
REVIEW ARTICLE
published: 11 July 2013

doi: 10.3389/fmicb.2013.00189

Microbial activity in the marine deep biosphere: progress
and prospects
Beth N. Orcutt 1*, Douglas E. LaRowe2, Jennifer F. Biddle3, Frederick S. Colwell4, Brian T. Glazer5,

Brandi Kiel Reese6, John B. Kirkpatrick7, Laura L. Lapham8, Heath J. Mills9, Jason B. Sylvan6,

Scott D. Wankel10 and C. Geoff Wheat11

1 Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
2 Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
3 College of Earth, Ocean and Environment, University of Delaware, Lewes, DE, USA
4 College of Earth, Ocean and Atmospheric Sciences, Oregon State University, OR, USA
5 Department of Oceanography, University of Hawai’i and Manoa, Honolulu, HI, USA
6 Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
7 Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
8 Chesapeake Biological Laboratory, University of Maryland Center for Environmental Sciences, Solomons, MD, USA
9 Department of Biology, University of Houston Clear Lake, TX, USA
10 Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
11 Global Undersea Research Unit, University of Alaska Fairbanks, Moss Landing, CA, USA

Edited by:

Axel Schippers, Federal Institute for
Geosciences and Natural Resources
(BGR), Germany

Reviewed by:

Takuro Nunoura, Japan Agency for
Marine-Earth Science & Technology,
Japan
Jens Kallmeyer, Helmholtz Zentrum
Potsdam-GFZ, Germany
Gordon Webster, Cardiff University,
UK

*Correspondence:

Beth N. Orcutt, Bigelow Laboratory
for Ocean Sciences, 60 Bigelow
Drive, PO Box 380, East Boothbay,
ME 04544, USA
e-mail: borcutt@bigelow.org

The vast marine deep biosphere consists of microbial habitats within sediment, pore
waters, upper basaltic crust and the fluids that circulate throughout it. A wide range
of temperature, pressure, pH, and electron donor and acceptor conditions exists—all
of which can combine to affect carbon and nutrient cycling and result in gradients on
spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized
microorganisms live in these habitats, and potentially play a role in mediating global
scale biogeochemical processes. Quantifying the rates at which microbial activity in
the subsurface occurs is a challenging endeavor, yet developing an understanding of
these rates is essential to determine the impact of subsurface life on Earth’s global
biogeochemical cycles, and for understanding how microorganisms in these “extreme”
environments survive (or even thrive). Here, we synthesize recent advances and
discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight
topics about which there is still little understanding and suggest potential paths forward
to address them. This publication is the result of a workshop held in August 2012 by the
NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on
microbial activity (www.darkenergybiosphere.org).
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WHAT IS THE MARINE DEEP BIOSPHERE AND
WHY IS IT IMPORTANT?
In 1992, Thomas Gold presented the thought: “If there exists this
deep, hot biosphere, it will become a central item in the discus-
sion of many, or indeed most, branches of the Earth sciences. How
much of the biological imprint of material in the sediments is due
to surface life and how much to life at depth?” (Gold, 1992). Since
the early days of deep biosphere research, the challenge of under-
standing the scope, relevance and activity of subsurface life has
remained a somewhat daunting task, considering that the deep
biosphere inhabits the majority of our planet yet is relatively dif-
ficult to access. The marine deep biosphere is often defined as
life existing deeper than one meter below seafloor (Jørgensen
and Boetius, 2007), spanning from continental margins to abyssal
plains. Environments in the dark reaches of ocean depths, such
as hydrothermal vent systems and newly formed oceanic crust
(Orcutt et al., 2011a; Biddle et al., 2012) are also part of the
marine deep biosphere, though more often viewed as “windows”
to subsurface ecosystems (Deming and Baross, 1993; Huber et al.,

2006; Santelli et al., 2008). While recent estimates for the number
of microorganisms living in the sedimentary deep biosphere have
considerably decreased (Kallmeyer et al., 2012), the number of
microbes in the crustal environment is still largely unconstrained
(Edwards et al., 2012a), and the vastness of this ecosystem means
that it is a major reservoir for harboring microbial life on this
planet. However, as Gold postulated in 1992, intriguing questions
remain as to the activity that exists in the deep biosphere, both
hot and cold.

Importantly, the marine deep biosphere is alive: it is not
just a reservoir for buried, non-functioning microbial cells.
Evidence of the activity of microorganisms in the marine deep
biosphere comes from numerous angles, such as geochemical pro-
files (Oremland et al., 1982; D’Hondt et al., 2002; Røy et al.,
2012), enumeration of cells (Cragg et al., 1990, 1992; Cragg and
Kemp, 1995), extraction of RNA from deep sediment [thought
to only derive from live cells; (Mills et al., 2012a; Orsi et al.,
2013a,b)], extraction of intact polar lipids from deep sediment
[again, thought to only derive from live cells; (Lipp et al., 2008)],
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ability to enrich indigenous microorganisms with stable isotope
labeling (Morono et al., 2011), growth of viable cultures and
enrichments (Cragg et al., 1990; D’Hondt et al., 2004; Batzke
et al., 2007; Smith et al., 2011), and measurements of substrate
turnover (Figures 1, 2). However, these data have also come with
controversy, such as cross-laboratory comparisons yielding differ-
ent results (Biddle et al., 2006a; Schippers and Neretin, 2006; Lipp
et al., 2008), extraction biases and efficiency issues (Mills et al.,
2012a,b), persistence of biomolecules like intact polar lipids in
the environment (Schouten et al., 2010, 2013; Logemann et al.,
2011; Xie et al., 2013), thermogenic activity influencing deep
metabolisms (Parkes et al., 2011), and calculated rates of per cell
activity that are orders of magnitude lower than anything known
through cultivation (Jørgensen and Boetius, 2007; D’Hondt et al.,
2009; Røy et al., 2012; Hoehler and Jørgensen, 2013). These con-
troversial data are challenging our notions of what it means to “be
alive” and “active” vs. dormant or “dead” (Jørgensen, 2011, 2012)
[some have even said “zombie,” (Colwell and D’Hondt, 2013)].

