fromtiers in
MICROBIOLOGY

REVIEW ARTICLE
published: 24 June 2013
doi: 10.3389/fmicbh.2013.00166

Biogeographical characterization of Saccharomyces
cerevisiae wine yeast by molecular methods

Rosanna Tofalo*, Giorgia Perpetuini, Maria Schirone, Giuseppe Fasoli, Irene Aguzzi, Aldo Corsetti

and Giovanna Suzzi*

Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Mosciano Sant/Angelo, TE, Italy

Edited by:
Danilo Ercolini, Universita degli Studi
di Napoli Federico I, Italy

Reviewed by:

Catarina Prista, Instituto Superior de
Agronomia, Portugal

Chrysoula C. Tassou, National
Agricultural Research Foundation,
Greece

*Correspondence:

Rosanna Tofalo and Giovanna Suzzi,
Faculty of BioScience and Technology
for Food, Agriculture and
Environment, University of Teramo,
Via C.R. Lerici 1, 64023 Mosciano
SantAngelo, TE, Italy

e-mail: rtofalo@unite.it;
gsuzzi@unite.it

Biogeography is the descriptive and explanatory study of spatial patterns and processes
involved in the distribution of biodiversity. Without biogeography, it would be difficult to
study the diversity of microorganisms because there would be no way to visualize patterns
in variation. Saccharomyces cerevisiae, “the wine yeast,” is the most important species
involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle
of “everything is everywhere.” Agricultural practices such as farming (organic versus
conventional) and floor management systems have selected different populations within
this species that are phylogenetically distinct. In fact, recent ecological and geographic
studies highlighted that unique strains are associated with particular grape varieties in
specific geographical locations. These studies also highlighted that significant diversity
and regional character, or “terroir, have been introduced into the winemaking process via
this association. This diversity of wild strains preserves typicity, the high quality, and the
unique flavor of wines. Recently, different molecular methods were developed to study
population dynamics of S. cerevisiae strains in both vineyards and wineries. In this review,
we will provide an update on the current molecular methods used to reveal the geographical

distribution of S. cerevisiae wine yeast.
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INTRODUCTION

One of the most important issues in ecological studies is the
determination of microbial biodiversity distribution and thus the
understanding of whether microorganisms are cosmopolitan or
endemic to a specific area or host (Ramette and Tiedje, 2007).
Biogeography is the discipline that studies the distribution of bio-
diversity over space and time (Martiny etal., 2006). During the
18™ century, biologists applied this approach to study the geo-
graphic distribution of plant and animal diversity, and only more
recently, interest in the geographic distribution of microorgan-
isms has increased. The aim of microbiogeography is to reveal
where microorganisms live, their abundance and distribution,
and their diversity over different taxonomic and spatial scales.
In fact, genetic distance may be correlated with geographic dis-
tance and/or environmental characteristics (e.g., salinity, depth,
latitude; Schuller etal., 2012). The scope of microbiogeography
also encompasses the understanding of the processes generating
and maintaining the distribution of microorganisms (Ramette and
Tiedje, 2007). Other goals of this field are to propose and evaluate
theories regarding the creation and evolution of such diversity
patterns in the environment (Ramette and Tiedje, 2007). The
first paradigm in microbial biogeography, “Alles is overal, maar
het milieu selecteert” (“everything is everywhere, but the environ-
ment selects”) was offered by Baas Becking more than 70 years
ago (O’Malley, 2008). This appealing idea was based on the small
size and high dispersal potential of microorganisms and their
large populations and low presumed extinction rates (Ramette and
Tiedje, 2007). However, even if the field of microbial biogeography

is not new, the determinism of microbial diversification and dis-
tribution has been poorly documented and is not well understood.
This may partly be due to the natural properties of microorganisms
(e.g., their small size, which makes access within different environ-
mental matrices difficult, their huge diversity, and the complexity
of precisely defining their species) and the lack of an adequate
sampling strategy. Recently, the development of new molecular
tools has partially resolved these limitations; in fact, recent devel-
opments have allowed the survey of uncultivated microorganisms
in the environment and the characterization of microbial commu-
nity structure (Christen, 2008). Furthermore, these tools are now
generally automated and allow the moderate throughput essential
to studies involving the characterization of numerous samples of
different origins. In particular, the use of DNA, RNA and protein
sequences for the construction of evolutionary trees has allowed a
better understanding of the way in which biodiversity was gener-
ated. Hence, the application of molecular phylogenetic methods to
study natural microbial ecosystems has resulted in the unexpected
discovery of many evolutionary lineages (Suzzi, 2011). Moreover,
metagenomic and metatranscriptomic approaches will allow not
only the dissolution of the species concept issue but will also sepa-
rate the relationship between the notion of species and their spatial
distribution. Weiher and Keddy (1995) proposed that a trait-based
approach should be the basis of a conceptual model for trait-based
community assembly. In particular, traits, not taxon names, are
the fundamental units of biodiversity and biogeography. Microor-
ganisms that show similar traits share the same ecological niche.
Therefore, the principal challenge of microbiology is to identify
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the main genetic variants inducing phenotypic variation and niche
adaptation (Cubillos etal., 2011).

Yeasts of the Saccharomyces sensu stricto species complex
(Figure 1) are able to convert sugar into ethanol and CO, via
fermentation. They have been used for thousands of years by
mankind for the production of fermented beverages and foods.
These yeasts show interesting features that are specific and not
found in other genera; for example, they are able to survive in
the absence of oxygen by using the fermentation process (Sicard
and Legras, 2011). The Saccharomyces sensu stricto genus is com-
posed of species showing a level of nucleotide divergence similar
to that found between birds and humans (Dujon, 2006). The
sensu stricto complex is thought to be young; in fact, some stud-
ies have suggested that Saccharomyces cerevisiae diverged from the
common ancestor of Saccharomyces paradoxus and Saccharomyces
cariocanus approximately 5-10 million years ago (Mya), whereas
Saccharomyces kudriavzevii. Saccharomyces bayanus, and Saccha-
romyces mikatae diverged 10-15, 15-20, and 20 Mya, respectively
(reviewed in Replansky etal., 2008).

