 2008, 2009; Lindsey
et al., 2009, 2011a,b). In U.S. food animals, isolates harbor mul-
tiple replicon types, including IncFIB, IncFIIA, IncHI1, IncHI2,
IncIl, IncA/C, and IncP (Lindsey et al., 2009, 2011a; Glenn et al.,
2011). Because IncA/C plasmids are wide spread in U.S. isolates
and often carry MDR, they have been well-studied (Welch et al.,
2007, 2009; Fricke et al., 2009; Lindsey et al., 2009, 2011a; Glenn
etal., 2011).

Integrons are also associated with AR. These are inserted into
the host bacterium’s genome or plasmids, have an integrase gene,
have cassettes and promoters bounded by IS elements, can mobi-
lize their cassettes, and may have a variable number of genes
inserted into the cassettes, including AR genes. While there are
also several kinds of integrons detected in Salmonella isolated
from animals in the U.S., the most prevalent is IntI1 and its vari-
ants, which often encode several AR genes and consequently may
confer MDR phenotypes (White et al., 2003; Ebner et al., 2004;
Gebreyes et al., 2004; Evershed et al., 2009; Krauland et al., 2009;
Frye et al., 2011; Glenn et al., 2011; Lindsey et al., 2011a).

The development and dissemination of MDR in Salmonella is
a major concern and the IntI1 integrons and the IncA/C plasmids
play a major role in MDR found in isolates from U.S. food ani-
mals (Carattoli, 2001; Carattoli et al., 2002a,b; Welch et al., 2007,
2009; Carattoli, 2008, 2009; Fricke et al., 2009; Douard et al,,
2010; Mataseje et al., 2010; Frye et al., 2011; Glenn et al., 2011;
Lindsey et al., 2011a). Salmonella enterica serovar Typhimurium
Definitive Phage Type 104 (DT104) was a MDR Salmonella that
affected humans and animals worldwide in the mid 1990’s (Wall
et al., 1994; Akkina et al., 1999; Bolton et al., 1999; Briggs and
Fratamico, 1999; Baggesen et al., 2000; Allen et al., 2001). It was
first detected in Europe in the 1990’s and was eventually found
in U.S. swine and humans (Wall et al., 1994; Akkina et al., 1999;
Bolton et al., 1999; Briggs and Fratamico, 1999; Baggesen et al.,
20005 Allen et al., 2001). DT104 was reported as penta-resistant
to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole,
and tetracycline (ACSSuT); however, isolates were subsequently
detected with different phenotypes. The resistance genes usually
associated with DT104 are blapsg-1, floR, aadA2, sull, dfrAl0,
tet(G), and fetR located on an Intllintegron (Boyd et al., 2001;
Ebner et al.,, 2004; Mulvey et al., 2006). Intll is site specific
and usually integrates into the genome resulting in Salmonella
Genomic Island 1 (SGI1) a wide spread MDR carrying MGE
(Ebner et al., 2004; Mulvey et al., 2006). In the U.S., penta-
resistant Salmonella Typhimurium DT104 is found primarily
in swine but has also been isolated from other animal sources
including chickens, turkeys, and cattle. These integrons can also
be found in other serovars of Salmonella and other species of
bacteria, and can encode different resistance genes for multi-
ple antimicrobials, resulting in many variants of Intl1 and SGI1
(Mulvey et al., 2006).

Recently, MDR Salmonella enterica serovar Newport was iso-
lated from animals and humans with a MDR-AmpC phenotype
which is similar to the ACSSuT DT104 phenotype, but also
includes resistance to 3rd generation cephalosporins and some-
times additional antimicrobials (Gupta et al., 2003; Varma et al.,
2006; Lindsey et al., 2009, 2011a; Glenn et al., 2011). As described
previously, the B-lactam often used to treat human Salmonella
infections is the 3rd generation cephalosporin, ceftriaxone, and
resistance to ceftriaxone increased from 1998 to 2003 in humans
and animals (Table 1). Several studies have suggested that this
increase was associated with the use of ceftiofur, which is sim-
ilar to ceftriaxone, in dairy cattle to treat mastitis and diarrhea
(Clegg et al., 1983; Zhao et al., 2003; Cobbold et al., 2006; Lindsey
et al., 2009; Glenn et al., 2011). This use may have exerted selec-
tive pressure causing MDR S. enterica serovar Newport to increase
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in prevalence. However, direct evidence for increased prevalence
has not been reported (Cobbold et al., 2006; Call et al., 2008;
Glenn et al., 2011). Ceftriaxone and ceftiofur resistance in MDR-
AmpC isolates was determined to be encoded by the blacmy-»
B-lactamase gene and was located on an IncA/C plasmid found
in S. Newport isolated from U.S. humans and cattle (Gupta et al.,
2003; Varma et al., 2006). These IncA/C plasmids were demon-
strated to often be mobile, found in many serovars other than
S. Newport, and also encoded resistance to multiple antimicro-
bials including other B-lactams, aminoglycosides, chlorampheni-
col, folic acid pathway inhibitors, and tetracycline (Fricke et al.,
2009; Lindsey et al., 2009; Welch et al., 2009; Douard et al., 2010;
Folster et al., 2011; Glenn et al., 2011; Lindsey et al., 2011a). Genes
encoding the resistance mechanisms found in U.S. animal isolates
often include blacmy-2, aacC, aadA, aphAl, strB/A, floR, cat, sull,
dhfrl, tet(A), and tetR (Table 2) (Glenn et al., 2011). Several stud-
ies have shown that the resistance cassettes found in the IncA/C
plasmids are similar to those in SGI1, and that these genes were
likely previously transferred to the SGIlintegron from an IncA/C
plasmid in the distant past, prior to human influences (Fricke
et al., 2009; Lindsey et al., 2009; Welch et al., 2009; Douard et al.,
2010; Folster et al., 2011; Glenn et al., 2011; Lindsey et al., 2011a).
It has also been demonstrated that IncA/C MDR plasmids can
mobilize SGI1 in trans (Douard et al., 2010).