The realization that microbes exist in the deep biosphere,
and are active to some degree, brings to question the impor-
tance of understanding this activity. It is generally assumed that
metabolic rates in the deep biosphere are low, yet potentially
capable of influencing important global biogeochemical cycles
(elements such as C, H, O, N, Fe, Mn, S). For example, sedi-
mentary microbial processes account for oxidation of 95% of the
methane that exists in marine sediment, reducing the amount

of methane flux to the water column (Reeburgh et al., 1993;
Reeburgh, 1996). Yet, microbial activity is low enough to allow
geochemical and paleooceanography proxies to persist (Meyers,
1997; Zachos et al., 2001), although, areas of microbial activ-
ity can be high enough to destroy these proxies (Shah et al.,
2008). Understanding how microbial activity in the subsurface
can influence well-established, or potentially new, proxies for
paleo-oceanography will help to better understand Earth’s geo-
logic history, including climate reconstructions.

Marine deep biosphere research has greatly benefited from
investigations by the scientific drilling community through
the Integrated Ocean Drilling Program (IODP) and Ocean
Drilling Program (ODP), and it has influenced the future scope
of the international scientific drilling program (IODP, 2011).
Historically, drilling programs concentrated on understanding
the composition and diagenesis of deep-sea sediment, which
allows for reconstruction of prior tectonic and oceanic current
conditions, records indicators of past climatic variables, and
allows for predictions of future shifts in currents and climates.
Since the early 1990s, priorities of some drilling expeditions have
expanded to include the collection of samples for microbiologi-
cal study, allowing for preliminary analyses investigating aspects
of the deep marine biosphere (Cragg et al., 1990, 1996, 1998;
Whitman et al., 1998; Parkes et al., 2000; Kallmeyer et al., 2012).
Initial observations indicate that microorganisms in this environ-
ment are capable of maintaining slow metabolic activity; however,

FIGURE 1 | Map of the locations where rates of microbial activity in

deep sediment have been measured (through radio-isotope tracer

techniques) or inferred from modeling of vertical geochemical

parameters during drilling program expeditions. This map does not
include hydrocarbon seep environments. Map created using ArcGIS 9.
References used are (Oremland et al., 1982; Tarafa et al., 1986; Whelan et al.,
1986; Cragg et al., 1990, 1992; de Angelis et al., 1993; Cragg et al., 1995; Lein

et al., 1997; Fossing et al., 2000; Hoehler et al., 2000; Tsunogai et al., 2000;
D’Hondt et al., 2002, 2004, 2009; Böttcher et al., 2004; Joye et al., 2004,
2009; Lam et al., 2004, 2008; Orcutt et al., 2005; Parkes et al., 2005;
Niemann et al., 2006a; Sivan et al., 2007; Wang et al., 2008; Nunoura et al.,
2009; Omoregie et al., 2009; Schippers et al., 2010; Wankel et al., 2010, 2011;
Yoshioka et al., 2010; Lomstein et al., 2012; Nickel et al., 2012; Røy et al.,
2012; Ziebis et al., 2012; Maignien et al., 2013).
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FIGURE 2 | Representative ranges of microbial activity in the marine

deep biosphere based on literature values of measured and

modeled volumetric rates. Starred rate measurements derive from
measurements of in situ conditions; all others derive from ex situ
incubation experiments. Note that the value from Wankel et al. (2011)
assumes a depth of 10 cm. Environments include some deep sediment
locales as well as “windows” to the deep biosphere such as
hydrothermal vents. Rates of different metabolisms are normalized to
moles of electrons per unit time per unit volume. Dagger denotes

references where the ranges of bar in graph reflect the 8-fold
difference in moles of electrons per methane molecule for
methanogenesis depending on the substrate—8 mol e- per 1 mol CO2

vs. 1 mol e- per 1 mol acetate. References used are (de Angelis et al.,
1993; Iversen and Jørgensen, 1985; Jørgensen, 1977; Lein et al., 1997;
Fossing et al., 2000; Joye et al., 2004, 2009; Orcutt et al., 2005;
Biddle et al., 2006b; Niemann et al., 2006b; Wang et al., 2008;
Nunoura et al., 2009; Omoregie et al., 2009; Wankel et al., 2010, 2011;
Lomstein et al., 2012; Røy et al., 2012; Maignien et al., 2013).

details of specific rates in the marine deep biosphere are limited.
This is partly due to limited sample collection and difficulties
in making rate measurements; however, new advances are being
made which will allow for a greater understanding of microbial
activity in the marine deep biosphere.

RECENT ADVANCES IN MARINE DEEP BIOSPHERE
RESEARCH
ADVANCES IN SAMPLE COLLECTION AND In situ EXPERIMENTS
Recent findings of spatial and temporal distribution and rates
of microbial activity in the marine deep biosphere have been
made possible by advances in sample collection and data analy-
sis. Although scientific ocean drilling has continued since the late
1960s and routinely collects baseline geophysical and geochemical
parameters from cored material, systematic collection of samples
suitable for microbiological investigation lagged in development
and application. One major development is the microbiological