Recently, Libkind etal. (2011) identified a new species very
similar to Saccharomyces bayanus and called it Saccharomyces
eubayanus sp. nov., which exists in apparent sympatry in Nothofa-
gus (Southern beech) forests in Patagonia. This species is 99.5%
identical to the non-Saccharomyces cerevisiae portion of the Sac-
charomyces pastorianus genome sequence. Because Saccharomyces
pastorianus and Saccharomyces bayanus (a complex hybrid of Sac-
charomyces eubayanus, Saccharomyces uvarum, and Saccharomyces
cerevisiae) are considered to be “a product of the artificial brewing
environment with no occurrence in nature,” they may be associated
with domestication events and hybrid lineages, whereas Saccha-
romyces uvarum and Saccharomyces eubayanus may be conserved
as descriptors of the species.

Recently, the budding yeast S. cerevisiae has been consid-
ered to be an important model for ecological and evolutionary
genetics. The ancestor of the sensu stricto complex underwent
whole-genome duplication. This event was followed by the loss
of approximately 90% of the duplicated genes. In fact, compari-
son of the S. cerevisiae genome with that of the pre-duplication
species Kluyveromyces waltii reveals the presence of approximately
500 paralogs among the 5500 genes (Replansky etal., 2008).
These duplications may then be subjected to mutations, which
may be related to the evolution of new functions or sequence
divergence, and inactivation due to the accumulation of non-sense

mutations, which leads to relics (Liti and Louis, 2005). The
duplicated genes may evolve at different rates, providing new
functions. For example, the abilities to grow anaerobically and
to produce ethanol and the low- and high-affinity glucose sys-
tems may be a consequence of genome duplication and may
have offered a competitive advantage against bacteria and other
microorganisms.

Scannell etal. (2011) resequenced and reassembled the
genomes of S. mikatae, S. kudriavzevii, and S. bayanus and com-
pared them with the S. paradoxus genome (Liti etal., 2009) and
the reference genome of S. cerevisiae (Goffeau etal., 1996). The
authors annotated 5261 sets of genes that are orthologous among
all five species and identified 123 genes that could be used as
targets of positive selection and may play important roles in eco-
logical specialization. Moreover, these authors underlined that
whole-genome duplication still influences yeast evolution and
contributes to the genomic and phenotypic differences charac-
terizing S. cerevisiae and its related species. In addition, the
presence of two possible horizontal gene transfers from bacteria
was described (Scannell et al., 2011). The possibility of a horizon-
tal genetic exchange from bacteria was also suggested by Wei et al.
(2007). The YJM789 genome (a yeast isolated from the lung of
an AIDS patient with pneumonia) highlighted a putative horizon-
tal transfer of YYM-GNAT (an unknown gene belonging to the
GNAT superfamily related to antibiotic resistance) from bacteria
and a potential introgression of a 12-kb sequence of chromosome
I from a closely related yeast (Wei et al., 2007).

Recent analyses have shown that yeast hybrids may be more
abundant in both natural and industrial environments than pre-
viously thought. Indeed, almost 10% of Saccharomyces strains
previously classified as sensu stricto appear to be hybrids of dif-
ferent species (Liti and Louis, 2005). In fact, interspecific hybrid
strains, which contain genetic contributions from both S. cerevisiae
and other Saccharomyces spp., may have selective advantages deriv-
ing from the combination of desirable traits from both parental
species. Recently, several strains involved in winemaking were
found to be hybrids between S. cerevisiae and S. kudriavzevii (Gon-
zales etal., 2006; Erny etal., 2012). Initially, this last species was
isolated in Japan, and although Sampaio and Goncalves (2008) also
found it in Portugal, it has never been isolated from wine fermenta-
tion. However, the Portuguese S. kudriavzevii population showed
genetic differences compared with the type strain of the species
that represents the Japanese population. In wine fermentation, the
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FIGURE 1 | Geographical characteristics and phylogenetic relationship among Saccharomyces species based on the combined sequence analysis of
the D1/D2 LSU rRNA gene and ITS (modified from Replansky etal., 2008; Kurtzman etal., 2011).

China (bark of an oak tree; not growth at 37%C and not human pathogen)
America and Brazil (generally associated with Drosophila species or in pulqué)
Ubiquitous (no ecological studies showed its presence during fermentation)
Ubiquitous (rarely isolated in natural environment)

Japan (natural environment such as soil, decaying leaves)

Japan, New Zeland and Europe (not growth at 37XC and not human pathogen)
Ubiquitous (spontaneous fermentations)

Ubiquitous (not present in nature)

Ubiquitous (spontaneous fermentations)
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hybrids exhibit the best properties of both parental species, such
as the low-temperature fermentation ability of S. kudriavzevii and
the high ethanol resistance of S. cerevisiae. Dunn etal. (2012) ana-
lyzed 69 commercial wine yeasts and compared them with other
industrial yeasts, wine yeasts, beer yeasts, bread yeasts, and fuel
ethanol yeasts. An interspecific hybridization between S. cerevisiae
and S. kudriavzevii in four of the 69 commercial wine strains was
observed, and S. paradoxus and S. mikatae introgression events
were detected.

Itis unknown when humans began to add selected yeast to make
fermented beverages and foods. Such human activities caused
hybridization between species and variation of ploidy, which
contributed to the evolution of domesticated yeasts.

Saccharomyces cerevisiae strains are adapted to different niches,
so they represent a rich resource for revealing the evolutionary tra-
jectories of a trait because particular molecular profiles may have
been selected in specific environments. Moreover, several studies
found evidence for a role of geographical isolation in the differen-
tiation of the S. cerevisiae population in nature, indicating that S.
cerevisiae can be used as model for evolutionary biology and bio-
geography (Carreto et al., 2008; Replansky etal., 2008; Lidzbarsky
etal., 2009; Liti et al., 2009).

Recent resequencing and phylogenetic characterization of mul-
tiple S. cerevisiae isolates provided evidence of substantial genetic
and phenotypic diversity (Liti etal., 2009).

Wang etal. (2012) performed a population genetics analysis of
wild Chinese isolates with different ecological and geographical
origins. They identified eight new, distinct wild lineages (coded as
CHNI-VIII) from a set of 99 Chinese isolates. These lineages were
characteristic of specific geographical areas and ecological niches.
In particular, these results indicate that a geographically isolated
source is important for S. cerevisiae population differentiation in
nature. In fact, this study showed that oak isolates from different
regions in northern China clustered into different lineages, and
the Chinese oak isolates were clearly separated from those from
North America.

Strains of S. cerevisiae associated with vineyards and wine
production, hereafter referred to as wine strains, often form a
genetically differentiated group that is separate from wild strains
isolated from soil and oak tree habitats and strains from other fer-
mentation types, such as palm wine, and sake (Fay and Benavides,
2005; Legras etal., 2007; Liti etal., 2009; Schacherer etal., 2009).
Several authors have explained these differences as a consequence
of domestication. These domestication events were followed by
human-associated dissemination of these yeasts throughout the
world.