Interestingly, throughout most of the rest of the world, resis-
tance to 3rd generation cephalosporins in Salmonella is often
encoded by ESBLs, which are mutations of several different
lineages of B-lactamases (Bradford, 2001; Paterson, 2006). The
ESBLs can be found in Salmonella isolated from both animals
and humans in Europe, Asia, and South America (Bradford,
2001; Nijssen et al., 2004; Hasman et al., 2005; Yates and Amyes,
2005; Biedenbach et al., 2006; Carattoli, 2008). Salmonella with
ESBLs are infrequently isolated from humans in the U.S.; how-
ever, they have not been detected in U.S. food animals (Mulvey
et al., 2003; Frye and Fedorka-Cray, 2007; Bush, 2008; Frye et al.,
2008). In addition to intI1 and IncA/C plasmids, other vehicles
for resistance in the U.S. include many other plasmids such as
IncE, IncH, Incl, and IncP which have also been associated with
AR (Lindsey et al., 2009; Folster et al., 2010, 2011; Glenn et al.,
2011). For example, the IncIl plasmids are also known to carry
the blacmy-2 gene; however, they do not usually carry MDR, are
found mostly in Salmonella serovar Heidelberg, and are associ-
ated with chickens and turkeys rather than cattle (Folster et al.,
2010, 2012).

SOURCES OF HUMAN OUTBREAKS OF Salmonella

Outbreaks of Salmonella in the U.S. have been associated with
food originating from animal sources such as chicken, eggs, beef,
and ground turkey (Scallan et al., 2011). However, in the past
few decades there has been an increasing number of Salmonella
outbreaks that have been associated with unusual sources, such
as tomatoes, peanut butter, black and red pepper, and spinach
(Boxrud et al., 2010). These outbreaks indicate that Salmonella
infection is not always associated with food animal products such
as meat. It is unclear if non-meat sources of Salmonella infec-
tions have increased or if public health agency programs such as
Food Net, Pulse Net, and NARMS have simply enabled detection

and tracing of these outbreaks to their sources (Boxrud, 2010;
Boxrud et al., 2010). Few outbreaks have been associated with
antimicrobial resistant Salmonella; however, an exception to this
was a 2011 outbreak connected with ground turkey (Folster et al.,
2012). A strain of Salmonella Heidelberg resistant to ampicillin,
gentamicin, streptomycin, and tetracycline, encoded by blagn-1,
aac(3)-Ila, aadAl, ant(3")-1a, and tet(A) on a Incll plasmid was
detected (Folster et al., 2012).

The wide variety of outbreak sources and variability in genet-
ics causing AR indicates resistance in Salmonella is multifaceted,
and the trend of unusual food sources and antimicrobial resistant
outbreaks may become more prevalent in the future. Additionally,
it is also likely that AR elements found mostly outside the U.S.
will eventually be found in U.S. food animals. For example, ESBLs
have already been found in U.S. human infections and it can be
expected to eventually find them in the animal population (Bush,
2008). Surveillance and research of AR in Salmonella is a global
priority and an ongoing effort will need to continue to follow
these trends and identify the mechanisms leading to resistance.
Data collected by these studies will improve our understanding of
resistance, how it develops, how it spreads, and what can be done
to prevent infections in humans and animals.

Escherichia coli

OVERVIEW OF COMMENSAL BACTERIA

Much less studied and understood is the influence exerted by
non-pathogens on the acquisition, transfer, and persistence of AR
in pathogens sharing the same environment. The intestinal tract
of humans and animals are inhabited predominately by Gram-
negative and Gram-positive anaerobes such as Bacteroides and
Bifidobacterium. However, many other genera of bacteria includ-
ing enterococci and Escherichia coli are also present. Transient
pathogenic colonizers such as Streptococcus and Neisseria are also
present (Salyers et al., 1995). Both indirect and direct evidence
exists that AR can be transferred between different genera in
the intestinal tract (McConnell et al., 1991; Salyers et al., 1995;
Netherwood et al., 1999; Avrain et al., 2004). Furthermore, total
numbers and types of bacteria in the intestinal tract can be altered
by antimicrobial treatment which may influence the transfer of
resistance (McConnell et al., 1991). E. coli and enterococci are two
commensals of particular interest because they are ubiquitous in
animals and the environment and are used most often in bacterial
source tracking (Scott et al., 2002; Hassan et al., 2007). They are
also known to harbor resistance genes on plasmids, transposons,
and integrons (Johnson and Nolan, 2009; Hegstad et al., 2010).

COMMENSAL AND PATHOGENIC E. coli

The recognition of E. coli as a principal commensal intestinal bac-
teria and the relative ease of isolating E. coli has led to its adoption
as a sentinel organism for fecal contamination, particularly as
applied to water safety. Those strains which ferment lactose were
included in a “coliform bacteria” group of enterobacteria, and
coliform enumeration is commonly used to indicate the micro-
biological safety of food products and water (Blood and Curtis,
1995). However, this simple method cannot be used to identify
enteric pathogens nor provide the population data necessary for
identifying sources of contamination (Leclerc et al., 2001).
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Research has shown that the enteropathogenic E. coli (EPEC)
are a virulent subgroup possessing a complex array of disease-
producing genetic factors absent from commensal strains (Spears
et al., 2006). In the 1980’s, a pathogenic variant of E. coli was
recognized as the etiologic agent of potentially fatal hemorrhagic
intestinal and hemolytic uremic illnesses (Paton and Paton, 1998;
Karch et al., 1999). These toxigenic E. coli have acquired Shiga-like
toxin genes (Sandvig, 2001; Schmidt, 2001) as a key component
of their virulence profile and are termed Shiga toxin-producing
E. coli (STEC). The STEC were found to kill Vero cells in cul-
ture which led to the name verocytotoxigenic E. coli (VTEC); they
are also categorized as enterohemorrhagic E. coli (EHEC). While
EPEC and STEC strains share a number of characteristics, the
STEC are not simply EPEC that generate a cytolytic toxin (Kaper,
2005). The EPEC appear to be exclusively human pathogens and
remain a significant cause of infant diarrheal disease, especially in
developing countries. In contrast, the STEC are niche-specific gut
commensals in certain animals, particularly ruminants.