sampling protocols enacted within the last few years on IODP
Expeditions that collect deep sediment and basement cores
[example sampling protocols can be found in the Methods sec-
tions of recent expeditions’ reports (Expedition327Scientists,
2011; Expedition329Scientists, 2011a)]. Adapting microbiologi-
cal sampling and preservation strategies to the existing IODP
workflow required establishing, for example, autoclaves and
banks of ultralow temperature freezers on ships and in core
repositories for preserving materials for sensitive DNA- and RNA-
based methods. Both qualitative and quantitative contamination
monitoring have developed in parallel with this routine collection
(Smith et al., 2000; Lever et al., 2006), enabling greater confidence
in the integrity of the recovered samples. Established protocols
have also enabled a new era of sample collection for shore-
based scientists via IODP’s online sample request pipeline. Recent
collections of deep biosphere samples are from a range of sub-
surface habitats including carbon-poor sediment (Expedition329
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Scientists, 2011b; Expedition336Scientists, 2012), young and old
basalts (Expedition327Scientists, 2010; Expedition329Scientists,
2011b; Expedition330Scientists, 2011; Expedition336Scientists,
2012), gabbroic crust (Mason et al., 2010), carbon-rich sedi-
ment (Wehrmann et al., 2011), buried coral reefs (Expedition325
Scientists, 2011), and hydrothermal systems above conver-
gent plate boundaries (Expedition331Scientists, 2010). On-going
studies with these samples will undoubtedly lead to new under-
standing of microbial activity and diversity in these disparate
settings.

Other advances in sample collection have occurred outside
of the conventional scientific ocean drilling programs that pro-
vide new opportunities for collecting deep biosphere samples.
For example, revised giant piston coring devices for retrieval of
longer (10 s of meters) sediment cores have been developed in
both the USA (Røy et al., 2012) and France (Bourillet et al.,
2007). Similarly, seabed rock drills recently developed by the UK
(Petersen et al., 2007) and Germany (Freudenthal and Wefer,
2009; Krastel et al., 2011) enable the collection of zero-age crustal
materials and hydrothermal vent deposits—something that is
difficult to accomplish with conventional ocean drilling vessels
which require soft substrate for establishing boreholes. In addi-
tion, new coring devices enable direct cultivation with deep
sediment (Parkes et al., 2009a).

Development of a variety of short- and long-term seafloor
and subsurface observatories specifically designed for microbi-
ological research has opened a new window into the relatively
understudied deep crustal environment (Edwards et al., 2012a).
Installation of new Circulation Obviation Retrofit Kits (CORKs)
that have been redesigned and constructed using inert materials
such as Teflon-like fluid delivery lines, titanium fittings, and fiber-
glass borehole casing (e.g., Fisher et al., 2011a; Edwards et al.,
2012b; Orcutt et al., 2012) have allowed for collection of high-
integrity fluid samples at the seafloor during ROV expeditions
(see Wheat et al. (2011) for recent review of CORK develop-
ments). Additionally, new seafloor instrumentation and subsur-
face observatory hardware has recently been deployed to enable
microbiological investigations (Fisher et al., 2011a; Orcutt et al.,
2011b; Edwards et al., 2012b), including an in situ electrochem-
ical analyzer (e.g., Edwards et al., 2011a), in situ fluid pumping
systems for collecting pristine fluids and particles from hydrother-
mal vents, plumes, and microbial mats (Breier et al., 2012), and
new integrated sensor and sampling packages for ROVs during
short-term sampling, and for automated instrument packages
during year-long CORK deployments (Cowen et al., 2012). In the
specific case of sampling basement formation fluids from CORK
observatories, the capability for collecting large volumes of for-
mation fluid (60 liters per dive) has enabled investigations for
biogeochemical activities (Lin et al., 2012) and microbial diver-
sity (Jungbluth et al., 2012). In situ enrichment experiments can
also be deployed on and in CORKs to promote isolation and char-
acterization of rock-hosted microbial communities (Orcutt et al.,
2011b; Smith et al., 2011).

ADVANCES IN BIOMASS QUANTIFICATION
The last decade of deep biosphere research has witnessed
major advances in the capability for quantifying microbial cell

abundance. Initial efforts to quantify the number of microor-
ganisms in the deep biosphere were based on cell densities
determined manually by epifluorescence microscopy of carbon-
rich sediment collected near land (Cragg et al., 1990; Parkes
et al., 1994; Whitman et al., 1998). Based on a compilation
of the data available, initial estimates projected that deep sedi-
ments contained 3.55 × 1030 total microbial cells, representing
the majority of microbial cells on Earth and a little more than
half the amount of carbon found in all of the plants on Earth
(Whitman et al., 1998). These early studies on organic carbon-
rich sediments (which presumably would have more cells than
carbon-poor sediment) were already pushing the limit of detec-
tion of the epifluorescence microscopy methods that were used.
Several advances in sample processing have now recently enabled
cell enumeration in even lower biomass samples. These include
developments in cell separation from the sediment matrix to con-
centrate biomass (Kallmeyer et al., 2008) as well as automation of
cell counting (Morono et al., 2009). In addition to methodolog-
ical improvements for cell enumeration, recent efforts by IODP
and national funding organizations have enabled microbiolog-
ical sampling at an increasing variety of sediment and oceanic
regimes, including more offshore sites and sediments underly-
ing low-productivity gyres. As recently reviewed (Hinrichs and
Inagaki, 2012), biomass calculations are sensitive to the sample
sets used, levered on carbon per cell and sediment volume (depth)
assumptions. Re-visiting the earlier calculations (Whitman et al.,
1998) and including cell counts from low biomass sites has
resulted in a revised number of cells downward by an order of
magnitude, from 3.55 × 1030 to 2.9 × 1029 cells globally in sub-
seafloor sediment (Kallmeyer et al., 2012). Similarly, taking into
account revised estimates of cell size, as cells in oligotrophic envi-
ronments tend to be smaller than those found in carbon-rich
settings, the amount of C estimated to be contained in these cells
has changed from 303 to 4.1 Pg C.