In a recent study, Legras etal. (2007) investigated the possible
effects of human history on spreading and selecting this yeast. In
particular, they analyzed 651 yeast strains with 56 different origins
(beer, bread, palm wine, wine, and rice wine) from five conti-
nents. All wine yeasts grouped together and were well separated
from the yeast strains of other technological origins. For “non-
wine strains,” a relationship between genotype and the isolation
source was found. In particular, three Asian groups of strains were
identified: the first included the sake yeast group, and the other
two contained rice wine and Chinese distillery strains. Regard-
ing the African yeast populations, a Nigerian palm wine group

was identified, which also included an Ivory Coast strain. Ghana
sorghum beer strains were distinct from palm wine, Burundi cas-
sava and banana strains, suggesting genetic differentiation among
African yeast populations (Legras etal., 2007). The wine yeast
group contains strains from ancient vine areas (Lebanon, Europe)
as well as ‘new world’ recent vineyards, which suggests a migra-
tion of wine yeast all over the world. In addition to the historical
human transport across the Mediterranean Sea, the phylogenetic
analysis obtained clearly supports the hypothesis of a migration
pathway along the Danube valley. The way in which wine strains
are naturally propagated is still poorly understood: flor yeasts,
which grow almost continuously on the surface of wine during
the sherry wine process, are likely an example of domestication;
in fact, they may present specific features and mutations (Fidalgo
etal., 2006). However, for other types of wine strains, we cannot
infer such a continuous human control of their culture.

Fay and Benavides (2005) investigated the genetic differences
among strains that were of wine origin and those that were not.
The population of S. cerevisiae associated with the wine ecosys-
tem were genetically homogenous. The reduced levels of variation
present in winemaking strains may have been the result of a genetic
bottleneck, selection for specific traits, or a combination of the two
(Hyma etal,, 2011).

The population structure of S. cerevisiae in nature remains
obscure. The different S. cerevisiae isolates are characterized by
large genetic and phenotypic variations, providing a powerful
tool for quantitative genetic studies (Liti etal., 2009). This appar-
ent variation is likely because some studies were performed on
laboratory strains, which are highly adapted to artificial condi-
tions and do not represent the true ecological diversity of the
species (Steinmetz et al., 2002; Ehrenreich etal., 2010). Recently, it
was demonstrated that environmental factors and the interactions
between each organism and its environment influence genomic
rearrangements and the evolution of phenotypes (Camarasa et al.,
2011; Warringer etal., 2011). In particular, Camarasa etal. (2011)
related the metabolic traits of S. cerevisiae strains with their ori-
gins. These strains were isolated from seven different niches (baker,
clinical, fermentation processes, laboratory, vineyard, natural, and
commercial wine yeasts). The relationships were established using
a statistical approach that allowed the identification of specific
features common to all strains belonging to the same niche. Some
metabolic differences of strains with different origins are shown in
Table 1. Phenotypic variation in Saccharomyces strains collected
from diverse natural habitats, used in industrial processes, and
associated with human illness was observed (Kvitek et al., 2008).
Phenotypic variation in stress sensitivity and gene expression was
also observed. Vineyard isolates survived better in the presence of
different stress conditions due to their ability to thrive in more
variable natural environments, which facilitated their dispersal
into new environments in a manner associated with human inter-
actions (Kvitek etal., 2008). The main approach used to establish
a relationships between genotypic variation and phenotypes is
mapping of quantitative trait loci (QTL). This technique allowed
to map the loci responsible for brewing characteristics in a sake
strain, ethanol resistance, xylose utilization for application in the
bioethanol industry, acetic acid production, and fermentation
performance in wine strains (Borneman et al., 2013).
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Table 1| Sequenced genomes of wine Saccharomyces cerevisiae strains (modified from Borneman etal., 2013).

S. cerevisiae strain Project Origin Reference

RM11-1a Assembly Vineyard?-USA Wei etal. (2007)
YPS163 Low coverage assembly Vineyard-Italy Doniger etal. (2008)
AWRI1631 Assembly Wine? Borneman etal. (2008)
EC1118 Assembly Commercial wine yeast? Novo etal. (2009)
AWRI796 Assembly Commercial wine yeast Borneman etal. (2011)
Lalvin QA23 Assembly Commercial wine yeast

Vin13 Assembly Commercial wine yeast

VL3 Assembly Commercial wine yeast

YJM269 Assembly Wine grapes -

T73 Assembly Wine-Spain

Y55 Low coverage assembly Grape?®-France Liti etal. (2009)
[-1528 Low coverage assembly Wine?-Chile

BC187 Low coverage assembly Wine?-USA

DBVPG1106 Low coverage assembly Grapes?-Australia

Yllc17_E5 Low coverage assembly Wine?-France

Y12 Low coverage assembly Palm wine?-Africa

DBVPG6044 Low coverage assembly Bili wine?-Africa

WE372 Raw data only Wine-South Africa -

Y12 Raw data only Palm wine-Africa

@Haploid derivate of original isolate; bHaplofd sequence representation of diploid strain.

It is well known that the wine yeast, S. cerevisiae, plays a major
role in the fermentation of grape musts; in fact, it is well adapted to
this process (Martini and Vaughan-Martini, 1990; Blondin etal.,
2011). In particular, this yeast is adapted to the harsh conditions
in grape musts and grapes (high sugar concentration, increasing
alcohol concentration, acidity, presence of sulfites, anaerobiosis,
and progressive depletion of essential nutrients, such as nitrogen,
vitamins, and lipids), and its genome has been modeled, so the
understanding of the adaptation phenomenon to the wine envi-
ronment is a key element in wine yeast genome research (Blondin
etal., 2011).

Saccharomyces cerevisiae WINE YEAST

Saccharomyces cerevisiae is one of the best model systems used for
understanding microbial ecology and evolutionary genetics. Many
functional analysis projects have been dedicated to the investiga-
tion of its molecular biology since its genome was first sequenced
more than 10 years ago. In fact, a large amount of genomic
data for S. cerevisiae strains is available (Wei etal., 2007; Novo
etal., 2009; Borneman etal., 2011, 2013): there are 28 assembled
genome sequences (mainly in draft format), and 19 are avail-
able as unassembled sequencing reads. Moreover, 35 sequences
are available through project-specific websites (Borneman etal,,
2013). In Table 2, wine S. cerevisiae sequenced strains are reported.