The STEC serotype O157:H7 from cattle has become the
paradigm for this pathotype (Rasmussen and Casey, 2001; Renter
and Sargeant, 2002), but other significant serogroups are emerg-
ing (Bettelheim, 2007). Controlling outbreaks of human disease
due to contamination of food products by STEC sources is an
important food safety issue (Olsvik et al., 1991; Mainil and
Daube, 2005; Erickson and Doyle, 2007).

In food animals, E. coli has been documented as the etiolog-
ical agent of many different diseases (Prescott, 2000b). In cattle,
E. coli infections of the gastrointestinal tract, skin, the genital and
urinary tract, the musculoskeletal system, the central nervous sys-
tem, and the cardiovascular system have been reported (Prescott,
2000b). Some infections such as septicemia and meningitis are
often fatal. Colibacillosis in both swine and poultry is also a major
cause of mortality in these two groups of food animals (Prescott,
2000b).

OVERVIEW OF ANTIMICROBIAL RESISTANCE IN E. coli ISOLATED
FROM ANIMALS

Since all types of E. coli acquire AR and are commonly associ-
ated with many different animal and environmental sources, they
are typically included in AR surveillance studies (Erb et al., 2007).
Resistance to aminoglycosides, cephalosporins, fluoroquinolones,
and sulfonamide antimicrobials is widespread in E. coli isolated
from animals and humans and may compromise treatment effi-
cacy since drugs of these classes are frequently used to treat
Gram-negative infections (Hammerum and Heuer, 2009). In par-
ticular, the prevalence of resistance to clinically important 3rd and
4th generation cephalosporins mediated by extended-spectrum
B-lactamases (ESBLs) has serious implications for human and
veterinary medicine (Shah et al., 2004a,b; Paterson and Bonomo,
2005; Li et al., 2007).

Multi-drug resistance in E. coli is also a concern (Hawkey and
Jones, 2009). Resistance in E. coli is often mediated by plasmids
that encode AR genes (Carattoli, 2009; Johnson et al., 2011a).
These extra-chromosomal MGEs are readily acquired by E. coli
thereby conferring resistance to one or more antimicrobials. The
potential threat to human health from multiple drug resistant
pathogenic E. coli such as STEC acquired from food products may

pose a serious yet underestimated food safety risk (Rasko et al.,
2011). It is therefore essential to improve our limited knowledge
of the basis for the increasing drug resistance of commensal and
pathogenic E. coli. Since resistance plasmids can be transferred
between strains of the same species or different genera (such as
Salmonella or Klebsiella), such exchanges may serve to establish
reservoirs of resistance genes in animals and the environment (Su
et al., 2008). Furthermore, it should also be noted that there are
differences in resistance levels of E. coli (including MDR strains)
depending on the age of the host. Past studies have shown that
younger animals such as cows and swine harbor more resistant
E. colithan older animals (Langlois et al., 1988; Khachatryan et al.,
2004; Berge et al., 2005). It has been suggested that this observa-
tion could be due to a higher fitness of the resistant isolates in
the intestine of the animals or that the intestine of the younger
animals may be more readily colonized by the resistant isolates as
compared to the older animals (Langlois et al., 1988; Khachatryan
et al., 2004; Berge et al., 2005). Many of the same resistance phe-
notypes and genotypes presented for Salmonella in the previous
section are also present in E. coli; therefore, AR in E. coli will focus
on resistance and resistance genes of specific interest in E. coli
(Table 3).

ANTIMICROBIAL RESISTANCE MECHANISMS IN E. coli ISOLATED
FROM FOOD ANIMALS IN THE U.S.

Aminoglycosides

Since E. coli induced diarrhea often occurs in food animals, sev-
eral aminoglycosides are used in treatment including neomycin
for calves, gentamicin in swine, and apramycin in both calves and
swine (Prescott, 2000a). Gentamicin is also used for treating sep-
ticemia in cattle. Resistance to aminoglycosides is mediated in
E. coli by genes from all three classes of aminoglycoside modifying
enzymes [AAC, ANT, and APH; (Ramirez and Tolmasky, 2010)].
Several acetyltransferases including type II 3-N-aceyltransferase,
type IV 3-N-aceyltransferase, and a type VI 3-N-aceyltransferase
have all been described in E. coli isolated from animals and
are located on plasmids (Hedges and Shannon, 1984; Chaslus-
Dancla et al., 1987; Johnson et al., 2006a,b, 2011a). Type IV
3-N-aceyltransferase was first detected in bovine E. coli in France
in 1984 and conferred resistance to gentamicin and apramycin.
Type II 3-N-aceyltransferase was identified a short time later also
from bovine isolates. This enzyme was different from the previ-
ously described type IV 3-N-aceyltransferase which only medi-
ated resistance to gentamicin. A 241-kb plasmid was detected in
avian pathogenic E. coli isolates (APEC) in 2006 which encoded
resistance to gentamicin via aac(3)-VI and streptomycin via aadA
(an adenyltransferase), and additionally conferred resistance to
potassium tellurite, silver nitrate, copper sulfate, tetracycline,
benzylkonium chloride, and sulfisoxazole (Johnson et al., 2006b).
The dissemination of these genes is most likely due to their
location on plasmids most of which are capable of mobiliza-
tion within different E. coli strains and to other bacteria as well
(Johnson et al., 2006b).

B-lactams and Cephalosporins
B-lactam and cephem antimicrobials are well-tolerated and
present few side-effects in food animals, which make them
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useful for treatment of disease (Prescott, 2000c¢,d,g). They have
been used to treat E. coli infections in poults as well as diarrhea
caused by E. coli in both neonatal calves and swine. Use of these
antimicrobials in food animals has been controversial because
they are also very useful in human medicine and represent some
of the most critically important antimicrobials used in humans.
Resistance to P-lactams and cephems in E. coli isolated from
U.S. animals has been reported (Li et al., 2007). As reported
by NARMS, resistance to P-lactams in E. coli isolated from
chickens has remained below 26% between the years 2000-2009
(http://www.ars.usda.gov/SP2UserFiles/Place/66120508/NARMS/
NARMS2009/Table3C.pdf). Resistance to amoxicillin-clavulanic
acid, cefoxitin, ceftriaxone, and ceftiofur for 2009 was 12.4, 11.4,
11.5, and 9.5%, respectively. Resistance to ampicillin ranged
from 20% in year 2000 to 19.8% in year 2009 with the highest
resistance reported in year 2006 at 25.6%.