There are still a large variety of issues and caveats involved in
the current cell number and mass estimates for the deep bio-
sphere. While recent developments and added study sites have
provided for an improved understanding of microorganisms in
the deep sediment biosphere, very little is known in terms of
cell biomass in the underlying basaltic crust. Until we achieve
some basic understanding of the distribution and numbers of
Bacteria and Archaea resident in basaltic crust, the size of the deep
biosphere will remain unknown. The few studies that have suc-
cessfully sampled this challenging regime have shown that oceanic
crust can be inhabited by an array of microorganisms (Santelli
et al., 2008; Mason et al., 2010; Lever et al., 2013). How this will
affect global estimates of microbial biomass remains unknown
until a greater diversity of crustal regimes (different ages, alter-
ation states, amounts of fluid flow, etc.) have been sampled for
microbiology. Enumeration of cells in rock is not a trivial matter,
and efforts are ongoing to develop the tools and techniques nec-
essary for these measurements (Edwards et al., 2011b). Based on
an energetic perspective, microbial primary productivity in basalt
systems is estimated at 0.5 Pg carbon, or (very) roughly 2 × 1024

cells worth of carbon (Bach and Edwards, 2003). Based on
assumed cell volume and rock pore space model calculations, oth-
ers suggest a rock biomass of 200 Pg (Heberling et al., 2010). Any
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calculation of biomass standing stock, however, requires assump-
tions about growth efficiency, cell size, and biomass turnover
times—as well as total volumes of habitable, altered basalt—
which are very poorly constrained (see e.g., Santelli et al., 2008),
and any one of which can alter total cell numbers by orders of
magnitude. It is possible that crustal biomass could easily match
or exceed the 4.1 Pg carbon estimated from sediment microbial
biomass (Kallmeyer et al., 2012).

Another consideration regarding cells in the deep biosphere
is the presence of bacterial spores. These can form a consider-
able fraction of biological material in the subsurface (Lomstein
et al., 2012), but are often overlooked by conventional cell counts
due to the inability of conventional DNA stains to penetrate the
dipicolinic acid which composes a large fraction of spore material
(Murrell, 1967). Whether spores are merely the seed for future
generations, or whether they compose a large amount of global
subsurface biomass, remains to be seen. The abundance and
role of viruses in the deep biosphere are largely unconstrained,
as well, although they have been analyzed in deep sediment
(Middelboe et al., 2011) and correlated with bacterial density
(Bird et al., 2001), in hydrothermal vent fluids (Anderson et al.,
2013), and within cultured microorganisms from the environ-
ment (Engelhardt et al., 2011). Viral production and high viral
particle to cell ratios have been noted in deep sediment up to 11
Ma (Engelhardt et al., 2013).

ADVANCES IN DNA AND RNA EXTRACTION, AMPLIFICATION, AND
SEQUENCING
Efficient nucleic acid extraction from sediment and crustal mate-
rial is imperative to culture-independent studies of the deep
biosphere. Techniques for extracting DNA and RNA from sub-
surface samples have varied widely, from indirect approaches that
require an initial cell separation from the matrix before cell lysis
(Lloyd et al., 2013) to more direct in situ lysis methods that
extract nucleic acids directly from the sample (Mills et al., 2012a).
Each approach relies on physical (e.g., bead-beating, freeze-thaw),
chemical (e.g., solvents), and enzymatic disruption of the cell
membrane. A variety of commercially available kits have capi-
talized on these basic processes to aid in extracting either DNA
or RNA, although recent advances in extraction methods have
permitted efficient co-extraction of DNA and RNA (Mills et al.,
2008, 2012a). Other variations in these methods may be needed
to address differences in cell membrane structures in Archaea
(Urakawa et al., 2010) and eukaryotes, including fungi (Orsi et al.,
2013a), and viruses (Engelhardt et al., 2011). A challenge for the
subsurface biosphere community is the selection of a common
method of nucleic acid extraction and the means to compare
results from different methods and samples.

In addition to advances in the bulk characterization of the
microbial communities in deep biosphere samples, state-of-
the-art single-cell-based and “-omic” techniques are poised to
yield important new insights into the functioning of microor-
ganisms in these habitats. For example, single cell genomics
(Stepanauskas and Sieracki, 2007; Stepanauskas, 2012) has
already enabled functional determination of a ubiquitous and
abundant group of presumably heterotrophic sediment Archaea
(Lloyd et al., 2013). Single cell-based techniques are expected to

be increasingly used to understand the functional potential of
the vast phylogenetically-novel pool of deep subsurface microor-
ganisms, including eukaryotes. Comparative analysis of genomic
data, obtained from single cells or whole communities, can give
indications of the specific adaptations that subsurface microor-
ganisms utilize to exist in energy-challenged locations. One recent
study illustrated this by linking functional genes and metabolic
function in subsurface sediment communities (Lever et al., 2013).
Another recent study of rRNA from eukaryotes showed that
active fractions of fungi can be distinguished from likely inac-
tive eukaryotes through comparative analysis (Orsi et al., 2013a).
Pushing the limit of detection boundary even farther, recent
work has also demonstrated the application of transcriptomics in
deep biosphere samples for learning about microbial activity and
growth in the subsurface (Orsi et al., 2013b).