Recently, Borneman etal. (2012) described the genome
sequence of the thiol-releasing commercial wine yeast hybrid
VIN7. They showed that VIN7 is an almost complete allotriploid
interspecific hybrid of S. cerevisiae and S. kudriavzevii that

contains a heterozygous diploid S. cerevisiae genome and a haploid
S. kudriavzevii genome. Both parental strains showed a European
origin; in particular, the S. cerevisiae portion of the VIN7 genome
was closely related to wine yeast but distant from the commer-
cial wine yeasts QA23 and EC118 (Borneman etal.,, 2012). The
genomes of S. cerevisiaelS. kudriavzevii hybrid strains display
a mosaic structure that likely resulted from selective pressures
experienced over time (Querol and Bond, 2009).

A comparative genome analysis between S. cerevisiae indus-
trial and laboratory strains highlighted how the environment
influences genomic structure and helped to identify genomic loci
involved in the regulation of industrial phenotypes. In partic-
ular, substantial conservation throughout a core set of genes was
observed, whereas many other regions displayed nucleotide substi-
tutions likely involved in diversification and specialization events
(Borneman etal., 2008).

Gene transfer is an important aspect of yeast diversification
and may play a major role in adaptation to the wine fermentation
ecosystem. Novo etal. (2009) sequenced the complete genome
of the diploid commercial wine yeast EC118. They identified 34
ORFs encoding proteins potentially involved in carbon and nitro-
gen metabolism, cellular transport, and the stress response that
were absent from S288c. BLASTP analysis suggested that these
genes specific for EC1118 were acquired from non-S. cerevisiae
donors. In fact, the closest relatives to EC1118 were found to
be in species belonging to two clades. The first contained the
Lachancea, Zygosaccharomyces, Kluyveromyces, Saccharomyces, and
Eremothecium genera, and the second species belonged to a large,

Frontiers in Microbiology | Food Microbiology

June 2013 | Volume 4 | Article 166 | 4


http://www.frontiersin.org/Food_Microbiology/
http://www.frontiersin.org/Food_Microbiology/archive

Tofalo etal.

Biogeography of Saccharomyces cerevisiae wine yeast

Table 2 | Some traits of Saccharomyces cerevisiae strains from
different origins.

Specific traits Reference

Geographical origin
West African Poor utilization of galactose Warringer etal. (2011)
Hypersensitivity to high
temperatures
European High respiratory capability (ethanol
growth)
Good proliferation in synthetic wine
must
Tolerance to copper, tartaric acid,
Na*t and Li* cations
Malaysian Utilization of melibiose and mannitol
North

American

Unable to metabolize maltose
Tolerance to oxalic acid

Ecological niche

Laboratory  High production of ethyl butyrate Camarasaetal. (2011)
strains and acetate
Low amounts of isoamyl acetate
and biomass
Commercial High biomass and low acetate
strains production

Short fermentation times
Bakery yeasts Low production of acetate,

succinate, and glycerol
Sake

Good utilization of glycerol Warringer etal. (2011)

Proliferation in absence of biotin

recently reassessed clade containing Debaryomyces, some Pichia,
and a number of medically important Candida species.

The yeast genome is quite small at only 12 Mb but is highly
packed, with approximately 6000 genes distributed over 16 chro-
mosomes. Additionally, it contains two small, cytoplasmatic
genomes: mitochondrial DNA (mtDNA) and killer double-
stranded RNA (dsRNA). The biological and genetic characteristics
of S. cerevisiae have been recently reviewed by Landry et al. (2006).
Briefly, S. cerevisiae is a diploid yeast with highly clonal reproduc-
tion. S. cerevisiae is also homothallic, which confers the ability of
regenerating a diploid cell from a haploid and could be interpreted
as a way of genome renewal. This mechanism may be responsible
for the high rate (28%) of homozygote strains found in vineyards
(Mortimer etal., 1994). Many studies have also described the ane-
uploidy of wine (Bakalinsky and Snow, 1990; Guijo etal., 1997;
Nadal et al., 1999), beer or bread strains (Codon et al., 1998).

The story of S. cerevisiae populations on earth is lost in the mists
of history, and despite over 70 years of research, the biogeography
of S. cerevisiae remains elusive; in fact, little is known about its
ecology, origin, evolution, and distribution in nature (Wang et al.,
2012). Naumov etal. (2006) hypothesized that the most ancient

population of S. cerevisiae originated from Malaysia. Ancient S.
cerevisiae DNA was discovered in Chinese pottery jars (7.000—
5.500 B.C.; McGovern et al., 2004; Stefanini et al., 2012). Moreover,
ribosomal DNA from S. cerevisiae was also found in some wine
jars in the King Scorpion tomb in Abydos, Egypt, indicating that
this yeast was responsible for wine fermentation by at least 3150
B.C. (Cavalieri etal., 2003).

During the last 30 years, a large number of observations have
demonstrated that the wine strains of S. cerevisiae are highly
diverse. Thus, the occurrence of specific natural strains likely
depends on numerous factors such as climate conditions, the geo-
graphical location of the vineyard, the ripeness of the grapes, the
age of the vineyard, the soil type, the grape variety, the applica-
tion of antifungals, and the technique used to harvest (Combina
etal., 2005; Valero etal., 2005, 2007; Raspor et al., 2006; Nisiotou
and Nychas, 2007; Chavan etal., 2009; Li etal., 2010; Cordero-
Bueso etal, 2011). In fact, another study found a relationship
between specific natural strains and a particular terroir (Frezier
and Dubourdieu, 1992; Sabate etal., 1998; Lopes etal., 2002;
Schuller etal., 2005; Valero etal., 2007). Thus, the following def-
inition of vitivinicultural “terroir” was provided: “Vitivinicultural
“terroir” is a concept which refers to an area in which collective
knowledge of the interactions between the identifiable physical and
biological environment and applied vitivinicultural practices devel-
ops, providing distinctive characteristics for the products originating
from this area” (Resolution OIV/Viti 333/2010).

However, insufficient quantitative data are available to estab-
lish general conclusions on the influence of these factors on the
evolution of the fermentative biota of a given viticultural region,
and extensive biogeographical surveys over many years are neces-
sary (Schuller and Casal, 2007). Discrimination at the strain level
thus becomes a strategic activity for the wine industry because
it may link territory, environment, and final products for wine
valorisation.