Resistance genes detected in E. coli isolated from animals
are not markedly different from those reported in Salmonella
from animals (see previous section, Tables 2, 3) with one excep-
tion. E. coli harbors an endogenous ampC gene located on
the chromosome, whereas this gene is absent in Salmonella (Li
et al.,, 2007). Expression of the “classic” AmpC f-lactamase is
not inducible due to the absence of a regulatory gene and is
produced at low-levels in the wild-type strains. In contrast,
hyper-producers of AmpC B-lactamase have been detected that
confer resistance to ampicillin and some cephalosporins (Li
et al., 2007). Several factors that influence hyper-production
of P-lactamase have been described and many of the hyper-
producers have mutations in the promoter region of ampC
(Siu et al., 2003). A possible homolog to the “classic” ampC
in E. coli has recently been identified in S. Typhimurium, but
only shares 11% identity with the “classic” ampC B-lactamase
(McClelland et al., 2001). The ability of this gene to confer
functional B-lactam resistance in S. Typhimurium has not been
demonstrated.

Folic acid pathway

Because they have been in use for a long time, resistance
to sulfonamides is widespread. Over 50% of E. coli isolated
from poultry samples by the NARMS program was resistant
to sulfisoxazole in year 2009. Conversely, resistance to the
combination drug trimethoprim-sulfamethoxazole in poultry
E. coli was only 7% in year 2009 (http://www.ars.usda.gov/SP
2UserFiles/Place/66120508/NARMS/NARMS2009/Table3C.pdf).
Resistance to the sulfonamides can be conferred by chromosomal
mutations or by resistance genes, sull, sul2, and sul3, which
results in antimicrobial-resistant variants of the target enzymes as
described in the Salmonella section and Tables 2, 3 (Skold, 2001).
Widespread dissemination of the resistance genes by plasmids,
integrons, or insertion elements is evidenced by detection of
sulfonamide resistance in E. coli in humans and food animals in
both the U.S. and Europe (Hammerum and Heuer, 2009; Frye
et al., 2011; Johnson et al., 2011a; Lindsey et al., 2011b; Glenn
et al., 2012). Several mechanisms of resistance to trimethoprim
have been identified, including efflux pumps, impaired drug
penetration, and mutation in the target enzymes (Skold, 2001).
But, as seen for sulfonamide resistance, trimethoprim resistance

genes (dfr) located on plasmids or transposons-encoding variants
to dihydrofolate reductase are predominant.

Phenicols

Chloramphenicol is banned for use in U.S. food animals, and
resistance is typically low (less than 5% for years 2000-2009
in E. coli from poultry from the NARMS program). Several
resistance genes have been described that confer resistance to
chloramphenicol (White et al., 2000). The plasmid-mediated
chloramphenicol acetyltransferase (cat) gene is the most com-
mon mechanism (Table 3) (Glenn et al., 2012). A non-enzymatic
resistance gene encoding an efflux system, cmlA, has also been
identified in E. coli plasmids. A third chloramphenicol resistance
gene, flo, is also plasmid-encoded and confers resistance to chlo-
ramphenicol and florfenicol, a fluorinated structural analog of
thiamphenicol and chloramphenicol. In the U.S., florfenicol was
approved for use in cattle in 1996 for treatment of respiratory
disease (Keyes et al., 2000). Florfenicol resistance has since been
detected in clinically ill cattle and chickens in the U.S. (Keyes et al.,
2000; White et al., 2000).

Quinolones

Mechanisms of fluoroquinolone resistance in E. coli and
Salmonella have been reviewed (Hopkins et al., 2005). Resistance
to fluoroquinolones can be due to decreased permeability of
the antimicrobial to the cell, efflux pumps, or mutations in
DNA gyrase or topoisomerase geness QRDR motifs (Hopkins
et al., 2005). E. coli differs from Salmonella in that it readily
mutates to become resistant under selective pressure, and
will maintain the mutations and resistance without selective
pressure as there is no apparent fitness cost associated with
maintaining resistance in E. coli (Bagel et al., 1999; Giraud
et al., 1999, 2003; Hopkins et al., 2005). Plasmids harboring
quinolone resistance genes (qnrA, gnrB, and gnrS) have also
been described, but have not been detected in isolates from U.S.
animals. Enrofloxacin and sarafloxacin were approved for use
in poultry production in 1995 and 1996, respectively, but this
approval was withdrawn in 2005 (Iovine and Blaser, 2004a,b).
However, monitoring showed that only 26 of 14,398 (0.18%)
E. coli isolated from chickens by NARMS from 2000 to 2009
were ciprofloxacin resistant and genetic screening did not detect
any known horizontally exchanged quinolone resistance genes
(http://www.ars.usda.gov/SP2UserFiles/Place/66120508/NARMS/
NARMS2009/Table3C.pdf).

Tetracyclines

Tetracyclines have been used for decades in both human and
animal medicine and resistance genes are easily acquired.
During years 2000-2009, the lowest percentage of resis-
tance among E. coli from poultry was 40.2% in 2007 with
the highest level of resistance recorded at 68.4% in year 2000
(http://www.ars.usda.gov/SP2UserFiles/Place/66120508/NARMS/
NARMS2009/Table3C.pdf). As described for Salmonella, tetra-
cycline acts by inhibiting protein synthesis in the bacterial cell.
Although the most common acquired mechanisms of tetracycline
resistance are efflux pumps and ribosomal protection, the efflux
pumps are more prevalent in E. coli (Roberts, 2002). To date, nine
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genes have been identified in E. coli isolates that encode proteins
for active efflux of tetracycline and/or its derivatives. These
include tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(]), tet(L),
and tet(Y) (Roberts, 2002, 2005). Resistance genes identified in
E. coli isolated from chickens in the U.S. are shown in Table 3
(Frye et al,, 2011; Glenn et al., 2012). Two genes which encode
proteins for ribosomal protection, tet(M) and tet(W), have also
been detected in E. coli. However, the tef(M) gene may not have
a major role in conferring tetracycline resistance in E. coli as
it has been reported to only confer low-levels of resistance to
tetracycline (Roberts, 2002).