ADVANCES IN ACTIVITY MEASUREMENTS
Some microbial activity measurements can be directly quanti-
fied using stable- and radio-isotope tracer-based techniques. For
example, to measure the rate at which sulfate-reducing bacte-
ria consume sulfate in sediment, trace amounts of 35S-labeled
sulfate is added to the sediment, which is then incubated for
a defined period of time [at in situ temperatures and pressures
when possible; (Jørgensen, 1982; Kallmeyer and Boetius, 2004;
Jørgensen et al., 2006)], and then the amount of 35S-labeled
sulfide produced from sulfate reduction is quantified to gen-
erate a turnover rate. Similar activity measurements have been
conducted to study methane production (i.e., tracking the con-
version of 14C-labeled bicarbonate or acetate into 14C-labeled
methane) and methane oxidation [using 14C-labeled methane;
(Joye et al., 2004; Orcutt et al., 2005, 2010)]. More recently, meth-
ods have also been developed to measure hydrogenase activity in
marine sediments using tritiated hydrogen (Nunoura et al., 2009;
Soffientino et al., 2009). Rates of activity are often expressed as
moles of substrate consumed per volume (or weight) of material
per time, which can then be scaled to an areal rate of activ-
ity (moles consumed per area of sediment per time). Potential
limitations on activity measurements conducted in this fashion
include impacts on microorganisms stemming from tempera-
ture and pressure changes (both during sample collection and
incubation), and very low levels of activity that fall below the
limit of detection of even the most sensitive isotopic techniques.
Notably, tracer-based measurements of activity are quite rare in
deep biosphere environments. For example, the Figure 1 map
of locations where radiotracer measurements have been made
underscores their limited global distribution. As will be discussed
below, the development of either in situ rate measurement tech-
niques, lowered limits of detection, or ways to standardize rate
measurements are necessary to enable broader measurements of
levels of microbial activity in deep sediment.

The activity of the deep biosphere can also be quantified based
on the modeling of vertical profiles of chemical reactants and
products of known microbial reactions. Pore water chemical pro-
files reflect the combined result of diffusive and/or advective
transport of those compounds (advection is typically negligi-
ble in deep sediment), as well as the sum of production and
consumption reactions (whether abiotic or biotic). For example,
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the activity of sulfate reducers is approximated from measur-
ing the profiles of sulfate and sulfide in sediment and then
using these data in reactive-transport-diagenetic models (Berner,
1980). Similar work has been done to model methane cycling
in deep sediments (Claypool et al., 2006; Sivan et al., 2007).
User-friendly analytical models to convert chemical gradients into
activity determinations are becoming increasingly available (Berg
et al., 1996; Aguillera et al., 2005; Thullner et al., 2007; LaRowe
et al., 2008; Regnier et al., 2011).

In addition to the advances in sample collection highlighted
previously, advances in in situ chemical sensors have begun to
shed light on the activity of the subsurface biosphere. New in situ
mass spectrometers, laser absorption spectrometers and electro-
chemical platforms now allow detailed chemical concentrations
(and stable isotope composition) to be measured under in situ
conditions (Glazer and Rouxel, 2009; Wankel et al., 2010, 2011,
2013; Edwards et al., 2011a; Cowen et al., 2012). For exam-
ple, simultaneous measurements of multiple dissolved gases (via
in situ mass spectrometry), combined with fluid flow rate mea-
surements, revealed deficits of dissolved hydrogen, which were
used to estimates rates of oxidation by the subsurface biosphere
(Wankel et al., 2011). With a current shift toward autonomous,
remote and cabled observational platforms, these types of tech-
nological advances will enable a core focus of deep biosphere
research.

Several important findings have emerged from the limited
analysis of microbial activity in the subsurface using both tracer-
and model-based methods. As summarized in Figure 2, the
range of microbial activities (expressed in mol e- transformed
per year per liter of material) in the subsurface spans more
than thirteen orders of magnitude, with much higher volu-
metric rates in energy-rich environments, such as hydrother-
mal vent ecosystems with abundant hydrogen (Wankel et al.,
2011), and very low rates in energy-poor environments, such as
extremely oligotrophic sediment (Røy et al., 2012). Although it
is often assumed that the lowest volumetric rates of metabolic
activity are from deep and extremely oligotrophic sediment in
the southern Pacific (Røy et al., 2012), this is not necessar-
ily true on a per-metabolism basis (Figure 2). Global trends
in activity in marine sediment based on energy-availability is
discussed in greater detail elsewhere (D’Hondt et al., 2009).
Figure 3 provides a summary of the dominant electron accep-
tors used by sediment microorganisms to fuel organic matter
breakdown according to habitat type, based on data presented
elsewhere (Thullner et al., 2009). Notably, organic matter oxi-
dation in near-shore sediment is predominantly fueled by sul-
fate reduction, whereas oxygen and nitrate become the dom-
inant terminal electron acceptor with distance from land and
increasing water depths (and thus, distance from land-based
organic matter and nutrient inputs to fuel primary produc-
tion). Considering the global distribution of these various habitat
types (Figure 4), it is remarkable that the majority of organic
matter degradation occurs in the shallow, near-land environ-
ments, even though these environments comprise a relatively
small fraction of the areal distribution. Conspicuously absent
from all of these surveys are data from polar regions, however
(Figures 1, 4).

FIGURE 3 | Global marine sediment organic matter oxidation by

electron acceptor and habitat, based on data published elsewhere

(Thullner et al., 2009) and reprinted here with permission. Pie chart
sections represent the percentage of organic matter delivered to the
seafloor that is oxidized by the indicated electron acceptor in the upper
50 cm of sediment. The depths of the seawater-sediment interface for each
environment are listed below each chart. Sufficient data were not reported
to include Mn(IV) as an electron acceptor, but note that it is generally only
10% of the values for Fe(III) (Thullner et al., 2009). Other fates of organic
matter degradation (e.g., fermentation and methanogenesis) were not
considered in the study [methanogenesis accounts for about 5% of global
carbon mineralization (Jørgensen and Kasten, 2006)].