The species present on intact, undamaged berries have been
reported to mainly belong to the group of oxidative basidiomyce-
tous yeasts such as Hanseniaspora uvarum, Cryptococcus spp.,
Rhodotorula spp., Sporobolomyces spp., and Filobasidium spp. as
well as to the dimorphic ascomycetous black yeast Aureobasid-
ium pullulans (Prakitchaiwattana etal., 2004; Barata etal., 2008,
Barata etal., 2012). In contrast, the most relevant fermentative
wine yeast, S. cerevisiae, only occurs at concentrations less than
10-100 cfu/g of berry (Fleet, 2003). This yeast is present in nature
at very low concentrations. On the surface of undamaged berries,
its concentration is lower than 0.1%, although it is easily found
on berries damaged by birds or insects (24%), which represent
approximately 1 in 1000 grapes. In any case, some authors (Mor-
timer and Polsinelli, 1999) have shown that a population of yeast
thatis the primary source of natural yeast in wine production exists
on grapes. Moreover, data indicate that yeast populations on wine
grapes increase from 10>~10% cfu/g on immature berries to 10—
10° cfu/g on mature berries. Insects and birds are important agents
for the dispersal of yeasts in different habitats. Regarding the role
of insects as a vector for S. cerevisiae cells, Mortimer and Polsinelli
(1999) demonstrated the presence of a flow of S. cerevisiae cells
between the natural environment and cellars; because this yeast is
not an airborne, it needs a vector to move. In particular, Francesca
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etal. (2012) also highlighted that migratory birds may act as vec-
tor for S. cerevisiae cells, but they are not a “reservoir” because
the yeast cells survive in the gut for only 12 h. Stefanini etal.
(2012) isolated yeast strains from wasps, grapes, and fermenta-
tions from the same vineyard over a span of different months and
years. The results obtained showed that these strains were more
similar to each other than strains derived from other environmen-
tal and geographical locations. Wasps therefore may play a role in
maintaining ecological diversity.

However, whether these strains participate in alcohol fermen-
tation in the cellar is still controversial: some authors (Ciani et al.,
2004) observed that only cellar strains were responsible for alco-
hol fermentation in vats, whereas others showed that ‘grapevine
strains’ may be partially responsible for alcohol fermentation
(Constanti et al., 1997; Gutiérrez et al., 1999; Le Jeune et al., 2006).

MOLECULAR METHODS

By using the techniques developed by molecular geneticists, new
phylogenetic relationships were recognized, the number of sep-
arate species groups was reduced, and the diversity within the
groups was increased (McCullough et al., 1998). Moreover, molec-
ular methods revived the study of biogeography and positively
impacted the final interpretation of biogeographic patterns (Ram-
ette and Tiedje, 2007). In particular, a better knowledge of the
microbial ecology of local ecosystems is essential to understand the
winemaking process and to generate products with a local char-
acter, thereby allowing the development of modern winemaking
practices and the diversification of wine products. Grapevine culti-
vation and wine production spread throughout the Mediterranean
Sea toward Greece (5000 B.C.), Italy (900 B.C.), France (600 B.C.),
northern Europe (100 AD) and much later, to the Americas (1500
AD). There are approximately 7.5 million hectares of vineyards
across the world, mainly concentrated within the earth’s temper-
ate zones, and two million are located in Europe (OIV, Statistical
Report on World Vitiviniculture, 2012).

In particular, many molecular methods allow the identification
of S. cerevisiae at the strain level, and they are required not only
to investigate the diversity of this species but also to select strains
for use as pure cultures, a widespread practice in winemaking
industries where strains contribute to a specific characteristic of
the final product (Dequin, 2001; Suzzi etal., 2012).

Sipiczki (2011) highlighted that S. cerevisiae wine strains are
polyclonal and that the clones can differ significantly in oeno-
logical performance and genotype. The genomes of yeasts are
subjected to duplications, deletions, and rearrangements that may
cause the acquisition of new functions and gene specialization
(Cubillos etal., 2011). Some authors (Guijo etal., 1997; Nadal
etal,, 1999) highlighted that aneuploidy may be a method of yeast
adaptation through the modification of the expression of some
genes involved in this process (Legras etal., 2007). In any case,
aneuploids (Infante et al., 2003; Bradbury et al., 2005; Legras et al.,
2007; Lopandic et al., 2007), triploids (Cummings and Fogel, 1978;
Takahashi, 1978; Thornton, 1986), polyploids (e.g., Takahashi,
1978; Bakalinsky and Snow, 1990; Guijo etal., 1997; Naumov
etal., 2000, 2002) and rarely haploids (Lopandic etal., 2007) may
be present in the natural yeast biota of fermenting wine (Sipiczki,
2011).

Some studies have shown that genomic variability depends
on telomeric recombination, which is important for adaptation
to new environments and different metabolic sources and to
overcome environmental stress, and on the insertion of transpos-
able elements. Transposable elements comprise ~3% of the total
sequenced genome of S. cerevisiae S288¢ (Carreto etal., 2008).

Carreto etal. (2008) showed that wine strains differed dra-
matically from the reference laboratory strain in Ty element
composition, whereas clinical strains were similar to S288C in
Ty element composition. Thus, it is likely that clinical strains and
$288C had a common ancestor, and the differences found in wine
strains may be due to the selective pressures that affect particular
regions of the genome in response to adaptation to the environ-
ment. In particular, the variable genes were involved in metabolic
functions related to cellular homeostasis or transport of differ-
ent solutes such as ions, sugars, and metals. To better understand
the population structure of wine S. cerevisiae strains, ecological
studies using a polyphasic approach in order to define the bio-
geographical patterns have been carried out: a strict collaboration
between phylogeneticists and ecologists and the development of
new statistical tools provide a more comprehensive understanding
of the factors controlling the S. cerevisiae biodiversity and biogeo-
chemistry. The main molecular methods used for biogeographical
studies are reported in Table 3.