Enterococcus spp.

DEFINITIONS AND DISEASES

Although primarily defined as a commensal organism,
Enterococcus is a Gram-positive bacterium that has an addi-
tional role as an opportunistic pathogen causing infections in
both humans and animals (Martone, 1998; Cetinkaya et al.,
2000; Kuhn et al., 2000). Enterococci are a common inhabitant
of the intestinal tract of humans and animals, but have also been
isolated from vegetation, soil, water, and food (Niemi et al., 1993;
Svec and Sedlacek, 1999; Muller et al., 2001; Giraffa, 2002). Their
presence in the digestive tracts of humans and animals coupled
with the available methods that exist for molecular typing of
the group of bacteria make them useful as an indicator of fecal
contamination (Svec and Sedlacek, 1999; Scott et al., 2005;
Layton et al., 2010).

An opportunistic pathogen, enterococci are only second
to staphylococci as a leading cause of nosocomial infections,
accounting for ~12% of hospital-associated infections yearly in
the U.S. (Hidron et al., 2008). The majority of infections are
caused by two enterococcal species, Enterococcus faecium and
E. faecalis (Huycke et al., 1998). The enterococci have been
implicated in a number of human clinical diseases including
endocarditis, bacteremia, and urinary tract infections (Jett et al.,
1994; Huycke et al., 1998). The majority of enterococcal infec-
tions are associated with devices used in hospital settings such
as central-lines and catheters, but they are also a common cause
of surgical site infections (Hidron et al., 2008). Complicating
treatment of enterococcal nosocomial infections is the tendency
of the bacterium to harbor AR genes conferring resistance to
antimicrobials, such as vancomycin, used to treat enterococcal
infections. Furthermore, enterococci are also able to transfer AR
genes and some virulence factors to other members of the intesti-
nal microflora, including pathogenic bacteria which increase the
risk of resistant nosocomial pathogens (Murray, 1990; Chow
et al., 1993; Wirth, 1994; Hancock and Gilmore, 2000).

In addition to causing infections in humans, enterococci have
been indicated in infections in animals including food animals
such as poultry and cattle (Martone, 1998; Cetinkaya et al., 2000;
Kuhn et al., 2000). In poultry, enterococcal species may change
over time in the chicken gut and enterococcal infections in poul-
try can be caused by any of the species that are commonly found
in the intestines of the birds; although infections in poultry are
sporadic, they can be lethal. Pulmonary hypertension syndrome,
amyloid athropathy, bacteremia, encephalomalacia, neurological
disorders, and endocarditis have all been described in poultry

associated with infection by E. faecalis, E. durans, and E. hirae
(Randall et al., 1993; McNamee and King, 1996; Tankson et al.,
2001; Steentjes et al., 2002). In dairy cattle, enterococci are
primarily associated with bovine mastitis although enterococcal-
induced diarrhea in calves has also been reported (Rogers et al.,
1992; Madsen et al., 2000). Staphylococci are a major cause of
bovine mastitis, but enterococci were implicated in 2-20% of
cases where an etiological agent has been identified (Poutrel and
Ryniewicz, 1984; Aarestrup et al., 1995; Sobiraj et al., 1997). The
route of transmission of enterococci in bovine mastitis is most
likely from the environment to the animal as animal to animal
infections have not been reported (Rossitto et al., 2002).

While their role as an opportunistic nosocomial pathogen has
been well-documented, their ability to cause food-borne illnesses
remains largely unknown. While enterococci have been reported
to cause diarrhea in animals, this has not been proven in humans.
In humans, vomiting and headaches indicative of food intoxica-
tion are believed to be caused by the ingestion of fermented food
containing enterococci which have produced biogenic amines
(Tham et al., 1990; Gardin et al., 2001; Giraffa, 2002). The safety
of using enterococci in food production has not been determined
as they may be both beneficial as well as detrimental in food
processing. In fermented foods, enterococci are essential in man-
ufacturing fermented milk products such as cheeses due to the
specific biochemical traits that they possess. Alternatively, they
may also be indicative of food spoilage for fermented meats or
unsanitary conditions in other food industries (Giraffa, 2002;
Foulquie Moreno et al., 2006). Determination of innate traits of
the enterococci such as AR and virulence need to be addressed
before the safety of using enterococci in food production can be
determined.

ANTIMICROBIAL RESISTANCE OVERVIEW OF ENTEROCOCCI

Intrinsic resistance to antimicrobial agents used in hospital set-
tings is a common characteristic of enterococci compared to other
bacteria primarily found there (Facklam et al., 2002; Malani et al.,
2002). Enterococcal infections caused by antimicrobial resistant
isolates, including MDR isolates, are more serious and difficult
to treat than those caused by susceptible isolates. Some ente-
rococcal species, particularly E. faecium, are inherently resistant
to some penicillins; and in the past few years, they have also
shown increased resistance to vancomycin, cephalosporins, and
aminoglycosides in nosocomial infections (Arias et al., 2010).
Vancomycin is often considered the last treatment available in
serious, MDR infections in humans (Wilson et al., 1995; Marshall
et al., 1998; Boneca and Chiosis, 2003). Newer drugs including
daptomycin, linezolid, Quinupristin/Dalfopristin, and tigecycline
have been developed recently to combat infections caused by
Gram-positive bacteria and appear to be promising in the treat-
ment of infections caused by enterococci (Swaney et al., 1998;
Projan, 2000; Hancock, 2005; Shoemaker et al., 2006).

Resistance of enterococci in food animals in the U.S. is
very similar to what has been described of enterococci iso-
lated from nosocomial infections. Resistance to aminoglycosides,
lincosamides, macrolides, nitrofurans, penicillins, quinolones,
streptogramins, tetracycline, and rarely vancomycin has been
described in poultry, swine, and cattle (Table4) (Jackson,
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Table 4 | Antimicrobial resistance genes found in enterococci isolated from U.S. food animals.