ADVANCES IN UNDERSTANDING ENERGY SUPPLY AND DEMAND IN
THE DEEP BIOSPHERE
Although it is becoming clear that microorganisms are abundant
in deep marine settings (Parkes et al., 1994; Whitman et al., 1998;
Cowen et al., 2003; D’Hondt et al., 2004; Edwards et al., 2005;
Schippers et al., 2005; Santelli et al., 2008; Kallmeyer et al., 2012),
it is unclear how active they are (Jørgensen, 2011). Determination
of this activity is made difficult by the size and diversity of sub-
surface habitats, their relative inaccessibility and the difficulty
of cultivating representative microbes. However, theoretical and
modeling techniques have been used to investigate some of the
variables that affect activity in these systems. In particular, ther-
modynamic models have been used to quantify the energy supply
and demand in various ecosystems since energy availability is
one of the key factors that affects microbial activity levels (Van
Briesen, 2002). Furthermore, quantification of deep biosphere
energy budgets can be used to infer what types of reactions
microorganisms are catalyzing and the amount of biomass that
can be sustained under a given set of environmental conditions.

Active microorganisms require energy that is ultimately har-
vested from the catalysis of redox reactions. The amount of energy
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FIGURE 4 | Relative percentage of different sedimentary habitats

(by area) compared to the relative amounts of cumulative

organic matter degradation in those habitats, based on data

presented elsewhere (Thullner et al., 2009) and reprinted here

with permission. Note that only habitats between 60◦N and
60◦S were considered in this study, and that the study assumed
that all organic matter was degraded in the upper 30 cm of
sediment.

available from these reactions with a given set of environmental
conditions can be determined by calculating the Gibbs energies of
potential catabolic reactions. This procedure can determine what
geochemical variables (e.g., temperature, pressure, pH, salinity,
composition) control the system, quantify the energetic poten-
tial in the deep biosphere, and help identify the likely electron
donors and acceptors that are being used by a microbial com-
munity. These conditions are influenced by reaction rates and
the diffusive and advective transport of reactant and product
species, which are in turn governed by the porosity, perme-
ability and mineralogy of a given locality. As a result, in order
to understand the dynamics of the deep biosphere, the geo-
logical and geophysical parameters that describe it must also
be taken into account. Energetic profiling has been successfully
carried out in submarine hydrothermal settings (Shock et al.,
1995; McCollom and Shock, 1997; McCollom, 2000; Amend
and Shock, 2001; Shock and Holland, 2004; McCollom, 2007;
LaRowe et al., 2008) shallow marine and terrestrial hydrother-
mal systems (Amend et al., 2003; Inskeep and McDermott, 2005;
Inskeep et al., 2005; Rogers and Amend, 2005; Spear et al., 2005;
Rogers and Amend, 2006; Rogers et al., 2007; Skoog et al., 2007;
Windman et al., 2007; Costa et al., 2009; Shock et al., 2010; Vick
et al., 2010) and, to a lesser extent, in ocean sediment (Schrum
et al., 2009; Wang et al., 2010) and basement rock (Bach and
Edwards, 2003; Cowen, 2004; Edwards et al., 2005; Boettger et al.,
2012). However, a comprehensive assessment of the amount and
type of energy sources in deep marine settings has yet to be
carried out.

The amount of energy required by a microbial commu-
nity is largely a function of the metabolic state of the ecosys-
tem. That is, in the presence of a sufficiently large amount
of energy, microorganisms synthesize organic compounds for
growth and for extracellular functions such as communication,
nutrient acquisition, physical support and stability. However,

under low-energy conditions, active microbial synthesis is lim-
ited to maintaining cellular integrity through biomolecular repair
and replacement, a collection of activities referred to as mainte-
nance (Tijhuis et al., 1993). When energy and/or nutrients are
essentially not available, many microorganisms enter into a dor-
mant or survival state (Price and Sowers, 2004). Determining
the energetic regime of a given microbial community is largely
a function of both how much energy is available (Van Briesen,
2002) and how much energy is required to synthesize biomass
under the conditions specified by the geochemical environ-
ment. Although it is difficult to ascertain which of these states
describes the microorganisms in a particular deep biosphere
setting, the amount of energy required to synthesize a broad
range of biomolecules under biologically relevant conditions can
be quantified. In particular, the thermodynamic data required
to do this is now available for amino acids, fatty acids, car-
bohydrates, nucleotides, coenzymes and unfolded polypeptides
(Shock, 1995; Helgeson et al., 1998; Richard and Helgeson, 1998;
Dick et al., 2006; LaRowe and Helgeson, 2006a,b; Amend and
Plyasunov, 2001; McCollom and Amend, 2005; LaRowe and Dick,
2012).

The amount of energy that is available from catabolic reac-
tions determines how fast microorganisms grow, and thus the
rate and quantity of biomass produced in a given setting. In
a low-energy environment, which describes most deep bio-
sphere habitats, the relationship between energy supply, energy
demand, and the rates of microbially catalyzed processes are
unclear (Jørgensen, 2011). Additionally, although energy might
be available in a particular setting, it might not be enough to
stimulate microbial activity (Jin and Bethke, 2002, 2003, 2005,
2007, 2009; Hoehler, 2004; Bethke et al., 2011). It is unclear at
what energy level microorganisms living in low-energy subsur-
face settings switch among dormancy, maintenance activities, and
growth.
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FUTURE RESEARCH DIRECTIONS
Obtaining samples and maintaining them at in situ conditions is
difficult for deep biosphere work and requires advancement of
technologies to either make measurements in situ or to main-
tain a sample at in situ conditions. Technologies of the latter have
been used for some time, including the pressure core sampler
used in drilling programs (Parkes et al., 2009a,b), and the biomass
recycle reactor that stimulates subsurface starvation conditions
(Colwell et al., 2008) although widespread usage is lacking. Yet for
the former, technologies are just being developed. For example,
studies showing successful deployments of underwater mass spec-
trometry reveal in situ concentrations of different constituents
(Camilli and Duryea, 2009; Wankel et al., 2011). Taking these
measurements to the next level to measure stable carbon isotope
ratios can help decipher active processes occurring in sediment
(Wankel et al., 2011). Designing these systems to be able to sample
pore-fluids within sediment will require continued collaborations
between scientists and engineers.