CGH ARRAY-BASED COMPARATIVE GENOMIC HYBRIDIZATION
Comparative genomic hybridization (CGH) is capable of detecting
loss, gain and amplification of copy number at the chromosome
level. Detection of amplifications is known to be sensitive down
to less than 1 Mb. Therefore, one must take into consideration
that although CGH is sensitive to specific types of copy number
gains, its resolution for regional deletions is more limited. The
use of array CGH overcomes this limitation, with improvements
in resolution and dynamic range, in addition to the ability to
directly map aberrations to the genome sequence and improved
throughput (Weiss etal., 1999). This approach has been recently
applied to investigate the evolutionary importance of genome size
in S. cerevisiae (Edwards-Ingram etal., 2004; Dunn etal., 2005,
2012; Gerstein etal., 2006). Dunn etal. (2012) used this technique
to study copy number variations (CNVs) across subtelomeric
regions, non-S288c genomic regions, retrotransposons, and the
non-nuclear mtDNA and 2-mm plasmids of 83 S. cerevisiae strains
isolated from different industrial and natural environments. The
obtained clusters for the different types of features showed that
most of the CNVs occurred either in subtelomeric regions or
among the classes of transposable elements and that there were
no commercial wine strains that appeared to be absolutely iden-
tical to each other. Thus, these CNVs did not produce any clear
phylogeny, so it is likely that an active interchange of these regions
occurred rather than separate lineages descending from isolated
ancestors, suggesting that most of these strains are the result of
interbreeding between industrial and wild strains.

GENOME SEQUENCE AND FUNCTIONAL ANNOTATION

The genetic diversity of Saccharomyces strains can also be assessed
using genome sequencing and functional genomic analysis of
transcript profiles. These approaches are useful to aid in the
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Table 3 | Molecular approaches used for S. cerevisiae biogeographical studies.

Molecular Origin Reference
methods
aCGH Brazil, Italy, USA Weiss etal. (1999); Edwards-Ingram etal. (2004); Dunn etal. (2005,

Genome sequence USA, Japan, France, Italy, Germany

and functional

annotation

PFGE Spain, Japan, UK, USA, France, South Africa, Ivory
coast, Italy, Switzerland, West Africa, Russia, Portugal,
Germany, China

mtDNA-RFLP France, ltaly, Portugal

RAPD-PCR Spain, Chile, Peru, Uruguay, France, Italy

Microsatellites New Zeland, Vietnam, France, Belgium, Russia, Czech

analyses Republic, Spain, The Netherlands, China, Taiwan,
Japan, Croatia, Australia, Portugal, Austria, Germany,
Brazil, Spain, Ghana, Nigeria, Lebanon

3 sequences Lebanon, China, Vietnam, Japan, Taiwan, USA, The
Netherlands, Italy, France, Portugal

MLST Lebanon, China, Vietnam, Japan, Taiwan, USA, ltaly,
France, Germany, Indonesia, Chile, Uruguay, South

Africa, New Zeland

2012); and Gerstein etal. (2006)

Kvitek etal. (2008); Cavalieri (2009); Muller and McCusker (2009a, 2011);
Rolland etal. (2009); Bullard etal. (2010); Lelandais etal. (2011); and
Scannell etal. (2011)

Schwartz and Cantor (1984); Johnston and Mortimer (1986); Vezinhet
etal. (1990, 1992); Bidenne etal. (1992); Frezier and Dubourdieu (1992);
Briones etal. (1996); Egli etal. (1998); Goto-Yamamoto etal. (1998);
Mesa etal. (1999); Povhe etal. (2001); Sipiczki etal. (2001, 2004);
Sipiczki (2011); Perez-Ortin etal. (2002); Carro etal. (2003); Schuller etal.
(2004); Antunovics etal. (2005); Dunn etal. (2005); Aa etal. (2006); and
Wang etal. (2012)

Vezinhet etal. (1990, 1992); Querol etal. (1994); Versavaud et al. (1995);
Schuller etal. (2005); and Di Maioetal. (2012)

Quesada and Cenis (1995); Cavalieri etal. (1998); Martinez etal. (2007);
and Tofalo etal. (2007)

Ness etal. (1993); Versavaud etal. (1995); Gallego etal. (1998);
Hennequin etal. (2001); Bradbury etal. (2005); Legras etal. (2005);
Schuller etal. (2005, 2007); Ayoub etal. (2006); Schuller and Casal
(2007); Liti etal. (2009); Muller and McCusker (2009b); and Richards
etal. (2009)

Ness etal. (1993); Legras and Karst (2003); Schuller etal. (2004, 2012);
Legras etal. (2005); and Franco-Duarte etal. (2011)

Ben-Ari etal. (2005); Fay and Benavides (2005); Aa etal. (2006); Ayoub
etal. (2006); and Vigentini etal. (2009)

understanding of speciation, life history variation, conditional
fitness trade-offs and the long term maintenance of complex
genomic variation (Scannell etal., 2011). Genome sequencing
provides the most complete understanding of the genomic struc-
ture of an organism and allows wide comparisons to be made
between related species. Scannell etal. (2011) improved the
genome sequences of three species belonging to the Saccharomyces
sensu stricto complex (S. bayanus var. uvarum, S. kudriavzevii,
and S. mikatae) and compared them with the genomes of S.
cerevisiae and S. paradoxus. They identified 5261 annotated pro-
tein coding orthologs across all of the studied species. Moreover,
they found genes that had been lost in one or more lineages.
Generally, the lost genes were derived from yeast genome dupli-
cations, suggesting that this phenomenon still influences yeasts
and contributes to phenotypic differentiation. These authors also
detected lineage-specific gains and found, in particular, two hori-
zontal gene transfers from bacteria. These genes differentiated the
analyzed species, indicating their involvement in speciation and
adaptation. Other authors such as Rolland etal. (2009) have also

identified the presence of horizontal gene transfers from bacteria,
confirming that this phenomenon plays important functional and
evolutionary roles.

To characterize the genomes of large numbers of individu-
als, microarray-based methods provide an alternative to DNA
sequencing. This method allows the identification of conserved
and non-conserved regions across microbial populations. The
use of tiling arrays followed by analysis of the DNA region via
polymerase chain reaction (PCR) is useful to determine whether
the absence of hybridization is due to deletion of a chromo-
somal region or due to areas of large sequence polymorphism
(LSP; Muller and McCusker, 2011). Muller and McCusker (2011)
characterized the genome-wide distribution of LSPs in 88 S. cere-
visiae strains of diverse geographical origins and source substrates
using high-density tiling arrays. They showed that LSPs occurred
in the subtelomeric regions of chromosomes, where they did not
disrupt essential gene expression. Moreover, this study revealed
the presence of introgressions. In particular, clinical strains con-
tained S. paradoxus DNA fragments. In another study, Muller and
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McCusker (2009a) developed a multi-species-based taxonomic
microarray consisting of features targeted to multiple orthologous
genes from S. cerevisiae, S. paradoxus, S. mikatae, S. bayanus, S.
kudriavzevii, N. castellii, L. kluyveri, and the closely related Can-
dida glabrata. In particular, they studied 183 supposed S. cerevisiae
isolates of diverse ecological and geographical origins. They again
confirmed the existence of introgressions in wine strains, identify-
ing four hybrids, one between S. cerevisiae and S. bayanus and three
between S. cerevisiae and S. kudriavzevii. In addition, this approach
allowed the detection of multiple introgressed S. paradoxus DNA
fragments in the genomes of three different S. cerevisiae isolates.