Antimicrobial class Genes

References

Aminoglycosides

aac(6')-le-aph(2" )-la, aac(6 )-li, ant(4')-Ia,

Chow et al., 1997; Aarestrup, 2000a; Jackson, 2004b, 2005

ant(6')-la, aph(2” )-lc, aph(2")-1d, aph(3”)-lla

Macrolides erm(A), erm(B), msrC

Streptogramins vat(B), vat(D), vat(E), vga(B)

tet(K), tet(L), tet(M), tet(O), tet(S)
vanA

Tetracycline
Vancomycin

Aarestrup, 2000a; Werner et al., 2001; Jackson et al., 2007,
Schwaiger and Bauer, 2008

Hammerum et al., 1998; Jensen et al., 1998; Werner and
Witte, 1999; Jackson et al., 2007

Aarestrup, 2000a; Aarestrup et al., 2002; Fard et al., 2011
Donabedian et al., 2010

2004a,b, 2005, 2011; Jackson et al., 2007; Donabedian et al., 2010;
Hammerum et al., 2010; Frye et al., 2011; Marshall and Levy,
2011). With the exception of daptomycin, resistance to the newer
antimicrobials (linezolid and tigecycline) has not been detected in
food animals (Jackson, 2011).

PREVALENCE AND MECHANISMS OF RESISTANCE IN Enterococcus
ISOLATED FROM FOOD ANIMALS

Aminoglycosides

According to available data from NARMS, resistance in entero-
cocci from chickens to gentamicin, kanamycin, and streptomycin
ranged from 18.6 to 22.3, 29.2 to 32.1, and 14.3 to 20.7%,
respectively (http://www.ars.usda.gov/SP2UserFiles/Place/661205
08/NARMS/percent_resistance/ENT-RSummary.pdf). Acquired
resistance to aminoglycosides is mediated by enzymes categorized
as acetyltransferases, adenyltransferases, or phosphotransferases
which modify the antimicrobial and is described above (Chow,
2000). Seven aminoglycoside resistance genes have been detected
in enterococci from food animals in both the U.S. and Europe
(Table 4). Of those, the bifunctional gene aac(6’)-Ie-aph(2”)-Ia,
is considered the most important in enterococci as it confers
resistance to all aminoglycosides used to treat infections includ-
ing gentamicin, kanamycin, and streptomycin (Aarestrup, 2000a;
Chow, 2000). Alleles of aph(2”) including aph(2” )-1b, aph(2”)-Ic,
and aph(2”)-Id confer high-level resistance to gentamicin (MIC >
500 Lg/ml). Another allele, aph(2”)-Ie, was only recently detected
in 2006 in E. casseliflavus isolated from a hospitalized patient in
China (Chen et al., 2006; Watanabe et al., 2009). The deduced
amino acid sequence of aph(2”)-Ie was almost 94% identical to
the amino acid of aph(2”)-Id. Prevalence of these aph(2”) alle-
les in enterococci from both humans and animals remains largely
undetermined as some reports suggest that they are present in
large numbers of enterococci from humans while data from
other studies indicate that they are not as widespread in ani-
mals (Chow, 2000; Jackson, 2004b, 2005). These discrepancies
may be explained by the recent discovery of most of the genes
conferring high-level resistance to gentamicin (Chow et al., 1997;
Chow, 2000; Chen et al., 2006). It is possible that while they may
exist, they may not yet be as widely disseminated as aac(6’)-Ie-
aph(2”)-Ia.

Compared to gentamicin, fewer aminoglycoside resistance
genes have been described that confer resistance to kanamycin
and streptomycin. Kanamycin-resistance can be mediated by
either aph(3”)-I1la or aac(6')-Ii both of which have been detected

in humans and animals in the U.S. (Chow, 2000; Jackson, 2004b,
2005). The high prevalence of aac(6¢')-Ii in E. faecium is most
likely due to its presence on the chromosome of all E. faecium iso-
lates in both humans and animals. Similarly, intrinsic resistance to
streptomycin also exists in enterococci, but it is not mediated by
a foreign gene; ribosomal mutations can occur rendering strep-
tomycin resistance levels <100 pg/ml (Chow, 2000). Acquired
resistance to streptomycin is encoded by ant(3”)-Ia (aadA) or
ant(6')-Ia (aadE). Presently, studies have been performed that
have detected multiple aminoglycoside resistance genes in ente-
rococci from human and animal sources (Chow, 2000; Jackson,
2004b, 2005). The number of aminoglycoside resistance genes
detected to date suggests that this trend of multiple aminoglyco-
side resistance will continue.

Macrolides, lincosamides, and streptogramins

Macrolide, lincosomide, and streptogramin antimicrobials act
by binding to the ribosome and preventing protein synthesis
(Roberts, 2004). Macrolides and lincosamides are not used to
treat human enterococcal infections; they are used in treatment of
other bacterial infections and may be substituted in place of other
antimicrobials due to allergic reactions (Clermont and Horaud,
1990). In food animals, both macrolides and lincosamides are
used to treat infections or as growth promoters (Prescott, 2000f).
Lincosamides are used in combination with an aminoglycoside
to treat mastitis in dairy cattle in some European countries (De
Oliveira et al., 2000). Similarly, lincosamides were used to treat
mastitis in dairy cattle on farms in the U.S. (Jackson, 2011).
In swine, both lincomycin and the macrolide tylosin are used
to treat swine arthritis, ileitis, erysipelas, pneumonia, and swine
dysentery; lincomycin is also used to prevent swine dysentery
by medicating herds via their drinking water (Prescott, 2000b).
Tylosin is also used as medication in the feed of swine in the U.S.
to improve feed efficiency and increase weight gain; this practice
was banned by the European Union in 1999 when antimicro-
bials were no longer used as growth promoters (Aarestrup et al.,
2001). The ban on growth promoters in Europe also ended the use
of virginiamycin, a streptogramin antimicrobial. Virginiamycin
has been used in animal production as a growth promoter
in the U.S. for decades; it is used in both poultry and swine
to increase feed efficiency and promote growth (McEwen and
Fedorka-Cray, 2002). More recently, a human analogue of vir-
giniamycin, Synercid® (Quinupristin/Dalfopristin-Q/D) a com-
bination of streptogramin A and B antimicrobials, was approved
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for use in treatment of vancomycin-resistant enterococci (VRE)
in humans (Hancock, 2005). Although virginiamycin has only
been used in animals and Q/D in humans, cross-resistance is of
particular concern as streptogramin resistance genes can confer
resistance to both antimicrobials.