NEED FOR STANDARDIZATION AND ROUTINE MEASUREMENTS
The volume of biological data being collected from the subsur-
face has rapidly increased over the past decade due, in large part,
to greater emphasis on exploring the biosphere by groups like
IODP and the Center for Dark Energy Biosphere Investigations
(C-DEBI). More laboratories are requesting samples and are
using new, diverse culturing and molecular techniques, but each
laboratory is attempting to answer similar questions about the
diversity, extent, and function of life in the subsurface. These
questions are too large for a single laboratory; therefore, a collec-
tive effort is required. However, changes in sampling techniques
and experimentation protocols can inadvertently bias results and
reduce the overall cross comparison potential between studies
(Mills et al., 2012a). Before the subsurface biosphere commu-
nity becomes too large, we have a chance to develop a degree
of standardization that will allow for true, meaningfully global
comparisons to occur.

While the international research community has many options
for obtaining subsurface samples, one of our assets is the ability
to capitalize on resources within IODP. Geochemical and geo-
physical research objectives represented on IODP expeditions are
routinely provided by dedicated shipboard scientists and tech-
nicians assigned to completing standard procedures on all core
material. The call for an additional biological workload on these
individuals is typically met with an argument claiming a lack of
time and resources onboard. The need for standard and routine
biological procedures must be viewed not as an added burden on
the shipboard party, but as a necessity to complete expedition
and post-expedition objectives. If equipment and personnel do
not currently exist with the capacity to complete standard biolog-
ical analyses, IODP should take this as a charge to better equip
ships with a fully functional laboratory and science party. The
main areas where standardization of biological shipboard proce-
dures would make an immediate impact are with core material
sampling and cell counting.

A change in standard coring protocol should be adopted to
provide samples suitable for biological analysis. Standard use of
a contamination detection protocol will provide a higher level
of confidence for all downstream analysis. These contamination

tests should also be of high interest to chemists, as their results
can be compromised as well during the drilling processes. This
protocol should be initiated during the drilling process to provide
the greatest potential to determine drilling-related contamination
of the core material. Advanced testing of current contamination
tracers and proposed novel ideas can be conducted on any expe-
dition provided the right personnel are onboard and available for
analysis. Core material will then be available both to the onboard
science party and for projects during post-expedition research.
Many of the cores currently being stored are not available for bio-
logical analysis because such procedures were not in place. While
this request for better monitoring appears to be straightforward,
time and financial costs associated with such procedures have
limited the use of current technologies. However, we emphasize
that the scientific gain and necessity to facilitate biological and
chemical studies should be considered in these cost analyses.

Substantial advances have been made in cell enumeration over
the past several years so that a routine method may now be
adopted. The method described by Morono et al. (Morono et al.,
2009) is both sensitive to low cell counts and reproducible across
a wide range of sediment types. One of the key components to
this method is a cell extraction step used to separate cells from
sediment particles. In methods that do not remove the sediment,
detection limits are 104 to 105 cells ml−1 while the new method
promotes a 103 cells ml−1 detection limit. A recent concern with
this method has been the capacity to count spores, viral particles
and micro-eukaryotes, including fungi that may have different
sizes and densities compared to the typically targeted prokaryotic
cells. This concern reflects a growing trend to expand what is char-
acterized and included in the subsurface biosphere. Refinements
to this method may need to be considered, however, these issues
do not outweigh the benefit from a standard shipboard cell count
being performed. Time commitments and variability between
technicians and expeditions has been reduced by the procedure
being automated. Through a concerted effort to standardize the
cell counting method, we will be able to better compare samples
from future expeditions and begin to ask global questions about
cell abundance.

A step in the overall goal of method standardization needs
to be a discussion resulting in a decision to determine a basic
diagnostic gene target for characterizing microbial community
structure. While there is little questioning the value of the small
subunit (SSU) rRNA gene for prokaryotic taxonomic description,
the choice of region within this conserved gene has been widely
disputed, with the main arguments being between the V1–V3
and the V4–V6 hypervariable regions. Both of these regions have
biases and benefits (Youssef et al., 2009; Kumar et al., 2011) and
both have well-developed primer sets used for amplification and
quantification. As more groups begin to use high-throughput,
next generation sequencing, the community has the opportunity
to determine the best region to target so that future studies can be
better compared. Biogeographical descriptions of the subsurface
community are most effective when variables between analysis
procedures are reduced. Choosing a standard region for compar-
ison will not restrict research groups from analyzing additional,
more taxonomically specific regions. However, by collectively
targeting a single sequence, we will begin to assemble a more
robust dataset for examining global trends in microbial diversity
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and begin to address the question of overall diversity within the
subsurface. Having these conversations while the community is
well-connected and focused on building the field will benefit
subsurface research as a whole.

Standard methods for determining and reporting rates of
in situ processes such as sulfate reduction, methanogenesis, and
anaerobic methane oxidation have been used for many decades,
although the limit of detection for these methods is an important
consideration (Kallmeyer et al., 2004), as is the logistically chal-
lenging use of radioisotopes needed for these analyses. The deep
biosphere community as a whole can adopt these methods to help
standardize analysis for better direct comparison to occur. At the
very least, adopting a consistent unit that is commonly reported
would be helpful. For example, measured or inferred rates of
microbially catalyzed reactions should be reported in units that
are comparable and easy to translate from one metabolic pathway
to another. For instance, by using units of mol e- transferred cm−3

yr−1, catabolic activities such as aerobic heterotrophy can be
directly compared to chemolithotrophic reactions. Furthermore,
if rate measurements are carried out under pressure, temperature
or composition conditions different from those characterizing
the sample location, then this should be noted and referred
to as apparent rates of catabolic activity. While few rates of
microbial activity have been measured globally (Figure 1), the
incorporation of deep biosphere objectives into the IODP goals
has helped advance the ability to make these measurements
and stressed the need to continue to measure rates on future
expeditions.