Other researchers studied comparative transcript profiling
to define the relationships among strains (Kvitek etal., 2008;
Cavalieri, 2009; Bullard etal., 2010). Conservation of a transcrip-
tional response indicates functional relatedness of the organisms
under investigation (Lelandais etal., 2011). In fact, genome
rearrangements can modify gene expression and alter pheno-
types. Kvitek etal. (2008) measured whole-genome expression
in 52 strains collected from different niches (industrial pro-
cesses and human illnesses) in the presence of different stress
conditions. Wine strains were able to grow in the majority of
the tested conditions; for example, copper resistance was pre-
dominant in wine strains, suggesting that the use of copper
in the vineyard strongly selected against strains that were cop-
per sensitive (Kvitek etal., 2008). This evidence confirmed that
the process of fermentation imposes a strong selective pressure
and therefore is a powerful evolutionary force in the genera-
tion of diversity (Kvitek etal., 2008; Cubillos etal., 2011; Sipiczki,
2011).

PULSED-FIELD GEL ELECTROPHORESIS

Wine strains generally have a large diversity in the number and
size of chromosomes that can be observed by pulsed-field gel elec-
trophoresis (PFGE) analysis, which separates chromosome-sized
DNA molecules. This method was first described by Schwartz
and Cantor (1984) and is still one of the most powerful tools
to investigate the biogeography and speciation of this yeast in
nature. Analysis of the chromosomes of wine yeast strains by
PFGE demonstrated the presence of chromosome-length poly-
morphisms, which are derived from chromosomal rearrangements
such as translocations and deletions (Carro etal., 2003). Carro
etal. (2003) suggested that the subtelomeric plasticity of chromo-
some I, which contains several membrane-associated genes, may
induce rapid adaptive changes of the yeast strains in response to
specific environmental cues (substrates). The reciprocal translo-
cation between chromosomes VIII and XVI generated the SSU1-R
allele, which confers sulfite resistance to yeast cells and was
described as the first case of adaptive evolution, likely occur-
ring as a consequence of the use of sulfites as a preservative
in wine production (Goto-Yamamoto etal., 1998; Perez-Ortin
etal., 2002). Many authors have showed that karyotyping is more
discriminative than other approaches for yeast typing because it
is able to highlight polymorphisms in electrophoretic chromo-
somal profiles in natural S. cerevisiage populations from almost
all wine-growing regions of the world (Johnston and Mortimer,
1986; Vezinhet et al., 1990, 1992; Bidenne etal., 1992; Frezier and
Dubourdieu, 1992; Briones etal., 1996; Egli etal., 1998; Povhe

etal.,, 2001; Schuller etal., 2004; Sipiczki etal., 2004; Antunovics
etal., 2005; Aa etal., 2006; Wang et al., 2012).

This approach showed that strains isolated from the same fer-
mentation generally differ in chromosomal length (Egliet al., 1998;
Mesa etal., 1999; Sipiczki etal., 2001, 2004; Antunovics etal.,
2005), indicating that clones with different sets of chromosomes
propagate at the same time and in succession during fermentation
(Sipiczki, 2011). Wang etal. (2012) applied this technique to type
S. cerevisiae strains with different ecological and geographical ori-
gins to better understand the ecology of S. cerevisiae. The obtained
results showed that a wide divergence of populations of wild S.
cerevisiae exist and that this divergence is only marginally affected
by human activity. Dunn etal. (2005) revealed the existence of
a set of deleted or amplified genes common to wine and other
industrial yeasts, and certain genes have been identified as a pos-
sible wine yeast signature, particularly genes encoding membrane
transporters.

mtDNA-RFLP

Saccharomyces cerevisiae mtDNA is characterized by an elevated
mutation rate. In particular, base-substitution mutations and
length polymorphisms can be highlighted by restriction finger-
printing of mtDNA using endonucleases with different target sites
(e.g., Ddel, Hinfl, Alul, and Rsal). The reliability and discrimina-
tion power of this fingerprinting technique are similar to those of
PFGE.

The use of mtDNA-restriction fragment length polymorphism
(RFLP) revealed a wide range of polymorphisms in mitochondrial
genomes and mitochondrial genes (Vezinhet etal., 1990; Querol
etal., 1994; Versavaud etal., 1995; Lopez etal., 2003). This tech-
nique was used together with PFGE by Vezinhet etal. (1992) to
study the evolution of S. cerevisiae strains isolated from differ-
ent wine regions over 6 years. The study demonstrated that some
strains were widely distributed in the studied areas and present
over several years, indicating that they are endemic to that region.
More recently, Di Maioetal. (2012) used this method to investi-
gate the biodiversity of wine yeast populations isolated over several
years from Sicilian wineries where commercial yeast strains have
never been used. mtDNA-RFLP allowed the differentiation of 209
of 918 yeast strains. Schuller etal. (2005) performed a large-scale
biogeographical survey on the genetic diversity of S. cerevisiae
strains isolated from spontaneous fermentations and identified
297 different genetic patterns among 1620 strains isolated from 54
small-scale fermentations of grapes from three vineyards located
in the Vinho Verde region (Portugal) during a 3 year period.
Almost all of the obtained patterns were unique, showing the large
biodiversity of S. cerevisiae in that region.

RAPD-PCR

This technique is based on the use of a single short primer (8—
12 nucleotides) that amplifies “anonymous” DNA sequences and
represents a powerful typing method for many yeast and bacterial
species (Quesada and Cenis, 1995; Martinez etal., 2007; Tofalo
etal.,, 2007). In fact, the annealing of the primer at several points
allows the user to obtain a complex banding pattern that is specific
for each strain (Ivey and Phister, 2011). This method was used
by Cavalieri etal. (1998) to differentiate 166 S. cerevisiae strains
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isolated from Tuscany and Sicily, two Italian regions. In this case,
random amplified polymorphic DNA (RAPD)-PCR allowed the
recognition of 16 patterns, and only 10 were strain specific. Tofalo
etal. (2007) used this approach to recognize genetically different S.
cerevisiae strains, which were clustered in subgroups related to the
four different wine-producing areas of the Apulia region (Italy).
The obtained results showed that the genetic differences reflect the
phenotypic biodiversity.