Resistance to macrolides in human clinical enterococci and
enterococci from animal sources in Europe as well as the U.S.
has been reported (Collignon et al., 2009). Acquired resistance
to the macrolides can be due to alteration of the antimicrobial,
pumping of the antimicrobial from the cell, or modification of
the target. The most common mechanism appears to be target
modification by erythromycin resistance methylase (erm) genes,
primarily erm(B) (Mlynarczyk et al., 2010). The erm(B) gene con-
fers cross resistance to macrolide, lincosamide, and streptogramin
type B antimicrobials, which is characteristic of the macrolide-
lincosamide-streptogramin type B (MLSg) phenotype (Roberts
et al., 1999).

Other macrolide resistance genes which have been detected
in the enterococci include erm(A) and msrC, which is described
as an ATP-binding transporter belonging to the efflux pump
family of genes (Roberts et al., 1999; Werner et al., 2001;
Roberts, 2004; Schwaiger and Bauer, 2008). For lincomycin resis-
tance, Inu(B) is the only resistance gene described thus far for
Enterococcus. The first lincomycin resistance gene, Inu(A), was
originally described in the staphylococci; to our knowledge Inu(B)
has not been detected in enterococci from food animals, but it has
been detected in enterococci isolated from companion animals
(Jackson et al., 2009).

For streptogramin resistance, resistance to the A component
is the sole requirement for resistance to both components of the
streptogramin A and B combination (Rende-Fournier et al., 1993;
Soltani et al., 2000). Higher levels of resistance to streptogramins
have been reported as a result of the presence of resistance genes
to each single component. Resistance to the B component (quin-
upristin) in enterococci is mediated by erm genes and msrC
described above. Resistance to the A component (dalfopristin)
in the enterococci is mediated by streptogramin A acetyltrans-
ferases encoded by vat(B), vat(D), vat(E), or vat(G), ATP-binding
transporters encoded by vga(B), or hydrolases encoded by vgb(A)
(Hammerum et al., 1998; Jensen et al., 1998; Werner and Witte,
1999; Hershberger, 2004; Roberts, 2004; Jung et al., 2010). The
presence of resistance genes to streptogramin A and B antimi-
crobials differs slightly between Europe and the U.S. Previously,
erm(B), msrC, vat(D), and vat(E) had all been identified in ente-
rococci from humans, animals, and the environment in Europe;
three of the four genes [erm(B), msrC, and vat(E)] had also been
identified in enterococci in the U.S. (Hershberger, 2004). The
fourth gene, vat(D), was only recently found in E. faecium and
E. hirae isolated from chicken carcass rinsates in the U.S. (Jackson
etal., 2007). Two newly identified streptogramin resistance genes,
vat(G) and vga(D), were also recently characterized in E. fae-
cium isolated from the stool of a healthy human from Korea
(Jung et al., 2010). Both genes were detected together on the same
plasmid, but have yet to be detected in the U.S. Two additional
streptogramin A resistance genes, vat(B) and vga(B), encoding
an acetyltransferase and ATP binding transporter, respectively,
were identified in E. gallinarum from chicken carcass rinsates

in 2008 in the U.S. (Jackson et al., 2008). Both vat(B) and
vga(B) were originally described in a clinical isolate of S. aureus
from France (Allignet and EI Solh, 1995, 1997). Although those
genes were located on a plasmid in both S. aureus and E. gal-
linarum, plasmid pIP1633 from S. aureus is conjugal whereas
the E. gallinarum plasmid containing vat(B) and vga(B) is not
(Jackson et al., 2008). This was the first report of these genes
in Enterococcus worldwide. Additional resistance mechanisms to
the streptogramin antimicrobials may exist although they have
yet to be identified and characterized (McDermott et al., 2005).
Streptogramin resistance in E. faecalis is typically not reported
due the presence of an intrinsic E. faecalis species-specific gene,
Isa (lincosamides-streptogramin A; Singh et al., 2002).

Tetracyclines

Tetracycline or the semisynthetic derivative, doxycycline, is used
in food animals mainly in treatment of respiratory infections
(Mathers et al., 2011). Doxycycline has been used rarely to
treat VRE infections in humans possibly due to the high num-
bers of antimicrobial resistant clinical isolates (Landman and
Quale, 1997; Matsumura and Simor, 1998). Overall, tetracy-
cline resistance in enterococci from both humans and animals
is widespread and has been previously reviewed (Roberts, 2005).
Resistance to tetracycline in enterococci is largely due to riboso-
mal protection or efflux of the antimicrobial. The most common
tetracycline resistance gene is tet(M) which encodes proteins
for ribosomal protection. The location of this gene in entero-
cocci includes the chromosome, conjugal transposons, Tn916,
as well as conjugal plasmids all of which may account for its
prevalence. Two additional genes, tet(O) and tef(S) also con-
fer resistance to tetracycline via ribosomal protection and have
been detected in enterococci from food animals (Aarestrup et al.,
2002).

The tet(L) gene is the most frequently detected tetracycline
efflux gene in the enterococci (Bentorcha et al., 1991; Platteeuw
et al., 1995). Like tet(M), it has also been localized on the chro-
mosome and plasmids in enterococci. A second tetracycline efflux
gene, tef(K), has also been described in Enterococcus (Roberts,
2005; Fard et al., 2011). Previously, a sixth tetracycline resistance
gene, tet(U) was detected in E. faecium, but recent reports suggest
that rer(U) does not confer resistance to tetracycline in entero-
cocci, but may instead be part of a gene encoding a replication
initiator protein (Caryl et al., 2012). New tetracycline derivatives,
glycylcyclines, have recently been developed; the first of these is
tigecycline (Projan, 2000). For enterococcal infections, tigecycline
has been approved for treatment of complicated skin and skin
structure infections and complicated intra-abdominal infections
caused by vancomycin-susceptible E. faecalis. The safety and effi-
cacy of this drug is still being evaluated as reports suggest that
there may be an increased risk of mortality when using tigecy-
cline (Yahav et al., 2011). Tigecycline is not approved for use in
food animals.