ANALOG SYSTEMS AND MANIPULATION EXPERIMENTS
The use of in situ manipulation experiments is now common in
terrestrial subsurface microbiological research, where this class of
studies can be used to examine the outcome of intentional or
inadvertent changes to subsurface environments. Where biore-
mediation is seen as a solution to subsurface contamination,
so-called “push-pull” studies have been used to interrogate the
in situ activities of microorganisms called upon to metabolically
degrade organic chemicals (Istok et al., 1997; Schroth et al., 1998)
or immobilize inorganic chemicals (Colwell et al., 2005; Fujita
et al., 2008). In low temperature environments, such as shal-
low permafrost settings that are susceptible to warming trends,
recent work has examined how microbial community activi-
ties respond to artificially induced thermal pulses (Mackelprang
et al., 2011). Microbial transport (Harvey, 1997) or “mark-and-
recapture” studies in continental settings provide inspiration for
what could be done below the seafloor. For example, native sub-
surface cells were cultivated from sediment and then grown in
the laboratory in the presence of a 13C labeled substrate. These
13C-heavy cells were then released into their native setting in the
presence of other indigenous microorganisms and then tracked
as they migrated by measurement of the 13C signal using mass
spectrometric analysis (Holben and Ostrom, 2000). Growth or
activity during the underground transport and metabolism by the
re-introduced cells could be inferred by loss of the 13C-label in
recovered cells.

Despite the inherent complexity of moving from a terrestrial
to a deep marine setting, we envision that similar technologies

may be applied to subseafloor environments that are susceptible
to changing conditions or where fluid movement is common in
the subsurface. Examples of the former condition are locations
where active tectonics or state changes in the physical sedimen-
tary features (e.g., formation or decomposition of hydrates) in
the sediment may induce dynamic changes. In the latter case,
fractured rocks or crustal materials in the seabed offer a chance
to evaluate how microbes that exist within a regime of fluid
movement respond to low levels of reductants. Sophisticated ver-
sions of CORKs might allow direct injection or withdrawal of
fluids with prescribed chemistries in the seafloor in order to
test hypotheses related to how the subsurface microbial commu-
nities will respond. Steps in this direction have occurred with
the recent experiments performed on the Juan de Fuca flanks
CORK network (Fisher et al., 2011b), building on the legacy
of research at this location documenting the dynamic nature of
microbial communities in ridge flank crust after being disturbed
by drilling (Cowen et al., 2003; Nakagawa et al., 2006; Orcutt
et al., 2011b; Jungbluth et al., 2012; Lin et al., 2012). A next step
could conceivably be the introduction of reactive tracers to deter-
mine how the microbial communities along the flow-path alter
the introduced compounds and the rates at which these alter-
ations occur. Another possibility would be the co-location of a
subseafloor manipulation experiment and one of the regional
scale nodes of the new Ocean Observatories Initiative (OOI). This
would open possibilities for linking subsurface processes with the
surface where there is the possibility of exchange between the
two realms.

The idea of observatory-enabled manipulation experiments
builds off of the history of twenty-eight instrumented borehole
observatories (i.e., CORKs) that have been deployed during the
past two decades (Wheat et al., 2011). This burgeoning global
network of CORKs provides a range of hydrologic and geo-
logic settings from hydrothermal systems to hydrate complexes
and from active spreading centers through ridge flanks to sub-
duction zones. These settings represent a range of environmen-
tal conditions—e.g., from acidic (pH 5.1) to basic (pH 12.5),
from hot (265◦C) to cool (3◦C), from serpentinite- to basalt-
to sediment-hosted (Wheat et al., 2011)—that shape microbial
community structure and activity. Even with this seemingly large
number of CORKs and the range of conditions that they rep-
resent, half of these CORKs are within a 100 km cluster of the
six CORKs that overlie ∼3.5 M basaltic crust on the eastern
flank of the Juan de Fuca Ridge. Such a small footprint barely
begins to provide a representation of global crustal conditions.
Recent developments in sealing and instrumenting “legacy” bore-
holes (Wheat et al., 2012) open up the possibility of re-visiting
dozens of potentially suitable boreholes started in earlier drilling
expeditions and upgrading them to observatories, as has been
proposed elsewhere (Edwards et al., 2012c). This capacity could
allow many more crustal, biogeochemical and physical conditions
to be monitored or manipulated for understanding the spectrum
of subsurface diversity and activity. An important consideration
for the scientific community will be cost-benefit analysis of long-
term observatories, which can cost from hundreds of thousands
to millions of dollars to install coupled with the lifetime costs
of return visits for sampling and servicing (Wheat et al., 2012).
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Connection of long-term observatories to deep sea cabled net-
works, as is being done with the NEPTUNE Canada program
and the Endurance Array of the Ocean Observatory Initiative, is
another important consideration.

SUMMARY AND OUTLOOK
The past decade has seen substantial changes in our understand-
ing of the size, diversity, novelty, and importance of the deep
marine biosphere, and the next decade of deep biosphere research
within the International Ocean Discovery Program (IODP, 2011)
and other national programs is poised to yield new insights
and fundamental discoveries. Determining how slowly growing
microorganisms in the deep biosphere survive for extremely long
periods of time is a major research frontier, as is determining the
size and dynamics of microbial ecosystems in upper oceanic litho-
sphere. Research in both of these directions, and others, will also
open up novel habitats and vast microbial diversity to exploration

for natural product research, an untapped resource in the deep
subsurface.
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