MICROSATELLITE ANALYSES

Microsatellites, also known as simple sequence repeats (SSRs) or
short tandem repeats (STRs), are repeating sequences of 1-6 base
pairs of DNA that are characterized by a high level of polymor-
phism. They occur within many open reading frames but are even
more frequent in non-coding regulatory regions. In S. cerevisiae,
microsatellites have been described as abundant and highly poly-
morphic in length (Richards etal., 2009), and for this reason, they
are used as a reproducible and portable typing method (Gallego
etal., 1998; Hennequin etal., 2001; Schuller et al., 2004; Bradbury
etal., 2005; Legras etal., 2005). Recently, an increasing number of
microsatellites have been described for S. cerevisiae, with the aim of
identifying the most polymorphic loci with a high allelic diversity
that can be used for both strain identification and the establish-
ment of strain geographical or technological origin. Several studies
used this approach to type S. cerevisiae strains of different geo-
graphical origins (Ness etal., 1993; Versavaud etal., 1995; Gallego
etal., 1998; Hennequin etal., 2001; Bradbury etal., 2005; Legras
etal., 2005; Schuller etal., 2005, 2007; Muller and McCusker,
2009b). For example, Schuller and Casal (2007) analyzed six poly-
morphic microsatellite loci in 361 strains isolated from the Vinho
Verde region in Portugal during the 2001-2003 harvest seasons.
Fifty-two new alleles were identified in addition to the 41 alle-
les previously described (SCAAT1-ScAAT6). Recently, a database
of 246 genotypes has been compiled that includes 78 commercial
strains of wine yeast, a range of yeast isolates from New Zealand
wineries, and natural yeast strains from around the world, includ-
ing 35 that were recently sequenced (Liti etal., 2009). Regardless
of the technique chosen, a combination of different techniques is
necessary to obtain unambiguous results. For example, Schuller
etal. (2004) showed that genotypes with the same microsatel-
lite pattern (using six loci) can have different karyotypes. This
group also identified a large number of variants of a commer-
cial wine strain that had escaped to adjacent vineyards (Schuller
etal., 2007). Ayoub etal. (2006) also found that genotypes that
could not be resolved by microsatellite profiles were sometimes
discriminated by interdelta PCR or by sequence analysis. In S.
cerevisiae 84 minisatellites have been reported, but recently four
tandem repeated motif of 135 bp or larger called megasatellites
have been described (Rolland etal., 2010). They are found in par-
alogous FLOI, FLO5, FLOY, and NUM 1 genes. These motifs could
be as targets to measure evolutionary relationships at intra- and
intergenic levels (Rolland etal., 2010).

8 SEQUENCES

The 8 sequences are flanking sequences (300 bp) frequently
associated with the Tyl and Ty2 transposons that are dispersed
throughout the genome and are particularly common in terminal

chromosomal regions (Franco-Duarte etal., 2011). They are also
found as single elements. The number (from 35 to 55) and
the location of these elements are variable among species, so
the 3 sequences represent useful genetic markers for the identi-
fication of polymorphisms. Amplification of interdelta regions
between neighboring d sequences generates strain-specific band-
ing patterns. This method is suitable for the characterization of
high numbers of strains because it is easy to perform, cheap
and rapid. Recently, alternative primers (d12 and d21) that
bind close to the initially described binding sites for primers d1
and d2 (Legras and Karst, 2003) were designed to improve this
method (Ness etal., 1993). The combination of these primers
(d12/821 or d12/d2) increased the discriminatory power of the
method (Legras etal., 2005). In particular, the use of primer
pairs d12/d2 showed the same discriminatory power as other
methods, such as mtDNA, RFLP, microsatellite analysis, and
karyotyping, for strain typing (Schuller etal., 2004). Schuller
etal. (2012) used this approach to study the intraspecific genetic
diversity of vineyard-associated S. cerevisiae strains. In partic-
ular, grapes were harvested from 16 vineyards over 2 years.
A strict correlation between genotype and grape variety was
found.

MULTILOCUS SEQUENCE TYPING

Another technique used for S. cerevisiae strain typing is multilocus
sequence typing (MLST), which was recently shown to be a pow-
erful technique for typing microorganisms (Aa et al., 2006; Ayoub
etal., 2006). Strains are characterized using the DNA sequences of
internal fragments of multiple housekeeping genes where variation
accumulates relatively slowly and tends to be selectively neutral. It
is highly reliable and highly discriminatory at the strain level, and
because it is based on nucleotide sequencing, the results are easily
comparable between laboratories.

Recently, this technique was applied to study S. cerevisiae popu-
lation structure and evolution (Fay and Benavides, 2005; Aa et al.,
2006). Ayoub etal. (2006) tested a set of seven loci of 84 S. cere-
visiae strains of different origins: 65 strains were isolated from
traditional wineries in Lebanon, and the others were commercial
wine strains and Asian isolates. MLST profiling allowed the dif-
ferentiation of the Asian group of strains from the Lebanese and
European commercial strains that appear closely related, suggest-
ing the introduction of genetic material from Asian strains into
Lebanon.

Vigentini etal. (2009) studied the genetic biodiversity of an
S. cerevisiae collection including 33 commercial strains, 14 wine
isolates, and three laboratory strains by screening for single-
nucleotide polymorphisms (SNPs) in loci on genes involved in
wine production. In particular, they focused on the identifica-
tion of SNPs as new genetic markers. Several studies report the
efficacy of this analysis for studying the evolution of a microbial
population (Ben-Ari etal., 2005; Aa etal., 2006). The obtained
results showed that the collection was characterized by a low
polymorphism rate and degree of heterozygosity and that the gene
coding for the trehalose-6-phosphate synthase enzyme, which is
involved in ethanol resistance, could be used as a molecular target.
In fact, this gene showed a sequence diversity of 1.42% with seven
different nucleotide substitutions.
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CONCLUSION

Biogeographical studies revealed that S. cerevisiae species consists
of both “domesticated” and “wild” populations which are phylo-
genetically distinct. These populations probably derives from the
whole-genome duplication of a common ancestor strain. In par-
ticular, for S. cerevisiae wine yeast a clear geographical origin was
established at regional and global scales suggesting that the differ-
ent strains evolved independently for long time. They modified
the dosage of some genes important for the persistence in specific
ecological niches which represent a reservoir of natural yeasts.
Comparative genomics studies highlighted that S. cerevisiae wine
strains differ not only for their origin but also for genetic transfers
from other yeasts (Saccharomyces and non-Saccharomyces) and
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