Vancomycin

Glycopeptides such as vancomycin bind to peptidoglycan cell wall
components and inhibit further synthesis of the bacterial cell
wall resulting in their antimicrobial effect. In the U.S., neither
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vancomycin nor the glycopeptide-related compound, avoparcin,
has been approved for use in food animals. Until the European
ban on use of growth promoters in food animals, avoparcin was
used in European countries for growth promotion (Aarestrup
and Seyfarth, 2000; Aarestrup et al., 2000, 2001). The differ-
ences in the use of glycopeptide antimicrobials in food animal
production in the two regions most likely account for the dif-
ferences in glycopeptide resistance observed in food animals,
but not in humans. In Europe, vancomycin resistance has been
found in humans, animals, and the environment (Werner et al.,
2008). In contrast, vancomycin resistance in the U.S. was con-
fined to humans where VRE was a leading cause of MDR
healthcare-associated infections (Hidron et al., 2008). In a study
of healthcare-associated infections conducted by the U.S. CDC,
the percentage of VRE in the U.S. healthcare system (33%)
was higher than that in Europe and the rest of North America
(range 13-28%; Hidron et al., 2008). More specific, the per-
centages of vancomycin-resistant E. faecium pathogenic isolates
were also higher in the U.S. (80%) compared to France (0.8%)
and Italy (24%). E. faecium is more likely than other enterococ-
cal species to harbor vancomycin resistance (Donabedian et al.,
2010).

The mechanisms conferring resistance to vancomycin have
been previously reviewed (Courvalin, 2006). Briefly, the predom-
inant vancomycin-resistance gene, vanA, is an acquired resistance
gene and confers resistance to vancomycin and teicoplanin. This
gene encodes an enzyme that offers an alternative pathway for
peptidoglycan cell wall synthesis that circumvents the obstruc-
tion created by glycopeptide antimicrobials bound to the cell
wall components. The vanB gene is also acquired, but confers
resistance to vancomycin only. Both genes have an inducible phe-
notype and can be located on the chromosome or plasmids.
Conversely, vanC (vanCI, C2, or C3), an intrinsic gene localized
to the chromosome in either E. casseliflavus, E. gallinarum, or E.
flavescens, mediates lower levels of resistance (MIC 2-32 jLg/ml)
to vancomycin only. Several new vancomycin-resistance genes
have recently been identified. These include vanD, vanE, vanG,
vanL, vanM, and vanN (Courvalin, 2006; Boyd et al., 2008; Xu
et al., 2010; Lebreton et al., 2011). Both vanD and vanM encode
D-Ala-D-Lac ligase while vanE, vanG, vanL, and vanN encode
D-Ala-D-Ser ligase. In addition to the modified target, all of the
genes identified to date can be distinguished from each other
based upon a number of characteristics including whether they
are acquired or intrinsic, the level of resistance to vancomycin
and/or teicoplanin, the expression of the resistance (constitutive
or inducible), the location of the resistance operon, and the abil-
ity of the genes to transfer to other enterococci (Courvalin, 2006).
Although the van gene cluster organization of vanM is most sim-
ilar to that of vanD, the two genes are characteristically different.
While vanD confers intermediate resistance to vancomycin and
teicoplanin, is located on the chromosome and is not transferable
by conjugation, vanM confers high-level resistance to both van-
comycin and teicoplanin, is located on a plasmid, and is transfer-
able (Courvalin, 2006; Xu et al., 2010; Nilsson, 2012). Vancomycin
genes vankE, vanG, and vanL confer low level resistance to van-
comycin and susceptibility to teicoplanin (Courvalin, 2006; Xu

et al., 2010; Nilsson, 2012). All three genes have inducible resis-
tance and are located on the chromosome, but are not mobile.
The newest vancomycin-resistance gene, vanN, confers resistance
to vancomycin only and is the only D-Ala-D-Ser ligase gene that is
transferable by conjugation (Lebreton et al., 2011). Until recently,
vancomycin-resistance in food animals had not been observed
in the U.S; the first report of vancomycin-resistance in food
animals in the U.S. was published in 2010 in which vancomycin-
resistant E. faecium (MIC > 256 g/ml) were isolated from
swine in Michigan (Donabedian et al., 2010). Those isolates con-
tained vanA located on the Tnl546 transposon as previously
described for enterococci containing vanA. The origin of vanA
in the Michigan swine samples remains undetermined. No other
vancomycin-resistance genes have been identified in the U.S.

CONCLUSIONS

Globally, resistance to antimicrobials appears to be increasing in
commensal and environmental isolates as well as in pathogens
including foodborne pathogens. This may cause difficulty in
treating human and animal infections in the future and mer-
its further surveillance and analyses. Salmonella isolated from
human and animal infections and also from healthy animals in
the U.S. have acquired additional resistance to antimicrobials
since the 1990’s. Resistance to some antimicrobials appears to
have moderated in recent years; however, monitoring will need
to be maintained to determine if this trend will continue. In
addition, resistance to a number of antimicrobials has also been
detected in commensal bacteria and opportunistic pathogens,
E. coli and Enterococcus, isolated from food animals in the U.S.
There is also evidence that these and other commensal organ-
isms may serve as reservoirs for AR genes and may transfer
these to Salmonella and other pathogens. Compounding resis-
tance concerns, international travel and trade makes it likely
that resistance mechanism found in other areas of the world
may eventually be found in the U.S., as seen for the emer-
gence of ESBLs or vancomycin resistance. The recent iden-
tification of the blaypm-1 gene in Salmonella isolated from
a human in the US. presents the possibility of a virtually
untreatable Salmonella infection and underscores these con-
cerns (Savard et al., 2011). Research is ongoing to determine
the sources of AR in animals and humans, and the results
from these studies will enable an understanding of the com-
plex events behind AR. Analysis of these results may aid in the
development of practices that will prevent resistance or slow
its spread and thus reduce its impact on human and animal
health.
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